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Abstract 

Arithmetic in Finite/Galois field is a major aspect for many applications such as error correcting code 

and cryptography. Addition and multiplication are the two basic operations in the finite field GF (2m 

).The finite field multiplication is the most resource and time consuming operation. In this paper the 

complexity (space) analysis and efficient FPGA implementation of bit parallel Karatsuba Multiplier over 

GF (2 m) is presented. This is especially interesting for high performance systems because of its carry 

free property. To reduce the complexity of Classical Multiplier, multiplier with less complexity over GF 

(2 m ) based on Karatsuba Multiplier is used. The LUT complexity is evaluated on FPGA by using 

Xilinx ISE 8.1i.Furthermore, the experimental results on FPGAs for bit parallel Karatsuba Multiplier 

and Classical Multiplier were shown and the comparison table is provided. To the best of our 

knowledge, the bit parallel karatsuba multiplier consumes least resources among the known FPGA 

implementation. 
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1. Introduction 

A finite field or Galois field is a field that 

contains only finitely many elements. The finite 

fields are classified by size. This classification 

specifies the order of the field. Notations for the 

finite fields are GF (p m) or Fp m, where the 

letters GF stand for  Galois field‖. The order or 

cardinal or number of elements, of a finite field 

is of the form p m, where p is a prime number 

called the characteristic of the field and m is a 

positive integer called the dimension of the 

field. Finite field arithmetic operations in GF (2 

m) were frequently desired in coding theory, 

cryptography, digital signal processing. Coding 

theory is an approach to various science 

disciplines such as information theory, electrical 

engineering, data transmission, mathematics and 

science, which helps design efficient and 

reliable data transmission methods so that 

redundancy can be removed and errors 

corrected. Applications of cryptography include 

ATM cards, computer passwords and e-

commerce. Cryptography is the practice and 

study of hiding information. Modern 

cryptography intersects the disciplines of 

mathematics, computer science and engineering. 
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In these applications, multiplication is the most 

common arithmetic. Thus it is desirable to 

design hardware efficient multiplier for GF (2 

m) to meet the real time requirement with 

minimum hardware complexity.  

There are three popular types of bases over 

finite fields: polynomial basis (PB), normal 

basis (NB) and dual basis (DB). Basis is a set of 

vectors that, in a linear combination, can 

represent every vector in a given vector space. 

Polynomial basis is a mathematical function that 

is the sum of a number of terms. Normal basis 

in field theory is a special kind of basis for 

Galois extensions of finite degree, characterized 

as a forming a single orbit for the Galois group. 

Dual basis is a set of vectors that forms a basis 

for the dual space of a vector space. One 

advantage of the normal basis is that the 

squaring of an element is computed by a cyclic 

shift of the binary representation. The dual basis 

multipliers require less chip area than other two 

types.  

The polynomial basis multipliers are widely 

used and lead to efficient implementations of 

multipliers. As compared to other two bases 

multipliers, the polynomial basis multipliers 

have low design complexity and their sizes are 

easier to extend to meet various applications due 

to their simplicity, regularity, and modularity in 

architecture. It appears that polynomial 

multipliers for classes of trinomials still achieve 

the lowest circuit complexity. 

Arithmetic operations such as addition and 

multiplication are the two basic operations in 

the finite field GF (2 m). Addition in GF (2 m) 

is easily realized using m two-input XOR gates 

while multiplication is costly in terms of gate 

count and time delay. The other operations of 

finite fields, such as exponentiation, division 

and inversion can be performed by repeated 

multiplications. As a result there is a need to 

have fast multiplication architecture with low 

complexity.  

The hardware/software implementation 

efficiency of finite field arithmetic is measured 

in terms of the associated space and time 

complexities. The space complexity is defined 

as the number of XOR and AND gates needed 

for the implementation of the circuit. The space 

and time complexities of a multiplier heavily 

depend on how the field elements are 

represented. Finite field multipliers with 

different bases of representation have been 

realized to be used for various applications. The 

polynomial basis multipliers are more efficient 

and more widely used compared with 

multipliers in the other bases of representations. 

