

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1265

Parsing	–	A	Brief	Study	
Tanya Sharma, Sumit Das & Vishal Bhalla

Research Scholars, Computer science and engineering department, MDU Rohtak, India

ABSTRACT
Parsing is a technique to determine how a
string might be derived using productions
(rewrite rules) of a given grammar. It can be
used to check whether or not a string
belongs to a given language. When a
statement written in a programming
language is input, it is parsed by a compiler
to check whether or not it is syntactically
correct and to extract components if it is
correct. Finding an efficient parser is a
nontrivial problem and a great deal of
research has been conducted on parser
design. This paper basically serves the
purpose of elaborating the concept of
parsing.

1) INTRODUCTION

Parsing or syntactic analysis is the process
of analysing a string of symbols, either in
natural language or in computer languages,
according to the rules of a formal grammar.
The term parsing comes from Latin pars
(orationis), meaning part (of speech).
The term has slightly different meanings in
different branches of linguistics and
computer science. Traditional sentence
parsing is often performed as a method of
understanding the exact meaning of a
sentence, sometimes with the aid of devices
such as sentence diagrams. It usually
emphasizes the importance of grammatical
divisions such as subject and predicate.

Within computational linguistics the term is
used to refer to the formal analysis by a
computer of a sentence or other string of
words into its constituents, resulting in a
parse tree showing their syntactic relation to
each other, which may also contain semantic
and other information.
The term is also used in psycholinguistics
when describing language comprehension.
In this context, parsing refers to the way that
human beings analyze a sentence or phrase
(in spoken language or text) "in terms of
grammatical constituents, identifying the
parts of speech, syntactic relations, etc."
This term is especially common when
discussing what linguistic cues help speakers
to interpret garden-path sentences.
Within computer science, the term is used in
the analysis of computer languages,
referring to the syntactic analysis of the
input code into its component parts in order
to facilitate the writing of compilers and
interpreters.

2) NATURAL LANGUAGE PARSING

2.1) TRADITIONAL METHODS

The traditional grammatical exercise of
parsing, sometimes known as clause
analysis, involves breaking down a text
into its component parts of speech with
an explanation of the form, function, and
syntactic relationship of each part. This
is determined in large part from study of
the language's conjugations and
declensions, which can be quite intricate

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1266

for heavily inflected languages. To parse
a phrase such as 'man bites dog' involves
noting that the singular noun 'man' is the
subject of the sentence, the verb 'bites' is
the third person singular of the present
tense of the verb 'to bite', and the
singular noun 'dog' is the object of the
sentence. Techniques such as sentence
diagrams are sometimes used to indicate
relation between elements in the
sentence.
Parsing was formerly central to the
teaching of grammar throughout the
English-speaking world, and widely
regarded as basic to the use and
understanding of written language.
However the teaching of such techniques
is no longer current.

2.2) COMPUTATIONAL METHODS

In some machine translation and natural
language processing systems, written
texts in human languages are parsed by
computer programs. Human sentences
are not easily parsed by programs, as
there is substantial ambiguity in the
structure of human language, whose
usage is to convey meaning (or
semantics) amongst a potentially
unlimited range of possibilities but only
some of which are germane to the
particular case. So an utterance "Man
bites dog" versus "Dog bites man" is
definite on one detail but in another
language might appear as "Man dog
bites" with a reliance on the larger
context to distinguish between those two
possibilities, if indeed that difference
was of concern. It is difficult to prepare
formal rules to describe informal
behaviour even though it is clear that
some rules are being followed.
In order to parse natural language data,
researchers must first agree on the
grammar to be used. The choice of

