
 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4627

Vlsi Design for Carry-Protect Formatted Data

1
SK. MUJEEB,

2
B.BALA KRISHNA,

3 Dr.B.S.R.MURTHY

1
 M.Tech Student,DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING. GANDHI ACADEMY OF

TECHNICAL EDUCATION, Ramapuram (Katamommu Gudem), Chilkur(M), Kodad, Telangana 508206

2
M.TECH,Assistant Professor, HOD,DEPT OF ELECTRONICS & COMMUNICATION ENGINEERING.

GANDHI ACADEMY OF TECHNICAL EDUCATION, Ramapuram (Katamommu Gudem), Chilkur(M), Kodad,

Telangana 508206

4
Phd,Professor, & Principal. GANDHI ACADEMY OF TECHNICAL EDUCATION, Ramapuram (Katamommu

Gudem), Chilkur(M), Kodad, Telangana 508206

ABSTRACT:

However, research activities have proven the arithmetic optimizations at greater abstraction

levels compared to structural circuit one considerably effect on the datapath performance. CS

representation continues to be broadly accustomed to design fast arithmetic circuits because of

its natural benefit of getting rid of the big carry-propagation chains. Hardware acceleration

continues to be demonstrated a very promising implementation technique for digital signal

processing (DSP) domain. Instead of adopting a monolithic application-specific integrated circuit

design approach, within this brief, we present a manuscript accelerator architecture composed of

flexible computational models that offer the execution of a big group of operation templates

present in DSP popcorn kernels. Extensive experimental evaluations reveal that the suggested

accelerator architecture provides average gains as high as 61.91% in area-delay product and

54.43% in energy consumption in comparison using the condition-of-art flexible datapaths. We

differentiate from previous creates flexible accelerators by enabling computations to become

strongly carried out with carry-save (CS) formatted data. Advanced arithmetic design concepts,

i.e., recoding techniques, are employed enabling CS optimizations to become carried out inside a

bigger scope compared to previous approaches.

Keywords: Carry-save (CS) form, datapath synthesis, flexible accelerator, operation chaining.

I. INTRODUCTION The incorporation of heterogeneity through

specialized hardware accelerators improves

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4628

performance and reduces energy

consumption. Modern embedded systems

target high-finish application domain names

needing efficient implementations of

computationally intensive digital signal

processing (DSP) functions. Many scientists

have suggested using domain-specific

coarse-grained reconfigurable accelerators,

to be able to increase ASICs’ versatility

without considerably compromising their

performance [1]. Although application-

specific integrated circuits (ASICs) make up

the ideal acceleration solution when it comes

to performance and power, their inflexibility

results in elevated plastic complexity, as

multiple instantiated ASICs are necessary to

accelerate various popcorn kernels. High-

performance flexible datapaths happen to be

suggested to efficiently map primitive or

chained procedures based in the initial data-

flow graph (DFG) of the kernel. The

templates of complex chained procedures

are generally removed from the kernel’s

DFG or specified by a predefined behavior

template library. Design choices around the

accelerator’s datapath highly impact its

efficiency. Existing creates coarse-grained

recon-figural datapaths mainly exploit

architecture-level optimizations, e.g.,

elevated instruction-level parallelism (ILP).

The domain-specific architecture generation

calculations and vary the kind and quantity

of computation models achieving a

personalized design structure. Flexible

architectures were suggested exploiting ILP

and operation chaining [2]. Lately, Ansaloni

et al. adopted aggressive operation chaining

to allow the computation of entire sub

expressions using multiple ALUs with

heterogeneous arithmetic features. These

reconfigurable architectures exclude

arithmetic optimizations throughout the

architectural synthesis and think about them

limited to the interior circuit structure of

primitive components, e.g., adders,

throughout the logic synthesis. However,

research activities have proven the

arithmetic optimizations at greater

abstraction levels compared to structural

circuit one considerably effect on the

datapath performance. Timing-driven

optimizations according to carry-save (CS)

arithmetic were carried out in the publish-

Register Transfer Level (RTL) design stage.

Common sub expression elimination in CS

computations can be used to optimize

straight line DSP circuits [3]. Verma et al.

developed transformation techniques around

the application’s DFG to make best use of

CS arithmetic prior the particular datapath

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4629

synthesis. These CS optimization

approaches target inflexible datapath, i.e.,

ASIC, implementations. Lately, Xydis et al.

suggested an adaptable architecture mixing

the ILP and pipelining techniques using the

CS-aware operation chaining. However, all

of the aforementioned solutions feature a

natural limitation, i.e., CS optimization is

bounded to merging only

additions/subtractions. A CS to binary

conversion is placed before each operation

that is different from addition/subtraction,

e.g., multiplication, thus, allocating multiple

CS to binary conversions that heavily

degrades performance because of time-

consuming carry propagations[3]. Within

this brief, we advise a higher-performance

architectural plan for that synthesis of

flexible hardware DSP accelerators by

mixing optimization techniques from both

architecture and arithmetic amounts of

abstraction. We introduce an adaptable

datapath architecture that exploits CS

enhanced templates of chained procedures.

The suggested architecture comprises

flexible computational models (FCUs),

which let the execution of a big group of

operation templates present in DSP popcorn

kernels. The suggested accelerator

architecture provides average gains as high

as 61.91% in area-delay product and 54.43%

in energy consumption in comparison to

condition-of-art flexible datapaths,

sustaining efficiency toward scaly

technologies.

.