2. Related Work 

C.Grabbe, M.Bednara, J.Teich, [1] presented 

four high performance GF (2233) multipliers for 

an FPGA realization and analyzed the time and 

area complexities. The finite field elements are 

represented as polynomial basis and normal 

basis. In polynomial basis, classical multiplier 
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and Karatsuba multipliers were designed. The 

advantage of classical multiplier is regular 

structure and pipelined operation. The 

disadvantage is high space complexity. In 

Karatsuba multiplier the advantage is less 

number of gates isrequired. The normal basis 

multipliers are Massey-Komura and Sunar-Koc 

multiplier. The advantage of Massey-Omura is 

high flexibility and Sunar-Koc is total number 

of gates are reduced. 

P.L.Montgomery, [2] presented Karatsuba 

Ofman algorithm for multiplying two 

polynomials. Here multiplication of 5- term, 6-

term and 7-term polynomials are provided with 

scalar multiplication of 13,17 and 22.Using 6-

term polynomial only leads to better asymptotic 

performance than standard karatsuba.  

C.Paar, [3] presented a new bit parallel structure 

for a multiplier with low space complexity in 

Galois field is introduced. Finite field of GF 

(2n) is considered and field extension of GF 

((2n)m). The field elements are represented in 

the canonical base or in standard basis. Field of 

the form GF ((2n)m) are referred as composite 

field. Karatsuba Ofman algorithm is used to 

multiply two polynomials effectively. 

Advantages are complexity is reduced by 

introducing the composite field. The main 

disadvantage is security is less and does not 

have a regular structure.  

C.Rebeirno and D.Mukhopadhyay, [4] 

presented a hybrid technique which has a better 

area delay product. Masking strategies are 

introduced to prevent power based side channel 

attacks on the multiplier. SCAs are the biggest 

threat to modern cryptography systems. In basic 

recursive KM, the number LUTs required to 

combine the partial products is much lower but 

it cannot apply directly to ECC. The hybrid KM 

requires least resources as compared to other 

KMs used for elliptic curve arithmetic; also it 

has a unique architecture. Demerits are it is not 

efficient for FPGA platform as the number of 

utilized LUTs is 65%.  

A.Reyhani-Masoleh and A.Hasan, [5] presented 

a new bit parallel structure for the polynomial 

basis multiplication which is applicable to all 

type of irreducible binary polynomial. The main 

advantage of this new formulation is that it can 

be used with any field defining irreducible 

polynomial. Then a bit parallel hardware 

architecture generalization is provided. The 

architecture consists of two parts IP network 

and Q network. The space and time 

complexities are analyzed as a function of 

reduction matrix Q. the main advantage is only 

fewer number of lines are required on the bus.  

F.Rodriguez and C.K.Koc, [6] presented the 

KaratsubaOfman Algorithm in which the degree 

of defining the irreducible polynomial can be 

arbitrarily selected by the designer allowing the 

usage of prime degrees. Here finite field and 

composite field are considered. Composite 

multiplication is performed by n-bit Karatsuba 
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multiplier. The main advantage is number of 

multiplication is reduced. The composite field 

multiplication is performed by binary Karatsuba 

multipliers. The advantage is improved gate 

complexity .The disadvantage is wastage of 

several arithmetic operation.  

B.Sunar, [7] presented the sub quadratic 

complexity multipliers for even characteristic 

field extension. A short convolution algorithm 

named Wino grad short convolution algorithm 

were designed to improve the space and time 

complexity. A certain Wino grad short 

convolution algorithm is essentially identical to 

the Karatsuba algorithm. The merits of Wino 

grad techniques are it can be easily built for any 

desired length; it is simple and uniform 

construction. The main disadvantages are 

appears to have less structure and cause 

additional wire delay in VLSI implementation.  

