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ABSTRACT: 

This paper presents an organized procedure to pick this algorithmic parameter k, which supplies 

communication-computation compromise on hardware accelerators like FPGA and GPU. While 

k iterations from the iterative solver could be unrolled to provided decrease in communication 

cost, the extent of the unrolling is dependent around the underlying architecture, its memory 

model, and also the development in redundant computation. Buying and selling communication 

with redundant computation can boost the plastic efficiency of FPGAs and GPUs in speeding up 

communication-bound sparse iterative solvers. With an NVidia C2050 GPU, we demonstrate a 

speedup over standard iterative solvers for a variety of benchmarks which this speedup is 

restricted through the development in redundant computation. In comparison, for FPGAs, we 

produce an architecture-aware formula that limits off-nick communication but enables 

communication between your processing cores. This reduces redundant computation and enables 

large k and therefore greater speedups. Our method for FPGA supplies a speedup over same-

generation GPU products where k is selected carefully for architectures for a variety of 

benchmarks. We offer predictive models to know this compromise and show how careful choice 

of k can result in performance improvement that otherwise demands significant rise in memory 

bandwidth. 

 



   International Journal of Research 

 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 14 
October 2016 

  

Available online: http://edupediapublications.org/journals/index.php/IJR/  P a g e  | 4544  

Keywords: Iterative numerical methods, spare matrix-vector multiply, matrix powers kernel, 

field programmable gate arrays (FPGAs), graphics processing units (GPUs). 

 

I. INTRODUCTION 

Among the communication-intensive 

scientific computations is definitely an 

iterative solver employed for fixing large-

scale sparse straight line system of equations 

and eigenvalue problems. The price of a 

higher performance scientific computation 

operating on large datasets includes two 

factors i) computation price of carrying out 

floating-point procedures ii) communication 

cost (both latency and bandwidth) of moving 

data inside the memory hierarchy in 

consecutive situation or between processors 

in parallel situation [1]. The answer of those 

problems is calculated from the Kriol 

subspace span, in which a new vector is 

produced in every iteration. Iterative solvers 

are difficult to accelerate because they spend 

more often than not in communication-

bound computations, like sparse matrix-

vector multiply (SpMV) and vector-vector 

procedures (us dot items and vector 

additions). For big scale problems in which 

the matrix A does not fit on-nick, regardless 

of how much parallelism could be used to 

accelerate SpMV, the performance from the 

iterative solver is bounded through the 

available off-nick memory bandwidth, e.g. 

with 2 flops per 4 bytes (single-precision) in 

SpMV, the utmost theoretical performance 

is 71 GFLOPs with an 

NvidiaC2050GPUand 17GFLOPs on the 

Virtex6 FPGA. Furthermore, the 

information dependency between these 

procedures hinders overlapping 

communication with computation. This 

leads to fewer than 7 % and 4 % efficiency 

of GPU and FPGA correspondingly. The 

communication issue is attached to the 

memory wall problem. Because of 

technology scaling, computation 

performance is growing in a dramatic rate 

whereas communication performance is 

enhancing but in a reduced rate. It's a well-

known idea to formulate algorithmic 

improvements that hide memory latency and 

optimize memory bandwidth. For iterative 

solvers, Demmel et al. trade communication 

with redundant computation by changing k 

SpMVs using the matrix forces kernel. The 

important thing idea would be to partition 

the matrix into blocks and performs k 

SpMVs on blocks without fetching the block 

again within the consecutive situation and 

carrying out redundant computation to 

prevent communication along with other 
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processors within the parallel situation. In 

this manner the communication price is 

reduced at the fee for rise in redundant 

computation [2]. They reveal that this kind 

of approach can minimize latency inside a 

grid and both latency and bandwidth on the 

multi-core CPUs to provide speedup 

correspondingly over k SpMVs for banded 

matrices. As the communication staying 

away from approach is promising, there's 

two primary challenges connected with this 

particular communication-staying away 

from approach on parallel architectures i) 

how you can keep your redundant 

computation to a minimum to reduce the 

computation cost and ii) how to decide on 

the optimal worth of the algorithmic 

parameter k, which minimizes overall 

runtime by supplying a compromise 

between computation and communication 

cost. Within this paper, we show the way we 

can boost the plastic efficiency of FPGAs 

and GPUs in speeding up communication-

bound sparse iterative solver. Like a 

motivation, we show a compromise between 

computation and communication cost for 

FPGA and GPU to reduce overall runtime. 

The primary contributions of the paper are: 

i) Communication optimization inside the 

memory hierarchy of merely one stream 

multiprocessor (SM) in addition to between 

different SMs while mapping the matrix 

forces kernel to some GPU. ii) An 

architecture-aware matrix forces kernel that 

suits the effectiveness of the FPGAs to 

prevent redundant computation along with a 

resource-restricted methodology to choose k 

for the FPGA. iii) A unified predictive type 

of the matrix forces kernel for GPU and 

FPGA, which will help us understanding 

communication computation tradeoffs in 

choosing the algorithmic parameter k. While 

using steepest ascent approach, we show 

which facet of future GPU and FPGA 

architectures have to be enhanced to attain 

greater performance. iv) For a variety of 

problem dimensions, a quantitative 

comparison from the matrix forces kernel on 

FPGA. 