syntax is affected by both linguistic and
computational concerns; for instance
some parsing systems use lexical
functional grammar, but in general,
parsing for grammars of this type is
known to be NP-complete. Head-driven
phrase structure grammar is another
linguistic formalism which has been
popular in the parsing community, but
other research efforts have focused on
less complex formalisms such as the one
used in the Penn Treebank. Shallow
parsing aims to find only the boundaries
of major constituents such as noun
phrases. Another popular strategy for
avoiding linguistic controversy is
dependency grammar parsing.
Most modern parsers are at least partly
statistical; that is, they rely on a corpus
of training data which has already been
annotated (parsed by hand). This
approach allows the system to gather
information about the frequency with
which various constructions occur in
specific contexts. Approaches which
have been used include straightforward
PCFGs (probabilistic context-free
grammars), maximum entropy, and
neural nets. Most of the more successful
systems use lexical statistics (that is,
they consider the identities of the words
involved, as well as their part of speech).
However such systems are vulnerable to
over-fitting and require some kind of
smoothing to be effective.
Parsing algorithms for natural language
cannot rely on the grammar having 'nice'
properties as with manually designed
grammars for programming languages.
As mentioned earlier some grammar
formalisms are very difficult to parse
computationally; in general, even if the
desired structure is not context-free,
some kind of context-free approximation
to the grammar is used to perform a first
pass. Algorithms which use context-free

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1267

grammars often rely on some variant of
the CKY algorithm, usually with some
heuristic to prune away unlikely analyses
to save time. However some systems
trade speed for accuracy using, e.g.,
linear-time versions of the shift-reduce
algorithm. A somewhat recent
development has been parse re-ranking
in which the parser proposes some large
number of analyses, and a more complex
system selects the best option.

3) COMPUTER LEVEL PARSING

3.1) PARSER

A parser is a software component that
takes input data (frequently text) and
builds a data structure – often some kind
of parse tree, abstract syntax tree or
other hierarchical structure – giving a
structural representation of the input,
checking for correct syntax in the
process. The parsing may be preceded or
followed by other steps, or these may be
combined into a single step. The parser
is often preceded by a separate lexical
analyser, which creates tokens from the
sequence of input characters;
alternatively, these can be combined in
scannerless parsing. Parsers may be
programmed by hand or may be
automatically or semi-automatically
generated by a parser generator. Parsing
is complementary to templating, which
produces formatted output. These may
be applied to different domains, but
often appear together, such as the
scanf/printf pair, or the input (front end
parsing) and output (back end code
generation) stages of a compiler.
The input to a parser is often text in
some computer language, but may also
be text in a natural language or less
structured textual data, in which case
generally only certain parts of the text

are extracted, rather than a parse tree
being constructed. Parsers range from
very simple functions such as scanf, to
complex programs such as the frontend
of a C++ compiler or the HTML parser
of a web browser. An important class of
simple parsing is done using regular
expressions, where a regular expression
defines a regular language, and then the
regular expression engine automatically
generates a parser for that language,
allowing pattern matching and extraction
of text. In other contexts regular
expressions are instead used prior to
parsing, as the lexing step whose output
is then used by the parser.
The use of parsers varies by input. In the
case of data languages, a parser is often
found as the file reading facility of a
program, such as reading in HTML or
XML text; these examples are markup
languages. In the case of programming
languages, a parser is a component of a
compiler or interpreter, which parses the
source code of a computer programming
language to create some form of internal
representation; the parser is a key step in
the compiler frontend. Programming
languages tend to be specified in terms
of a deterministic context-free grammar
because fast and efficient parsers can be
written for them. For compilers, the
parsing itself can be done in one pass or
multiple passes – see one-pass compiler
and multi-pass compiler.
The implied disadvantages of a one-pass
compiler can largely be overcome by
adding fix-ups, where provision is made
for fix-ups during the forward pass, and
the fix-ups are applied backwards when
the current program segment has been
recognized as having been completed.
An example where such a fix-up
mechanism would be useful would be a
forward GOTO statement, where the
target of the GOTO is unknown until the

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1268

program segment is completed. In this
case, the application of the fix-up would
be delayed until the target of the GOTO
was recognized. Obviously, a backward
GOTO does not require a fix-up.
Context-free grammars are limited in the
extent to which they can express all of
the requirements of a language.
Informally, the reason is that the
memory of such a language is limited.
The grammar cannot remember the
presence of a construct over an
arbitrarily long input; this is necessary
for a language in which, for example, a
name must be declared before it may be
referenced. More powerful grammars
that can express this constraint, however,
cannot be parsed efficiently. Thus, it is a
common strategy to create a relaxed
parser for a context-free grammar which
accepts a superset of the desired
language constructs (that is, it accepts
some invalid constructs); later, the
unwanted constructs can be filtered out
at the semantic analysis (contextual
analysis) step.