A.Weimerskirch and C.Paar, [8] presented the 

classical Karatsuba algorithm for polynomial 

multiplication. Three methods considered are 

digital method, Fast Fourier transform method 

and Karatsuba method. The Karatsuba algorithm 

is derived in two ways namely Chinese 

Remainder Theorem and Simple Algebraic 

Transform KA is applied recursively if the 

degree of polynomial is 2i , where i>1 is a 

positive integer. Advantage- squaring the 

polynomial is easily performed; adding dummy 

coefficients the complexity is reduced. 

Disadvantage is a number of intermediate 

results have been stored due to the recursive 

nature of KA.  

J.VonzurGathen and J.Shokrollahi, [9] 

presented different possibilities for 

implementing the Karatsuba multiplier for 

polynomials over F2 on FPGA. Classical 

multiplier, Karatsuba multiplier and a hybrid 

design were provided. The Karatsuba multiplier 

has the lowest crossover point with the classical 

algorithm. In hardware, the algorithmic and 

platform dependent optimizations yield efficient 

designs. The resources usage of polynomial 

multipliers is decreased by using both the 

algorithmic and platform dependent method. 

The hybrid design is used to minimize the total 

arithmetic cost and results in significant area 

savings. 

G.Zhou, H.Michalik and L.Hinsenkamp, [10] 

addresses the efficient and high throughput 

implementations of AES-GSM optimized for 

FPGAs. The two main components in GCM are 

an AES engine and a finite field multiplier over 

GF (2128).The complexity analysis presented is 

based on FPGA primitives (LUTs). Modular 

multiplication consists of two steps: first a 

classical multiplication and then a modular 

reduction. The straight forward multiplier is 

used to get speed efficient design while a 

Karatsuba multiplier is used to get an area 

efficient design. Merits are reduced hardware 

complexity and high throughput. 

3. Implementation 
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Arithmetic in a finite field is different from 

standard integer arithmetic. There are limited 

numbers of elements in the finite field; all 

operations performed in the finite fields result in 

an element within that field. While each finite 

field itself is not infinite, there are infinitely 

many different finite fields; their number of 

elements is necessarily of the form pn . And the 

two finite fields of the same size are isomorphic. 

An element α in GF (2
m

 ) can be represented as 

a polynomial, where αi € GF (2
m

 ). 

 

Addition of two elements in GF (2
m

) is 

performed aspolynomial addition in 

GF (2
m

) 

 

 

Where + is XOR operation 

Addition and Multiplication in Finite Field: 

Addition and subtraction are performed by 

adding or subtracting two of these polynomials 

together, and reducing the result modulo the 

characteristic. In a finite field with characteristic 

2, addition and subtraction are identical, and are 

accomplished using the XOR operator. When 

two polynomials are added, each term is added 

independently; there is no concept of a carry 

from one term to another. 

Thus, Polynomial: 

(x 6 + x 4 + x + 1) + (x 7 + x 6 + x 3 + x) = x 7 

+ x 4 + x 3 + 1 

Binary: {01010011} + {11001010} = 

{10011001} 

Hexadecimal: {53} + {CA} = {99} 

Notice that under regular addition of 

polynomials, the sum would contain a term 2x 

6, but that this term becomes 0x 6 and is 

dropped when the answer is reduced modulo 2.  

In binary representation, the coefficients can be 

only 1 or 0.When adding the coefficients, the 

following rule applies: 

 0+0=0 

 0+1=1 

 1+0=1 

 1+1=0(there is no carry) 

Table-1: Polynomial Addition 

 

Table-1 shows both the normal algebraic sum 

and thecharacteristic 2 finite field sum of a few 

polynomials: 

In computer science applications, the operations 

are simplified for finite fields of characteristic 2, 
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also called GF (2n) Galois fields, making these 

fields especially popular choices for 

applications. The same logic that made addition 

become XOR also applies to subtraction. The 

exclusive OR operation is easier for digital logic 

than binary additions. Multiplication in a finite 

field is multiplication modulo an irreducible 

reducing polynomial used to define the finite 

field. (i.e., it is multiplication followed by 

division using the reducing polynomial as the 

divisor—the remainder is the product.) The 

symbol "•" may be used to denote multiplication 

in a finite field. Example: Irondale’s finite field 

Irondale uses a characteristic 2 finite field with 

8 terms, which can also be called the Galois 

field GF (28). It employs the following reducing 

polynomial for multiplication: 

x 8 + x 4 + x 3 + x + 1. 

