

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

SOFTWARE TESTING Varun Vashishtha, Tapodhan Singla, Sumeet Singh

P a g e | 1258

Software Testing

Varun Vashishtha, Tapodhan Singla, Sumeet Singh
Computer Science and Engineering Department,

Maharishi Dayanand University, Rohtak, Haryana, India

Abstract—

The paper attempts to provide a
comprehensive view of software testing.
Software testing is the process of evaluation of
a software item to detect differences between
given input and expected output.
 Software testing provides a means to reduce
errors, cut maintenance and overall software
costs. It evaluates quality of a program and
also for improving it, by identifying defects
and problems.
 One of the major problems within software
testing area is how to get a suitable set of cases
to test a software system. This set should
assure maximum effectiveness with the least
possible number of test cases. There are now
numerous testing techniques available for
generating test cases. is the activity where
the errors remaining from all the previous
phases must be detected. Hence, testing
perform a very critical role for software
assurance quality.

Keywords— testing goals, Testing
principals, Testing Process, Software
quality, Limitations

1. INTRODUCTION

Software testing is as old as the hills in the
history of digital computers. The testing of
software is an important means of assessing
the software to determine its quality. Since
testing typically consumes 40 - 50% of
development efforts, and consumes more
effort for systems that require higher levels of
reliability, it is a significant part of the
software engineering. Modern software
systems must be extremely reliable and
correct. Automatic methods for ensuring
software correctness range from static

techniques, such as (software) model checking
or static analysis, to dynamic techniques, such
as testing. All these techniques have strengths
and weaknesses: model checking (with
abstraction) is automatic, exhaustive, but may
suffer from scalability issues. Static analysis,
on the other hand, scales to very large
programs but may give too many spurious
warnings, while testing alone may miss
important errors, since it is inherently
incomplete. IEEE STANDARDS: Institute of
Electrical and Electronics Engineers designed
an entire set of standards for software and to
be followed by the testers. i.e. Standard
Glossary of Software Engineering
Terminology, Standard for Software Quality
Assurance Plan, Standard for Software
Configuration Management Plan .

� What is Software Testing?

Software testing is more than just error
detection; Testing software is operating the
software under controlled conditions, to (1)
verify that it behaves “as specified”; (2) to
detect errors, and (3) to validate that what has
been specified is what the user actually
wanted.

1.Verification: It is the checking or testing of
items, including software, for conformance
and consistency by evaluating the results
against pre-specified requirements.

2. Error Detection: Testing should
intentionally attempt to make things go wrong
to determine if things happen when they
shouldn‟t or things don‟t happen when they
should.

3. Validation: Validation looks at the system
correctness – i.e. is the process of checking

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

SOFTWARE TESTING Varun Vashishtha, Tapodhan Singla, Sumeet Singh

P a g e | 1259

that what has been specified is what the user
actually wanted.

The definition of testing according to the
ANSI/IEEE 1059 standard is that testing is the
process of analyzing a software item to detect
the differences between existing and required
conditions (that is defects/errors/bugs) and to
evaluate the features of the software item. The
purpose of testing is verification, validation
and error detection in order to find problems –
and the purpose of finding those problems is to
get them fixed. Most Common Software
problems: Inadequate software performance,
Data searches that yields incorrect results.
Incorrect data edits & ineffective data edits,
Incorrect coding / implementation of business
rules, Incorrect calculation, Incorrect data edits
and ineffective data edits, Incorrect processing
of data relationship, Incorrect or inadequate
interfaces with other systems, Inadequate
performance and security controls, Incorrect
file handling, Inadequate support of business
needs, Unreliable results or performance,
Confusing or misleading data, Software
usability by end users & Obsolete Software,
Inconsistent processing.

1.1 Need For Software Testing

Software development involves developing
software against a set of requirements.
Software testing is needed to verify and
validate that the software that has been built
has been built to meet these specifications. If
not we may probably lose our client. So in
order to make it sure, that we provide our
client a proper software solution, we go for
testing. Testing ensures that what you get in
the end is what you wanted to build. We check
out if there is any problem, any error in the
system, which can make software unusable by
the client. This helps in the prevention of
errors in a system.