3.2) OVERVIEW OF PROCESS

Fig 1)

4) TYPES OF PARSING

The task of the parser is essentially to
determine if and how the input can be
derived from the start symbol of the
grammar. This can be done in essentially
two ways:

• TOP-DOWN PARSING- top-down
parsing is a parsing strategy where
one first looks at the highest level of
the parse tree and works down the
parse tree by using the rewriting
rules of a formal grammar. LL
parsers are a type of parser that uses
a top-down parsing strategy.
Top-down parsing is a strategy of
analyzing unknown data

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1269

relationships by hypothesizing
general parse tree structures and then
considering whether the known
fundamental structures are
compatible with the hypothesis. It
occurs in the analysis of both natural
languages and computer languages.
Top-down parsing can be viewed as
an attempt to find left-most
derivations of an input-stream by
searching for parse-trees using a top-
down expansion of the given formal
grammar rules. Tokens are consumed
from left to right. Inclusive choice is
used to accommodate ambiguity by
expanding all alternative right-hand-
sides of grammar rules.
Simple implementations of top-down
parsing do not terminate for left-
recursive grammars, and top-down
parsing with backtracking may have
exponential time complexity with
respect to the length of the input for
ambiguous CFGs. However, more
sophisticated top-down parsers have
been created by Frost, Hafiz, and
Callaghan which do accommodate
ambiguity and left recursion in
polynomial time and which generate
polynomial-sized representations of
the potentially exponential number
of parse trees.

• Bottom-up parsing - parsing reveals
the grammatical structure of linear
input text, as a first step in working
out its meaning. Bottom-up parsing
identifies and processes the text's
lowest-level small details first,
before its mid-level structures, and
leaving the highest-level overall
structure to last.

4.1) TOP DOWN VERSUS BOTTOM
UP PARSING

The bottom-up name comes from the
concept of a parse tree, in which the
most detailed parts are at the bushy
bottom of the (upside-down) tree, and
larger structures composed from them
are in successively higher layers, until at
the top or "root" of the tree a single unit
describes the entire input stream. A
bottom-up parse discovers and processes
that tree starting from the bottom left
end, and incrementally works its way
upwards and rightwards. A parser may
act on the structure hierarchy's low, mid,
and highest levels without ever creating
an actual data tree; the tree is then
merely implicit in the parser's actions.
Bottom-up parsing lazily waits until it
has scanned and parsed all parts of some
construct before committing to what the
combined construct is.
The opposite of this are top-down
parsing methods, in which the input's
overall structure is decided (or guessed
at) first, before dealing with mid-level
parts, leaving the lowest-level small
details to last. A top-down parser
discovers and processes the hierarchical
tree starting from the top, and
incrementally works its way downwards
and rightwards. Top-down parsing
eagerly decides what a construct is much
earlier, when it has only scanned the
leftmost symbol of that construct and has
not yet parsed any of its parts. Left
corner parsing is a hybrid method which
works bottom-up along the left edges of
each subtree, and top-down on the rest of
the parse tree.
If a language grammar has multiple rules
that may start with the same leftmost
symbols but have different endings, then
that grammar can be efficiently handled
by a deterministic bottom-up parse but
cannot be handled top-down without
guesswork and backtracking. So bottom-
up parsers handle a somewhat larger

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1270

range of computer language grammars
than do deterministic top-down parsers.

Fig 2)

5) TYPES OF PARSERS

5.1) TOP-DOWN PARSERS
Some of the parsers that use top-down
parsing include:

• Recursive descent parser- a
recursive descent parser is a kind of
top-down parser built from a set of
mutually recursive procedures (or a
non-recursive equivalent) where each
such procedure usually implements
one of the production rules of the
grammar. Thus the structure of the
resulting program closely mirrors
that of the grammar it recognizes.

