
 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4543

A Unique Hastening Communication-Bound Sparse

Repeatable Solver

1
P.AKSHAY TEJA,

2
B.BALAJI,

3
B.BALA KRISHNA,

4 Dr.B.S.R.MURTHY

1
 M.Tech Student,DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING. GANDHI ACADEMY OF

TECHNICAL EDUCATION, Ramapuram (Katamommu Gudem), Chilkur(M), Kodad, Telangana 508206

2
M.TECH,Assistant Professor, DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING. GANDHI

ACADEMY OF TECHNICAL EDUCATION, Ramapuram (Katamommu Gudem), Chilkur(M), Kodad, Telangana

508206

3
 M.TECH,Assistant Professor, HOD,DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING.

GANDHI ACADEMY OF TECHNICAL EDUCATION, Ramapuram (Katamommu Gudem), Chilkur(M), Kodad,

Telangana 508206

4
Phd, Professor, & Principal. GANDHI ACADEMY OF TECHNICAL EDUCATION, Ramapuram (Katamommu

Gudem), Chilkur(M), Kodad, Telangana 508206

ABSTRACT:

This paper presents an organized procedure to pick this algorithmic parameter k, which supplies

communication-computation compromise on hardware accelerators like FPGA and GPU. While

k iterations from the iterative solver could be unrolled to provided decrease in communication

cost, the extent of the unrolling is dependent around the underlying architecture, its memory

model, and also the development in redundant computation. Buying and selling communication

with redundant computation can boost the plastic efficiency of FPGAs and GPUs in speeding up

communication-bound sparse iterative solvers. With an NVidia C2050 GPU, we demonstrate a

speedup over standard iterative solvers for a variety of benchmarks which this speedup is

restricted through the development in redundant computation. In comparison, for FPGAs, we

produce an architecture-aware formula that limits off-nick communication but enables

communication between your processing cores. This reduces redundant computation and enables

large k and therefore greater speedups. Our method for FPGA supplies a speedup over same-

generation GPU products where k is selected carefully for architectures for a variety of

benchmarks. We offer predictive models to know this compromise and show how careful choice

of k can result in performance improvement that otherwise demands significant rise in memory

bandwidth.

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4544

Keywords: Iterative numerical methods, spare matrix-vector multiply, matrix powers kernel,

field programmable gate arrays (FPGAs), graphics processing units (GPUs).

I. INTRODUCTION

Among the communication-intensive

scientific computations is definitely an

iterative solver employed for fixing large-

scale sparse straight line system of equations

and eigenvalue problems. The price of a

higher performance scientific computation

operating on large datasets includes two

factors i) computation price of carrying out

floating-point procedures ii) communication

cost (both latency and bandwidth) of moving

data inside the memory hierarchy in

consecutive situation or between processors

in parallel situation [1]. The answer of those

problems is calculated from the Kriol

subspace span, in which a new vector is

produced in every iteration. Iterative solvers

are difficult to accelerate because they spend

more often than not in communication-

bound computations, like sparse matrix-

vector multiply (SpMV) and vector-vector

procedures (us dot items and vector

additions). For big scale problems in which

the matrix A does not fit on-nick, regardless

of how much parallelism could be used to

accelerate SpMV, the performance from the

iterative solver is bounded through the

available off-nick memory bandwidth, e.g.