1.2 Testing Techniques

Correctness is the minimum requirement of
software. Correctness testing will need some
type of oracle, to tell the right behavior from
the wrong one. The tester may or may not
know the inside details of the software module
under test. Therefore

 either white box testing or black box testing
can be used.
Correctness testing has following three
forms:-
1) White box testing
2) Black box testing
3) Grey box Testing

A) White box testing :
White box testing is highly effective in
detecting and resolving problems, because
bugs can often be found before they cause
trouble. White box testing is the process of
giving the input to the system and checking
how the system processes that input to
generate the required output. White box testing
is also called white box analysis, clear box
testing or clear box analysis. White box testing
is applicable at integration, unit and system
levels of the software testing process.

B) Black box testing :
 Black box testing is testing software based on
output requirements and without any
knowledge of the internal structure or coding
in the program. Basically Black box testing is
an integral part of “Correctness testing” but its
ideas are not limited to correctness testing
only. The goal is to test how well the
component conforms to the published
requirement for the component. Black box
testing have little or no regard to the internal
logical structure of the system, it only
examines the fundamental aspect of the
system. It makes sure that input is properly
accepted and output is correctly produced.

C) Grey box testing :
 The Gray box Testing Methodology is a
software testing method used to test software
applications. The methodology is platform and
language independent. The current
implementation of the Gray box methodology
is heavily dependent on the use of a host
platform debugger to execute and validate the
software under test. Recent studies have
confirmed that the Gray box method can be
applied in real time using software executing
on the target platform. Grey box testing
techniques combined the testing methodology
of white box and black box. Grey box testing
technique is used for testing a piece of
software against its specifications but using
some knowledge of its internal working as

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

SOFTWARE TESTING Varun Vashishtha, Tapodhan Singla, Sumeet Singh

P a g e | 1260

well. The understanding of internals of the
program in grey box testing is more than black
box testing, but less than clear box testing.

2. TESTING GOALS

A goal is a projected state of affairs that a
person or system plans or intends to achieve.
A goal has to be accomplishable and
measurable. It is good if all goals are
interrelated. In testing we can describe goals as
intended outputs of the software testing
process. Software testing has following goals:-

A .Verification:

Most misunderstood about testing is the
primary objective. If you think it is to find
defects then you are wrong. Defects will be
found by everybody using the software.
Testing is a quality control measure used to
verify that a product works as desired. Testing
provides a status report of the actual product in
comparison to requirements (written and
implicit). At its simplest this is a pass/fail
listing of product features; at detail it includes
confidence numbers and expectations of defect
rates throughout the software.
This is important since a tester can hunt bugs
forever yet not be able to say whether the
product is fit for release. Having a multitude of
defect reports is of a little use if there is no
method by which to value them. A corporate
policy needs to be in place regarding the
quality of the product. It must state what
conditions are required to release the software.
The tester's job is to determine whether the
software fulfils those conditions.

B. Unbiased :

Tests must balance the written requirements,
real-world technical limitations, and user
expectations. Regardless of the development
process being employed there will be a lot
unwritten or implicit requirements. It is the job
of the tester to keep all such requirements in
mind while testing the software. A tester must
also realize they are not a user of the software,
they are part of the development team. Their

personal opinions are but one of many
considerations. Bias in a tester invariably leads
to a bias in coverage.
The end user's viewpoint is obviously vital to
the success of the software, but it isn't all that
matters. If the needs of the administrators can't
be met the software may not be deployable. If
the needs of the support team aren't met, it
may be unsupportable. If the needs of
marketing can't be met, it may be unsellable.
The programmers also can't be ignored; every
defect has to be prioritized with respect to their
time limits and technical constraints.

C. Deterministic :

The discovery of issues should not be random.
Coverage criteria should expose all defects of
a decided nature and priority. Furthermore,
later surfacing defects should be identifiable as
to which branch in the coverage it would have
occured, and can thus present a definite cost in
detecting such defects in future testing.
This goal should be a natural extension to
having traceable tests with priority coverage. It
reiterates that the testing team should not be a
chaotic black box. Quality control is a well
structured, repeatable, and predictable process.
Having clean insight into the process allows
the business to better guage costs and to better
direct the overall development.

D. Traceable :

Exactly what was tested, and how it was
tested, are needed as part of an ongoing
development process. In many environments
such proof of activities are required as part of
a certification effort, or simply as a means to
eliminate duplicate testing effort. This
shouldn't mean extra documentation, it simply
means keeping your test plans clear enough to
be reread and understood.
You will have to agree on the documentation
methods; every member of the team should not
have their own. Not all features should be
documented the same way however: several
different methods will likely be employed.
Unfortunately there aren't a lot of commonly

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

SOFTWARE TESTING Varun Vashishtha, Tapodhan Singla, Sumeet Singh

P a g e | 1261

agreed principles in this area, so in a way
you're kind of on your own.