A predictive parser is a recursive
descent parser that does not require
backtracking. Predictive parsing is
possible only for the class of LL(k)
grammars, which are the context-free
grammars for which there exists
some positive integer k that allows a
recursive descent parser to decide
which production to use by
examining only the next k tokens of
input. (The LL(k) grammars

therefore exclude all ambiguous
grammars, as well as all grammars
that contain left recursion. Any
context-free grammar can be
transformed into an equivalent
grammar that has no left recursion,
but removal of left recursion does
not always yield an LL(k) grammar.)
A predictive parser runs in linear
time.
Recursive descent with backtracking
is a technique that determines which
production to use by trying each
production in turn. Recursive descent
with backtracking is not limited to
LL(k) grammars, but is not
guaranteed to terminate unless the
grammar is LL(k). Even when they
terminate, parsers that use recursive
descent with backtracking may
require exponential time.
Although predictive parsers are
widely used, and are frequently
chosen if writing a parser by hand,
programmers often prefer to use a
table-based parser produced by a
parser generator, either for an LL(k)
language or using an alternative
parser, such as LALR or LR. This is

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1271

particularly the case if a grammar is
not in LL(k) form, as transforming
the grammar to LL to make it
suitable for predictive parsing is
involved. Predictive parsers can also
be automatically generated, using
tools like ANTLR.

• LL parser (Left-to-right, Leftmost
derivation) - An LL parser is a top-
down parser for a subset of the
context-free grammars. It parses the
input from Left to right, and
constructs a Leftmost derivation of
the sentence (hence LL, compared
with LR parser). The class of
grammars which are parsable in this
way is known as the LL grammars.
The remainder of this article
describes the table-based kind of
parser, the alternative being a
recursive descent parser which is
usually coded by hand (although not
always; see e.g. ANTLR for an
LL(*) recursive-descent parser
generator).
An LL parser is called an LL(k)
parser if it uses k tokens of
lookahead when parsing a sentence.
If such a parser exists for a certain
grammar and it can parse sentences
of this grammar without
backtracking then it is called an
LL(k) grammar. A language that has
an LL(k) grammar is known as an
LL(k) language. There are LL(k+n)
languages that are not LL(k)
languages. A corollary of this is that
not all context-free languages are
LL(k) languages.
LL(1) grammars are very popular
because the corresponding LL
parsers only need to look at the next
token to make their parsing
decisions. Languages based on
grammars with a high value of k

have traditionally been considered to
be difficult to parse, although this is
less true now given the availability
and widespread use of parser
generators supporting LL(k)
grammars for arbitrary k.
An LL parser is called an LL(*)
parser if it is not restricted to a finite
k tokens of lookahead, but can make
parsing decisions by recognizing
whether the following tokens belong
to a regular language (for example
by use of a Deterministic Finite
Automaton).

5.2) BOTTOM-UP PARSERS
Some of the parsers that use bottom-
up parsing include:

• Operator-precedence parser -
While ad-hoc methods are
sometimes used for parsing
expressions, a more formal technique
using operator precedence simplifies
the task. For example an expression
such as

(x*x + y*y)^.5

is easily parsed. Operator precedence
parsing is based on bottom-up
parsing techniques and uses a
precedence table to determine the
next action. The table is easy to
construct and is typically hand-
coded. This method is ideal for
applications that require a parser for
expressions and where embedding
compiler technology, such as yacc,
would be overkill.

• LR PARSER (LEFT-TO-RIGHT,
RIGHTMOST DERIVATION)

� Simple LR (SLR) parser - The
most prevalent type of bottom-up

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1272

parser today is based on a
concept called LR(k) parsing; the
"L" is for left-to-right scanning
of the input, the "R" for
constructing a rightmost
derivation in reverse, and the k
for the number of input symbols
of lookahead that are used in
making parsing decisions. The
cases k = 0 or k = 1 are of
practical interest, and we shall
only consider LR parsers with k
≤ 1 here. When (k) is omitted, k
is assumed to be 1.

Some familiarity with the basic
concepts is helpful even if the LR
parser itself is constructed using
an automatic parser generator.
We begin with "items" and
"parser states"; the diagnostic
output from an LR parser
generator typically includes
parser states, which can be used
to isolate the sources of parsing
conflicts.
LR parsing is attractive for a
variety of reasons:
1. LR parsers can be

constructed to recognize
virtually all programming-
language constructs for which
context-free grammars can be
written. NonLR context-free
grammars exist, but these can
generally be avoided for
typical programming-
language constructs.