For example, {53} • {CA} = {01} in Rijndael's 

field because 

(x 6 + x 4 + x + 1)(x 7 + x 6 + x 3 + x) = x 13 + 

x 12 + x 9 + x 7 + x 11 + x 10 + x 7 + x 5 + x 8 

+ x 7 + x 4 + x 2 + x 7 + x 6 + x 3 + x = 

x 13 + x 12 + x 9 + x 11 + x 10 + x 5 + x 8 + x 4 

+ x 2 + x 6 + x 3 + x = x 13 + x 12 + x 11 + x 

10 + x 9 + x 8 + x 6 + x 5 + x 4 + x 3 + x 2 + x 

And 

x 13 + x 12 + x 11 + x 10 + x 9 + x 8 + x 6 + x 5 

+ x 4 + x 3 + x 2 + x modulo x 8 + x 4 + x 3 + x 

+ 1 = (11111101111110 mod 100011011) = 1, 

which can be performed through long division 

method 

Classical Multiplier 

The Classical multiplier is the simplest 

multiplier to perform finite field multiplication. 

It is also called as paper and pencil method or 

traditional method. To perform the classical 

multiplication it requires only AND gates and 

XOR gates. The number of AND gates required 

is n2 and (n-1)2 XOR gates, where n is bit 

depth. The total gate complexity is 2n2 -1 and 

the time complexity is TAND+ (log2n) TXOR. 

Figure 1 shows the calculation of the product of 

two 4-bit integer numbers given by A3A2A1A0 

(multiplicand) and B3B2B1B0 (multiplier). 

 

Fig-1: 4-bit multiplication. 

Each of the ANDed terms is referred to as a 

partial product. The final product is obtained by 

summing each column of partial products and is 

implemented using half adders... If carry comes, 

it must be propagated from the right to the left 

across the columns. Adder that accepts a carry 

from the right must be a full adder. 4-bit 

classical multiplier is shown in figure 2. 
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Fig -2 4-bit Classical Multiplier. 

The classical multiplier consists of AND gates, 

Full Adders and Half adders. The 16 AND gates 

forms the sixteen partial products. It is formed 

by ANDing all combinations of the four 

multiplier bits with the four multiplicand bits. 

The column sums are obtained using a 

combination of half and full adders. The half 

adder blocks accept two bits to be added from 

the top, carry out exits from the left of each 

block. The output from the bottom of a block is 

the sum. The full adder accepts two bits to be 

added from the top, any carry in from the right 

and carryout exist from left of each block. The 

bottom of each block gives the output. The least 

significant output bit, S0 is computed as the 

product of two input bits A0 and B0.This 

operation cannot generate a carry out. The next 

output bit, S1, involves the sum of two partial 

products. A half adder is used to form the sum 

since there can be no carry in from the first 

column. The third output bit, S2, is formed from 

the sum of three (1- bit) partial products plus a 

possible carry in from the previous bit. This 

operation requires two cascaded adders to sum 

the four possible input bits (three partial 

products and one possible carry in from the 

right). The remaining output bits are formed 

similarly. 

4. Experimental Work 

 

Fig 3: Simulation Results-1. 

 

Fig 4: Simulation Result-2. 

 

Fig 5: Simulation Result-3. 

5. Conclusion 
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Finite field multipliers play a very important 

role in the areas of digital communication 

especially in the areas of cryptography, error 

control coding and digital signal processing. In 

this paper, two multipliers namely classical and 

Karatsuba multipliers were simulated. The 

comparison results show that Karatsuba 

multiplier is more efficient than the other 

multiplier. Using Karatsuba multiplier we can 

improve the performance of the process. The 

Karatsuba algorithm is an optimization 

technique used for decomposing larger 

multiplications into multiple smaller 

multiplications. This feature allows the 

multiplier to be scaled easily. 
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