3. TESTING PRINCIPLES

A principle is an accepted rule or method for
application in action that has to be, or can be
desirably followed. Testing Principles offer
general guidelines common for all testing
which assists us in performing testing
effectively and efficiently.
 Principles for software testing are:

A . Testing shows presence of defects

Testing can show that defects are present ,but
cannot prove that there are no defects. Testing
reduces the probability of undiscovered
defects remaining in the software but, even if
no defects are found, it is not a proof of
correctness.

B. Exhaustive testing is impossible
Testing everything (all combinations of inputs
and preconditions) is not feasible except for
trivial cases. Instead of exhaustive testing, we
use risks and priorities to focus testing efforts.

C. Early testing

Testing activities should start as early as
possible in the software or system
development life cycle and should be focused
on defined objectives. Cost of finding and
fixing the error increases over time.

 Figure 1

D. Defect clustering

A small number of modules contain most of
the defects discovered during pre release
testing or show the most operational failures.

E. Pesticide paradox

If the same tests are repeated over and over
again, eventually the same set of test cases will
no longer find any new bugs. To overcome
this 'pesticide paradox', the test cases need to
be regularly reviewed and revised, and new
and different tests need to be written to
exercise different parts of the software or
system to potentially find more defects.

H. Testing is context dependent.

Testing is done differently in different
contexts. For example, safety-critical software
is tested differently from an e-commerce site.

G. Absence-of-errors fallacy

Finding and fixing defects does not help if the
system built is unusable and does not fulfils
the users' needs and expectations.

4. SOFTWARE TESTING
LIFECYCLE-PHASES

A. Requirements study
� Testing Cycle starts with the study of clients
requirements.

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

SOFTWARE TESTING Varun Vashishtha, Tapodhan Singla, Sumeet Singh

P a g e | 1262

� Understanding of the requirements is very
essential for testing the product.

B. Test Case Design and Development
� Component Identification
� Test Specification Design
� Test Specification Review

C. Test Execution
� Code Review
� Test execution and evaluation
� Performance and simulation

D. Test Closure
� Test summary report
� Project De-brief
� Project Documentation

E. Test Process Analysis
� Analysis done on the reports and improving
the application‟s performance by
implementing new technology and additional
features.

5. TESTING PROCESS

Traditional waterfall development
model

A common practice of software testing is that
testing is performed by an independent group
of testers after the functionality is developed,
before it is shipped to the customer. This
practice often results in the testing phase being
used as buffer to compensate for project
delays, thereby compromising the time
devoted to testing. Another practice is to start
software testing at the same moment the
project starts and it is a continuous process
until the project finishes.

Agile or Extreme development model
In contrast, some emerging software
disciplines such and movement, adhere to
a model. In this process, are written first, by
the (often with in the extreme programming
methodology). Of course these tests fail
initially; as they are expected to. Then as code
is written it passes incrementally larger
portions of the test suites. The test suites are
continuously updated as new failure conditions

and corner cases are discovered, and they are
integrated with any regression tests that are
developed. Unit tests are maintained along
with the rest of the software source code and
generally integrated into the build process
(with inherently interactive tests being
relegated to a partially manual build
acceptance process). The ultimate goal of this
test process is to achieve where software
updates can be published to the public
frequently. This methodology increases the
testing effort done by development, before
reaching any formal testing team. In some
other development models, most of the test
execution occurs after the requirements have
been defined and the coding process has been
completed.

Top-down and bottom-up

Bottom Up Testing is an approach to
integrated testing where the lowest level
components (modules, procedures, and
functions) are tested first, then integrated and
used to facilitate the testing of higher level
components. After the integration testing of
lower level integrated modules, the next level
of modules will be formed and can be used for
integration testing. The process is repeated
until the components at the top of the
hierarchy are tested. This approach is helpful
only when all or most of the modules of the
same development level are ready. This
method also helps to determine the levels of
software developed and makes it easier to
report testing progress in the form of a
percentage.