2. The LR-parsing method is the
most general
nonbacktracking shift-reduce
parsing method known, yet it
can be implemented as
efficiently as other, more
primitive shift-reduce

methods (see the
bibliographic notes).

3. An LR parser can detect a
syntactic error as soon as it
is possible to do so on a left-
to-right scan of the input.

4. The class of grammars that
can be parsed using LR
methods is a proper superset
of the class of grammars that
can be parsed with predictive
or LL methods. For a
grammar to be LR(k), we
must be able to recognize the
occurrence of the right side of
a production in a right-
sentential form, with k input
symbols of lookahead. This
requirement is far less
stringent than that for LL(k)
grammars where we must be
able to recognize the use of a
production seeing only the
first k symbols of what its
right side derives. Thus, it
should not be surprising that
LR grammars can describe
more languages than LL
grammars.

� LALR parser - LALR parsers
are based on a finite-state-
automata concept, from which
they derive their speed. The data
structure used by an LALR
parser is a pushdown automaton
(PDA). A deterministic PDA is a
deterministic-finite automaton
(DFA) that uses a stack for a
memory, indicating which states
the parser has passed through to
arrive at the current state.
Because of the stack, a PDA can
recognize grammars that would
be impossible with a DFA; for
example, a PDA can determine

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1273

whether an expression has any
unmatched parentheses, whereas
an automaton with no stack
would require an infinite number
of states due to unlimited nesting
of parentheses.
LALR parsers are driven by a
parser table in a finite-state
machine (FSM) format. An FSM
is very difficult for humans to
construct and therefore an LALR
parser generator is used to create
the parser table automatically
from a grammar in Backus–Naur
Form which defines the syntax of
the computer language the parser
will process. The parser table is
often generated in source code
format in a computer language
(such as C++ or Java). When the
parser (with parser table) is
compiled and/or executed, it will
recognize text files written in the
language defined by the BNF
grammar.
LALR parsers are generated from
LALR grammars, which are
capable of defining a larger class
of languages than SLR
grammars, but not as large a class
as LR grammars. Real computer
languages can often be expressed
as LALR(1) grammars, and in
cases where a LALR(1) grammar
is insufficient, usually an
LALR(2) grammar is adequate. If
the parser generator handles only
LALR(1) grammars, then the
LALR parser will have to
interface with some hand-written
code when it encounters the
special LALR(2) situation in the
input language.

� Canonical LR (LR(1)) parser -
A canonical LR parser or LR(1)

parser is an LR parser whose
parsing tables are constructed in
a similar way as with LR(0)
parsers except that the items in
the item sets also contain a
lookahead, i.e., a terminal that is
expected by the parser after the
right-hand side of the rule. For
example, such an item for a rule
A → B C might be
which would mean that the parser
has read a string corresponding to
B and expects next a string
corresponding to C followed by
the terminal 'a'. LR(1) parsers can
deal with a very large class of
grammars but their parsing tables
are often very big. This can often
be solved by merging item sets if
they are identical except for the
lookahead, which results in so-
called LALR parsers.

• GLR parser - A GLR parser (GLR
standing for "generalized LR", where
L stands for "left-to-right" and R
stands for "rightmost (derivation)")
is an extension of an LR parser
algorithm to handle nondeterministic
and ambiguous grammars. The
theoretical foundation was provided
in a 1974 paper by Bernard Lang
(along with other general Context-
Free parsers such as GLL). It
describes a systematic way to
produce such algorithms, and
provides uniform results regarding
correctness proofs, complexity with
respect to grammar classes, and
optimization techniques.

SUMMARY
Parsing’ is the term used to describe the
process of automatically building syntactic
analyses of a sentence in terms of a given
grammar and lexicon. The resulting