with 2 flops per 4 bytes (single-precision) in

SpMV, the utmost theoretical performance

is 71 GFLOPs with an

NvidiaC2050GPUand 17GFLOPs on the

Virtex6 FPGA. Furthermore, the

information dependency between these

procedures hinders overlapping

communication with computation. This

leads to fewer than 7 % and 4 % efficiency

of GPU and FPGA correspondingly. The

communication issue is attached to the

memory wall problem. Because of

technology scaling, computation

performance is growing in a dramatic rate

whereas communication performance is

enhancing but in a reduced rate. It's a well-

known idea to formulate algorithmic

improvements that hide memory latency and

optimize memory bandwidth. For iterative

solvers, Demmel et al. trade communication

with redundant computation by changing k

SpMVs using the matrix forces kernel. The

important thing idea would be to partition

the matrix into blocks and performs k

SpMVs on blocks without fetching the block

again within the consecutive situation and

carrying out redundant computation to

prevent communication along with other

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4545

processors within the parallel situation. In

this manner the communication price is

reduced at the fee for rise in redundant

computation [2]. They reveal that this kind

of approach can minimize latency inside a

grid and both latency and bandwidth on the

multi-core CPUs to provide speedup

correspondingly over k SpMVs for banded

matrices. As the communication staying

away from approach is promising, there's

two primary challenges connected with this

particular communication-staying away

from approach on parallel architectures i)

how you can keep your redundant

computation to a minimum to reduce the

computation cost and ii) how to decide on

the optimal worth of the algorithmic

parameter k, which minimizes overall

runtime by supplying a compromise

between computation and communication

cost. Within this paper, we show the way we

can boost the plastic efficiency of FPGAs

and GPUs in speeding up communication-

bound sparse iterative solver. Like a

motivation, we show a compromise between

computation and communication cost for

FPGA and GPU to reduce overall runtime.

The primary contributions of the paper are:

i) Communication optimization inside the

memory hierarchy of merely one stream

multiprocessor (SM) in addition to between

different SMs while mapping the matrix

forces kernel to some GPU. ii) An

architecture-aware matrix forces kernel that

suits the effectiveness of the FPGAs to

prevent redundant computation along with a

resource-restricted methodology to choose k

for the FPGA. iii) A unified predictive type

of the matrix forces kernel for GPU and

FPGA, which will help us understanding

communication computation tradeoffs in

choosing the algorithmic parameter k. While

using steepest ascent approach, we show

which facet of future GPU and FPGA

architectures have to be enhanced to attain

greater performance. iv) For a variety of

problem dimensions, a quantitative

comparison from the matrix forces kernel on

FPGA.

II. RELATED WORK

Within this work, we target large structured

sparse banded matrices. The banded

matrices are kept in band storage format

where matrix of band size b is stored like a

matrix. We decide this band structure for 2

primary reasons. First, computations on such

matrices happen to be utilized as an

architectural evaluation benchmark because

of high parallelism and occasional

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4546

computational intensity, offering

possibilities to take advantage of on-nick

parallelism and challenges with connected

memory systems. Next, they naturally arise

in several scientific computations like

stencils in partial differential equation

(PDE) solvers, semi-definite optimization

problems and model predictive control.

III. EXISTED SYSTEM

We first present the present GF100 GPU

architecture after which discuss different

optimization techniques that cause high

throughput [3]. Then we produce an

analytical model to calculate and

comprehend the performance from the

matrix forces kernel on any GPU device

(model parameters are acquired using micro-

benchmarks). We make use of the same

model to pick k for current GPU

architectures as well as make architectural

projections to acquire a preferred

performance with future products. The GPU

comprises 14 streaming multiprocessors

(SMs) each operating at 1.15 GHz. Each SM

has 32 floating-point cores able to carrying

out 1 single-precision flop/cycle reaching an

optimum throughput. We feature out

sensitivity analysis of GPU performance

with regards to the algorithmic parameters

with constant architectural parameters. We

highlight that by carefully picking the

algorithmic parameters we are able to

achieve greater performance over k SpMVs

that otherwise requires significant

architectural modifications when it comes to

global memory bandwidth and latency.