 

II. RELATED WORK 

Within this work, we target large structured 

sparse banded matrices. The banded 

matrices are kept in band storage format 

where matrix of band size b is stored like a 

matrix. We decide this band structure for 2 

primary reasons. First, computations on such 

matrices happen to be utilized as an 

architectural evaluation benchmark because 

of high parallelism and occasional 
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computational intensity, offering 

possibilities to take advantage of on-nick 

parallelism and challenges with connected 

memory systems. Next, they naturally arise 

in several scientific computations like 

stencils in partial differential equation 

(PDE) solvers, semi-definite optimization 

problems and model predictive control. 

 

III. EXISTED SYSTEM 

We first present the present GF100 GPU 

architecture after which discuss different 

optimization techniques that cause high 

throughput [3]. Then we produce an 

analytical model to calculate and 

comprehend the performance from the 

matrix forces kernel on any GPU device 

(model parameters are acquired using micro-

benchmarks). We make use of the same 

model to pick k for current GPU 

architectures as well as make architectural 

projections to acquire a preferred 

performance with future products. The GPU 

comprises 14 streaming multiprocessors 

(SMs) each operating at 1.15 GHz. Each SM 

has 32 floating-point cores able to carrying 

out 1 single-precision flop/cycle reaching an 

optimum throughput. We feature out 

sensitivity analysis of GPU performance 

with regards to the algorithmic parameters 

with constant architectural parameters. We 

highlight that by carefully picking the 

algorithmic parameters we are able to 

achieve greater performance over k SpMVs 

that otherwise requires significant 

architectural modifications when it comes to 

global memory bandwidth and latency. 

 

Fig.1. NVidia GPU Structure 

 

IV. PROPOSED MODEL 

The possibility to make use of FPGAs in 

high-performance computing comes from 

the truth that computer architecture could be 

specialized to accelerate a specific task 

solvers. We currently introduce the 

architecture-aware hybrid matrix forces 

kernel that exploits these architectural 

features to obtain high throughput. In 

connection with this, we present an origin-

restricted methodology for choosing an ideal 

k for any target FPGA device. The 

suggested formula loads the blocks from the 

matrix in the slow memory into large on-

nick memory utilizing a consecutive formula 
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after which performs computations inside 

the block in parallel without having done 

redundant computations. The significant 

from the formula, having a toy example, 

where we've 2 outer blocks which are loaded 

sequentially in the slow memory into FPGA 

on-nick memory [4]. Each outer block is 

further partitioned into two sub blocks that 

may be processed in parallel by a range of 

processing elements (PEs) your SIMD 

fashion All of the vertices in the sub-block 

are calculated inside a pipelined fashion 

utilizing a reduction circuit inside the PE. 

After each level within the graph, PEs has to 

communicate dependencies for their nearest 

neighbors. However, unlike GPU, where this 

communication is just possible using shared 

global memory and it is therefore prevented 

using redundant computation, the PEs inside 

the FPGA utilize low-latency FIFOs and 

therefore steer clear of the redundant 

computation. This enables bigger values of k 

and therefore greater possible speedups. 

Speedup over k SpMVs utilized in standard 

iterative solvers. This speedup factor is 

nearly two times of the items we 

accomplished with parallel matrix forces 

kernel on GPU. Even though the internet 

performance of FPGA (85 GFLOPs) is 

under those of GPU (123 GFLOPs) with this 

band size, however, we've better plastic 

efficiency with FPGA (18.8 percent) in 

comparison to GPU. The model is exact 

because of the highly predictive nature of 

FPGAs like a computing platform [5]. As 

FPGA has relatively bigger on-nick memory 

in comparison to GPU, we plan to keep k 

vectors on-nick to get used by subsequent 

modules in communication staying away 

from iterative solver. You will find three 

procedures in the matrix forces kernel on 

FPGA: loading the block, computing the 

sub-blocks in parallel as well as an optional 

stage for storing the k vectors to the off-nick 

memory if they don't fit on nick. 

 

V. CONCLUSION 

Although unrolling k iterations while using 

matrix forces kernel provides significant 

performance improvement in comparison to 

plain k SpMVs on the GPU, the 

performance is restricted because of 

quadratic development in redundant 

computations. This enables us large worth of 

k and therefore superior plastic efficiency in 

comparison to GPU. Buying and selling 

communication with computation boosts the 

plastic efficiency of hardware accelerators 

like FPGAs and GPU for speeding up 

communication-bound sparse iterative 
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solver. Our suggested hybrid matrix forces 

kernel for FPGA exploits the architectural 

options that come with this significantly 

different platform to reduce redundant 

computations. Our architectural insight 

shows a good formula-architecture 

interaction can offer similar performance, 

which otherwise requires significant 

enhancements in memory bandwidth. For a 

variety of at random produced banded 

matrices, we shown speedup over GPU for 

big and small band dimensions 

correspondingly. 
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