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1274

syntactic analyses may be used as input to a
process of semantic interpretation,(or
perhaps phonological interpretation, where
aspects of this, like prosody, are sensitive to
syntactic structure). Occasionally, ‘parsing’
is also used to include both syntactic and
semantic analysis. We use it in the more
conservative sense here, however. In most
contemporary grammatical formalisms, the
output of parsing is something logically
equivalent to a tree, displaying dominance
and precedence relations between
constituents of a sentence, perhaps with
further annotations in the form of attribute-
value equations (‘features’) capturing other
aspects of linguistic description. However,
there are many different possible linguistic
formalisms, and many ways of representing
each of them, and hence many different
ways of representing the results of parsing.
We shall assume here a simple tree
representation, and an underlying context-
free grammatical (CFG) formalism.
However, all of the algorithms decribed here
can usually be used for more powerful
unification based formalisms, provided these
retain a context-free ‘backbone’, although in
these cases their complexity and termination
properties may be different.
Parsing algorithms are usually designed for
classes of grammar rather than tailored
towards individual grammars. There are
several important properties that a parsing
algorithm should have if it is to be
practically useful. It should be ‘sound’ with
respect to a given grammar and lexicon; that
is, it should not assign to an input sentence
analyses which cannot arise from the
grammar in question. It should also be
‘complete’; that it, it should assign to an
input sentence all the analyses it can have
with respect to the current grammar and
lexicon. Ideally, the algorithm should also
be ‘efficient’, entailing the minimum of
computational work consistent with
fulfilling the first two requirements, and

‘robust’: behaving in a reasonably sensible
way when presented with a sentence that it
is unable to
Full, analyze successfully.

DISCLOSURE STATEMENT
There is no financial support for this
research work from the funding agency.

ACKNOWLEDGMENTS
We thank our guide for his timely help,
giving outstanding ideas and encouragement
to finish this research work successfully.

SIDE BAR
Comparison: it is an act of assessment or
evaluation of things side by side in order to
see to what extent they are similar or
different. It is used to bring out similarities
or differences between two things of same
type mostly to discover essential features or
meaning either scientifically or otherwise.

Content: The amount of things contained in
something. Things written or spoken in a
book, an article, a programme, a speech, etc.

DEFINITION

• Mutual - held in common by two or
more parties.

• Hierarchical - a system in which
members of an organization or
society are ranked according to
relative status or authority.

• Segment - each of the parts into
which something is or may be
divided.

• Component - a part or element of a
larger whole, especially a part of a
machine or vehicle.

International Journal of Research (IJR) Vol-1, Issue-8, September2014 ISSN 2348-6848

PARSING – A BRIEF STUDY Tanya Sharma, Sumit Das & Vishal Bhalla

P a g e | 1275

REFERENCES

[1] "Bartleby.com homepage". Retrieved
28 November 2010.

[2] "parse". dictionary.reference.com.
Retrieved 27 November 2010.

[3] "Grammar and Composition".
[4] Aho, A.V., Sethi, R. and Ullman

,J.D. (1986) " Compilers: principles,
techniques, and tools." Addison-
Wesley Longman Publishing Co.,
Inc. Boston, MA, USA.

[5] Frost, R., Hafiz, R. and Callaghan, P.
(2007) " Modular and Efficient Top-
Down Parsing for Ambiguous Left-
Recursive Grammars ." 10th
International Workshop on Parsing
Technologies (IWPT), ACL-
SIGPARSE , Pages: 109 - 120, June
2007, Prague.

[6] Frost, R., Hafiz, R. and Callaghan, P.
(2008) " Parser Combinators for
Ambiguous Left-Recursive
Grammars." 10th International
Symposium on Practical Aspects of
Declarative Languages (PADL),
ACM-SIGPLAN , Volume
4902/2008, Pages: 167 - 181,
January 2008, San Francisco.

[7] Knuth, D. E. (July 1965). "On the
translation of languages from left to
right". Information and Control 8
(6): 607–639. doi:10.1016/S0019-
9958(65)90426-2. Retrieved 29 May
2011. edit

[8] Language theoretic comparison of
LL and LR grammars

[9] Engineering a Compiler (2nd
edition), by Keith Cooper and Linda
Torczon, Morgan Kaufman 2011.

[10] Crafting and Compiler, by
Charles Fischer, Ron Cytron, and

Richard LeBlanc, Addison Wesley
2009.

[11] Flex & Bison: Text
Processing Tools, by John Levine,
O'Reilly Media 2009.

[12] Compilers: Principles,
Techniques, and Tools (2nd Edition),
by Alfred Aho, Monica Lam, Ravi
Sethi, and Jeffrey Ullman, Prentice
Hall 20