Fig.1. NVidia GPU Structure

IV. PROPOSED MODEL

The possibility to make use of FPGAs in

high-performance computing comes from

the truth that computer architecture could be

specialized to accelerate a specific task

solvers. We currently introduce the

architecture-aware hybrid matrix forces

kernel that exploits these architectural

features to obtain high throughput. In

connection with this, we present an origin-

restricted methodology for choosing an ideal

k for any target FPGA device. The

suggested formula loads the blocks from the

matrix in the slow memory into large on-

nick memory utilizing a consecutive formula

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4547

after which performs computations inside

the block in parallel without having done

redundant computations. The significant

from the formula, having a toy example,

where we've 2 outer blocks which are loaded

sequentially in the slow memory into FPGA

on-nick memory [4]. Each outer block is

further partitioned into two sub blocks that

may be processed in parallel by a range of

processing elements (PEs) your SIMD

fashion All of the vertices in the sub-block

are calculated inside a pipelined fashion

utilizing a reduction circuit inside the PE.

After each level within the graph, PEs has to

communicate dependencies for their nearest

neighbors. However, unlike GPU, where this

communication is just possible using shared

global memory and it is therefore prevented

using redundant computation, the PEs inside

the FPGA utilize low-latency FIFOs and

therefore steer clear of the redundant

computation. This enables bigger values of k

and therefore greater possible speedups.

Speedup over k SpMVs utilized in standard

iterative solvers. This speedup factor is

nearly two times of the items we

accomplished with parallel matrix forces

kernel on GPU. Even though the internet

performance of FPGA (85 GFLOPs) is

under those of GPU (123 GFLOPs) with this

band size, however, we've better plastic

efficiency with FPGA (18.8 percent) in

comparison to GPU. The model is exact

because of the highly predictive nature of

FPGAs like a computing platform [5]. As

FPGA has relatively bigger on-nick memory

in comparison to GPU, we plan to keep k

vectors on-nick to get used by subsequent

modules in communication staying away

from iterative solver. You will find three

procedures in the matrix forces kernel on

FPGA: loading the block, computing the

sub-blocks in parallel as well as an optional

stage for storing the k vectors to the off-nick

memory if they don't fit on nick.

V. CONCLUSION

Although unrolling k iterations while using

matrix forces kernel provides significant

performance improvement in comparison to

plain k SpMVs on the GPU, the

performance is restricted because of

quadratic development in redundant

computations. This enables us large worth of

k and therefore superior plastic efficiency in

comparison to GPU. Buying and selling

communication with computation boosts the

plastic efficiency of hardware accelerators

like FPGAs and GPU for speeding up

communication-bound sparse iterative

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4548

solver. Our suggested hybrid matrix forces

kernel for FPGA exploits the architectural

options that come with this significantly

different platform to reduce redundant

computations. Our architectural insight

shows a good formula-architecture

interaction can offer similar performance,

which otherwise requires significant

enhancements in memory bandwidth. For a

variety of at random produced banded

matrices, we shown speedup over GPU for

big and small band dimensions

correspondingly.

REFERENCES

[1] E. Klerk, ‘‘Exploiting Special Structure

in Semi definite Programming: A Survey of

Theory and Applications,’’ Eur. J. Oper.

Res., vol. 201, no. 1, pp. 1-10, Feb. 2010.

[2] E. Anderson, Z. Bai, C. Bischof, L.S.

Blackford, J. Demmel, J.J. Dongarra, J. Du

Croz, S. Hammarling, A. Greenbaum, A.

McKenney, and D. Sorensen, LAPACK

Users’ Guide (Third Edition). Philadelphia,

PA, USA: SIAM, 1999, .

[3] M. Strout, L. Carter, and J. Ferrante,

‘‘Sparse Tiling for Stationary Iterative

Methods,’’ Int’l J. High Perform. Comput.

Appl., vol. 18, no. 1, pp. 95-113, Feb. 2004.

[4] D. Culler, R. Karp, D. Patterson, A.

Sahay, E.K. Schauser, E. Santos, R.

Subramonian, and T.V. Eicken, ‘‘LogP:

Towards a Realistic Model of

ParallelComputation,’’ACMSigplan notices,

vol. 28, no. 7, pp. 1-12, July 1993.

[5] Xilinx DS816 Floating-Point Operator

v6.0, 2012. [Online]. Available:

http://www.xilinx.com/support/documentati

on/ip_documentation/floating_point/v6_0/ds

816_floating_point.pdf.

