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Abstract 

In this paper, wesolve two types of two 
dimensional line integrals by using a 
complex integral formula. Moreover, we 
provide some examples to do calculation 
practically. The method adopted in this 
study is to find solutions through manual 
calculations and verify the solutions using 
Maple.This method not only allows the 
discovery of calculation errors, but also 
helps modify the original directions of 
thinking. 
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1. Introduction 

As information technology advances, 
whether computers can become comparable 
with human brains to perform abstract tasks, 
such as abstract art similar to the paintings 
of Picasso and musical compositions similar 
to those of Beethoven, is a natural question. 
Currently, this appears unattainable. In 
addition, whether computers can solve 
abstract and difficult mathematical problems 
and develop abstract mathematical theories 
such as those of mathematicians also 
appears unfeasible. Nevertheless, in seeking 
for alternatives, we can study what 
assistance mathematical software can 
provide. This study introduces how to 
conduct mathematical research using the 
mathematical software Maple. The main 
reasons of using Maple in this study are its 
simple instructions and ease of use, which 
enable beginners to learn the operating 
techniques in a short period. By employing 

the powerful computing capabilities of 
Maple, difficult problems can be easily 
solved. Even when Maple cannot determine 
the solution, problem-solving hints can be 
identified and inferred from the approximate 
values calculated and solutions to similar 
problems, as determined by Maple. For this 
reason, Maple can provide insights into 
scientific research. 

In calculus and engineering 
mathematics, there are many methods to 
deal with the integral problems which 
including change of variables method, 
integration by parts method, partial fractions 
method, trigonometric substitution method, 
etc. In this article, we study the 
followingtwo types of two dimensional line 
integrals which are not easy to obtain their 
answers using the methods mentioned above. 
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where  is a piecewise smooth curve in 2R
defined by ))(),(()( tytxt  , ],[ 21 ttt   
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, and 0)( tx .The two types of 
lineintegralscan be determined by using a 
complex integral formula; these are the main 
results of this paper (i.e., Theorems1 and 
2).Adams et al. [1], Nyblom [2], and Oster 
[3] provided some methods to solve the 
integral problems. On the other hand, Yu [4-
27], Yu and Chen [28], and Yu and Sheu 
[29-31]used some techniques, for example, 
complex power series, integration term by 
term theorem, Parseval’s theorem, area 
mean value theorem, and generalized 
Cauchy integral formula to solve some types 
of integrals. In this article, we propose some 
examples to demonstrate the manual 
calculations, andverifythe results using 
Maple.In addition, two examples are used to 
demonstrate the proposed calculations.The 
research methods adopted in this study is to 
find solutions through manual calculations 
and verify these solutions by using Maple.  

2. Methods and Results 

In the following, some definitions and 
formulas used in this paper are introduced. 

2.1 Definition: 

The complex logarithmic function zln  is 
defined by izz  lnln , where 1i , 
z  is a complex number,  is a real number, 

)exp( izz  , and   . 

2.2 Formulas: 

2.2.1 Euler’s formula:  

 sincos)exp( ii  , where  is any real 
number. 

2.2.2 DeMoivre’s formula:  

 pipi p sincos)sin(cos  , where 
p  is any integer, and  is any real number. 

To derive the main results in this article, 
we need the following two lemmas, and the 

second one is the complex integral formula 
used in this paper. 

Lemma 1  If yx,  are real numbers with 
0x , then 
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Lemma 2  If z  is a complex number and 

0z , then 
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Next, the solution of line integral (1) can 
be obtained below. 

Theorem 1 If 2
21 ],[: Rtt   is a piecewise 

smooth curve in 2R defined by 
))(),(()( tytxt  with 0)( tx , 
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],[ 21 ttt  , and let 
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Using Lemma 1, DeMoivre’s formula, and 
the real parts of both sides of Eq. (6) are 
equal, we obtain 
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Thus, the desired result holds.q.e.d. 

In the following, the solution of line 
integral (2) can be determined. 

Theorem 2  If the assumptions are the same 
as Theorem1, and let 
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Proof  Using the imaginary parts of both 
sides of Eq. (6) are equal, we obtain the 
desired result.         q.e.d. 
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3. Examples 

For the two dimensional line integral 
problems discussed in this paper, two 
examples are provided and we use Theorems 
1 and 2 to determine their solutions. In 
addition, Maple is used to calculate the 
approximations of some line integrals and 
their solutions for verifying our answers. 

Example 1 Let 2]2,1[: R be a 
piecewise smooth curve defined by 

)3,2()( ttt  , then using Theorem 1 
yields 
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(8) 

Using Maple to verify the correctness of Eq. 
(8) as follows: 

>evalf(int(exp(2*t)*((2*cos(3*t)-3*sin(3*t)) 
*ln(sqrt(13)*t)-arctan(3/2)*(3*cos(3*t)+2* 
sin(3*t))),t=1.0..2.0),18); 

127.273464226178372 

>evalf((exp(4)*cos(6)-1)*ln(sqrt(52))-(exp 
(2)*cos(3)-1)*ln(sqrt(13))-(exp(4)*sin(6)-
exp(2)*sin(3))*arctan(3/2)-sum(1/(n*n!)*(( 
sqrt(52))^n-(sqrt(13))^n)*cos(n*arctan(3/2)) 
,n=1..infinity),18); 

127.273464226178372 

Example 2If 2]3,1[: R is a piecewise 
smooth curve defined by )4,()( ttt  , 
then by Theorem 2, we have 
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(9) 
We also employ Maple to verify the 
correctness of Eq. (9). 
>evalf(int(exp(t)*((4*cos(4*t)+sin(4*t))*ln(
sqrt(17)*t)+arctan(4)*(cos(4*t)-4*sin(4*t))), 
t=1.0..3.0),20); 

2.5588483429155503922 
>evalf(exp(3)*sin(12)*ln(sqrt(153))-exp(1)* 
sin(4)*ln(sqrt(17))+(exp(3)*cos(12)-exp(1)* 
cos(4))*arctan(4)-sum(1/(n*n!)*((sqrt(153)) 
^n-(sqrt(17))^n)*sin(n*arctan(4)),n=1..infin 
ity),20); 

2.5588483429155503932 

4. Conclusion 

As mentioned, we mainly use a complex 
integral formula to solve two types of two 
dimensional line integrals. In fact, the 
applications of complex integral formulas 
are extensive, and can be used to easily 
solve many difficult problems; we endeavor 
to conduct further studies on related 
applications. Moreover, Maple also plays a 
vital assistive role in problem-solving. In the 
future, we will extend the research topic to 
other calculus and engineering mathematics 
problems and use Maple to verify our 
answers. 
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