Fig.1. Framework of the flexible datapath

II. PROPOSED SYSTEM

The goal is to maximize the range that a CS

computation is performed within the DFG.

However, whenever a multiplication node is

interleaved in the DFG, either a CS to binary

conversion is invoked or the DFG is

transformed using the distributive property

CS representation has been widely used to

design fast arithmetic circuits due to its

inherent advantage of eliminating the large

carry-propagation chains. CS arithmetic

optimizations, rearrange the application’s

DFG and reveal multiple input additive

operations, which can be mapped onto CS

compressors.. Thus, the aforementioned CS

optimization approaches have limited impact

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4630

on DFGs dominated by multiplications, e.g.,

filtering DSP applications. In this brief, we

tackle the aforementioned limitation by

exploiting the CS to modified Booth (MB)

recoding each time a multiplication needs to

be performed within a CS-optimized

datapath. The proposed flexible accelerator

architecture is presented. Each FCU operates

directly on CS operands and produces data

in the same form1 for direct reuse of

intermediate results. Each FCU operates on

16-bit operands [4]. Such a bit-length is

adequate for the most DSP datapaths, but the

architectural concept of the FCU can be

straightforwardly adapted for smaller or

larger bit-lengths. The number of FCUs is

determined at design time based on the ILP

and area constraints imposed by the

designer. The CStoBin module is a ripple-

carry adder and converts the CS form to the

two’s complement one. The register bank

consists of scratch registers and is used for

storing intermediate results and sharing

operands among the FCUs. Different DSP

kernels (i.e., different register allocation and

data communication patterns per kernel) can

be mapped onto the proposed architecture

using post-RTL datapath interconnection

sharing techniques. The control unit drives

the overall architecture (i.e., communication

between the data port and the register bank,

configuration words of the FCUs and

selection signals for the multiplexers) in

each clock cycle. The structure of the FCU

has been designed to enable high-

performance flexible operation chaining

based on a library of operation templates

The proposed FCU enables intratemplate

operation chaining by fusing the additions

performed before/after the multiplication

and performs any partial operation template

of the complex operations: The multiplier’s

product consists of 17 bits. The multiplier

includes a compensation method for

reducing the error imposed at the product’s

accuracy by the truncation technique [5].

However, since all the FCU inputs consist of

16 bits and provided that there are no

overflows, In order to efficiently map DSP

kernels onto the proposed FCU-based

accelerator, the semiautomatic synthesis

methodology presented, has been adapted.

At first, a CS-aware transformation is

performed onto the original DFG, merging

nodes of multiple chained

additions/subtractions to 4:2 compressors. A

pattern generation on the transformed DFG

clusters the CS nodes with the multiplication

operations to form FCU template operations.

The designer selects the FCU operations

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4631

covering the DFG for minimized latency.

Given that the number of FCUs is fixed, a

resource-constrained scheduling is

considered with the available FCUs and

CStoBin modules determining the resource

constraint set. The clustered DFG is

scheduled, so that each FCU operation is

assigned to a specific control step. A list-

based scheduler has been adopted

considering the mobility2 of FCU

operations. The FCU operations are

scheduled according to descending mobility.

The scheduled FCU operations are bound

onto FCU instances and proper

configuration bits are generated. After

completing register allocation, a FSM is

generated in order to implement the control

unit of the overall architecture.

RESULTS:

Fig: RTL SCHEMATIC

Fig: Simulation Forms

III. CONCLUSION

Within this brief, we introduced an

adaptable accelerator architecture that

exploits the incorporation of CS arithmetic

optimizations to allow fast chaining of

additive and multiplicative procedures. The

suggested flexible accelerator architecture

has the capacity to work on both

conventional two’s complement and CS-

formatted data operands, thus enabling high

levels of computational density to become

accomplished. Theoretical and experimental

analyses have proven the suggested solution

forms a competent design compromise point

delivering enhanced latency/area and

implementations. Case study is dependent

on the system gate model. Regarding both

execution latency and also the area

complexity and thinking about all of the

DSP popcorn kernels, the suggested FCU-

based architecture outperforms those built

around the FCC and also the RAU. Not

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 14
October 2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4632

surprisingly, the timing constraints and also

the results of cell sizing implied through the

Design Compiler synthesis tool, in some

instances lead to incongruences between

your experimental and also the theoretical

studies

REFERENCES

[1] N. Moreano, E. Borin, C. de Souza, and

G. Araujo, “Efficient datapath merging for

partially reconfigurable architectures,” IEEE

Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 24, no. 7, pp. 969–

980,Jul. 2005.

[2] M. D. Galanis, G. Theodoridis, S.

Tragoudas, and C. E. Goutis, “A high-

performance data path for synthesizing DSP

kernels,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 25, no. 6,

pp. 1154–1162, Jun. 2006.

[3] A. K. Verma, P. Brisk, and P. Ienne,

“Data-flow transformations to maximize the

use of carry-save representation in

arithmetic circuits,” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 27,

no. 10, pp. 1761–1774, Oct. 2008.

[4] N. H. E. Weste and D. M. Harris, CMOS

VLSI Design: A Circuits and Systems

Perspective, 4th ed. Reading, MA, USA:

Addison-Wesley, 2010.

[5] M. Stojilovic, D. Novo, L. Saranovac, P.

Brisk, and P. Ienne, “Selective flexibility:

Creating domain-specific reconfigurable

arrays,” IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 32, no. 5, pp.

681–694, May 2013.