Top Down Testing is an approach to
integrated testing where the top integrated
modules are tested and the branch of the
module is tested step by step until the end of
the related module. In both, and drivers are
used to stand-in for missing components and
are replaced as the levels are completed

.

A sample testing cycle

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

SOFTWARE TESTING Varun Vashishtha, Tapodhan Singla, Sumeet Singh

P a g e | 1263

Although variations exist between
organizations, there is a typical cycle for
testing. The sample below is common among
organizations employing model. The same
practices are commonly found in other
development models, but might not be as clear
or explicit.

 Testing should begin in the requirements
phase of the during the design phase, testers
work to determine what aspects of a design are
testable and with what parameters those tests
work.

• Test planning creation. Since many

activities will be carried out during

testing, a plan is needed.

• Test development: Test procedures, test

datasets, test scripts to use in testing

software.

• Test execution: Testers execute the

software based on the plans and test

documents then report any errors found to

the development team.

• Test reporting: Once testing is

completed, testers generate metrics and

make final reports on their and whether or

not the software tested is ready for release.

• Test result analysis: Or Defect Analysis,

is done by the development team usually

along with the client, in order to decide

what defects should be assigned, fixed,

rejected (i.e. found software working

properly) or deferred to be dealt with later.

• Defect Retesting: Once a defect has been

dealt with by the development team, it is

retested by the testing team.

• Regression testing: It is common to have

a small test program built of a subset of

tests, for each integration of new,

modified, or fixed software, in order to

ensure that the latest delivery has not

ruined anything, and that the software

product as a whole is still working

correctly.

• Test Closure: Once the test meets the exit

criteria, the activities such as capturing the

key outputs, lessons learned, results, logs,

documents related to the project are

archived and used as a reference for future

projects.

6. LIMITATIONS

Limitation is a principle that limits the extent
of something. Testing also has some
limitations that should be taken into account to
set realistic expectations about its benefits. In
spite of being most dominant verification
technique, software testing too has following
limitations:

1. Testing can be used to show the presence of
errors, but never to show their absence! . It can
only identify the known issues or errors. It
gives no idea about defects still uncovered.
Testing cannot guarantee that the system under
test is error free.

2. Testing provides no help when we have to
make a decision to either "release the product
with errors for meeting the deadline" or to
"release the product late compromising the
deadline".

3. Testing cannot establish that a product
functions properly under all conditions but can
only establish principles, limitations and
concepts. Already lot of work has been done in
this field, and even continues today.
Implementing testing principles in real world
software development, to accomplish testing
goals to maximum extent keeping in
consideration the testing limitations will
validate the research and also will pave a way
for future research that it does not function
properly under specific conditions.

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

SOFTWARE TESTING Varun Vashishtha, Tapodhan Singla, Sumeet Singh

P a g e | 1264

4. Software testing does not help in finding
root causes which resulted in injection of
defects in the first place. Locating root causes
of failures can help us in preventing injection
of such faults in future.

7. CONCLUSION

Software testing is a vital element in the SDLC
and can furnish excellent results if done
properly and effectively. Unfortunately,
Software testing is often less formal
andrigorous than it should, and a main reason
for that is because we have struggled to define
best practices, methodologies ,principles,
standards for optimal software testing. To
perform testing effectively and efficiently,
everyone involved with testing should be
familiar with basic software testing goals,
principles, limitations and concepts. Already
lot of work has been done in this field, and
even continues today. Implementing testing
principles in real world software development,
to accomplish testing goals to maximum extent
keeping in consideration the testing limitations
will validate the research and also will pave a
way for future research.

 8. REFERENCES

[1] Antonia Bertolina, ‖Software Testing
Research and Practice‖, Proceedings of the
abstract state machines 10th international
conference on Advances in theory and
practice,1-21,2003.

[2] “Foundation of software testing”-Dorothy
Graham, Erik van Veenendaal, Isabel Evans,
Rex Black.

[3]. Nick Jenkins. ―A Software Testing
Primer‖, 2008.

[4] Ian Somerville, ‖Software Engineering‖,
Addison-Wesley,
2001.

[5].Miller, William E. Howden, "Tutorial,
software testing & validation techniques",
IEEE Computer Society Press,
1981.

[6] Peter Sestoft,‖ Systematic software testing‖,
Version 2, 2008-02-25.

[7] Shari Lawrence Pfleeger, ―Software
Engineering, Theory
and Practice‖, Pearson Education, 2001.

