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Abstract 

This paper uses the mathematical software 
Maple for the auxiliary tool to study two 
types of integral problems of trigonometric 
functions. We can obtain the closed forms of 
the two types of integrals using a complex 
integral formula. In addition, we propose 
two related integrals and calculate their 
definite integrals practically. Our research 
method is to find solutions through manual 
calculations and verify these solutions using 
Maple. This type of research method not 
only allows the discovery of calculation 
errors, but also helps modify the original 
directions of thinking. 
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1. Introduction 

The computer algebra system (CAS) 
has been widely employed in mathematical 
and scientific studies. The rapid 
computations and the visually appealing 
graphical interface of the program render 
creative research possible. Maple possesses 
significance among mathematical 
calculation systems and can be considered a 
leading tool in the CAS field. The 
superiority of Maple lies in its simple 
instructions and ease of use, which enable 
beginners to learn the operating techniques 
in a short period. In addition, through the 
numerical and symbolic computations 

performed by Maple, the logic of thinking 
can be converted into a series of instructions. 
The computation results of Maple can be 
used to modify previous thinking directions, 
thereby forming direct and constructive 
feedback that can aid in improving 
understanding of problems and cultivating 
research interests.  Inquiring through an 
online support system provided by Maple or 
browsing the Maple website 
(www.maplesoft.com) can facilitate further 
understanding of Maple and might provide 
unexpected insights. 

In calculus and engineering 
mathematics, there are many methods to 
solve the integral problems,for example, 
change of variables method, integration by 
parts method, partial fractions method, 
trigonometric substitution method, etc. In 
this paper, weconsider the following 
twotypes of integralproblems of 
trigonometric functions, which are not easy 
to obtain their answers using the methods 
mentioned above. 
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where ,r are any real numbers.The closed 
formsof the twotypes of integralscan be 
obtainedby using a complex integral formula; 
these arethe major results of this article (i.e., 
Theorems1 and 2).Adams et al. [1], Nyblom 
[2], and Oster [3] provided some techniques 
to solve some integral problems. On the 
other hand, Yu [4-29], and Yu and Chen 
[30]used some methods, for example, 
complex power series method, integration 
term by term theorem,  Parseval’s theorem, 
and generalized Cauchy integral formula to 
solve some types of integral problems. In 
this study, we propose two examples to 
demonstrate the manual calculations, 
andverifythe results using Maple. 

2. Preliminaries and Main Results 

First, we introduce a definition and 
aformulaused in this paper. 

2.1 Definition: 

The complex logarithmic function zln  is 
defined by izz  lnln , where z  is a 

complex number, 1i ,  is a real 
number, iezz  , and   . 

2.2Euler’sFormula: 
 sincos ie i  , where  is any 

real number. 

Toobtain the major results in this 
article, we need the following complex 
integral formula. 
LemmaSuppose that z  is a complex number 
and C is a constant, then 
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In the following, we determine the closed 
forms of the integrals (1) and (2). 

Theorem 1Let ,r be real numbers and 1C
be a constant, then 
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Therefore,  
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(5) 
Using the equality of the real parts of both 
sides of Eq. (5), we obtain Eq. (4). 

q.e.d. 

Theorem 2If ,r are real numbers and 2C
is a constant, then 
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(6) 
ProofBythe equality of the imaginary parts 
of both sides of Eq. (5), the desired result 
holds.                                     q.e.d. 

3. Examples 

For the integralproblems discussed in 
this paper, two examples are proposed and 
we use Theorems 1 and 2 to determine their 
closed forms. Moreover, we employ Maple 
to calculate the approximations of some 
definite integrals and their solutions to 
verify our answers. 

Example 1Let 2r in Theorem1, we have 
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Thus the following definite integral 
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Next, we use Maple to verify the correctness 
of Eq. (8). 
>evalf(int((-2*sin(theta)*(1+exp(2*cos(thet 
a))*cos(2*sin(theta)))+2*cos(theta)*exp(2*c
os(theta))*sin(2*sin(theta)))/(1+2*exp(2*co
s(theta))*cos(2*sin(theta))+exp(4*cos(theta)
)),theta=0..Pi/2),15); 

0.049407300869037 
>evalf(-ln(sqrt(2+2*cos(2)))-2+ln(exp(2)+1), 
15); 

0.049407300869041 
 
Example 2If 3r in Theorem2, then using 
Eq. (6) yields 
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Therefore, we have the following definite 
integral 
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We also employ Maple to verify the 
correctness of Eq. (10). 

>evalf(int((3*cos(theta)*(1+exp(3*cos(theta
))*cos(3*sin(theta)))+3*sin(theta)*exp(3*co
s(theta))*sin(3*sin(theta)))/(1+2*exp(3*cos(
theta))*cos(3*sin(theta))+exp(6*cos(theta)))
,theta=Pi/6..Pi/2),15); 

1.42629228651923 

>evalf(3/2-arctan(sin(3)/(1+cos(3)))+arctan( 
exp(3*sqrt(3)/2)*sin(3/2)/(1+exp(3*sqrt(3)/
2)*cos(3/2))),15); 

1.42629228651916 

4. Conclusion 

From the discussion above,we know that 
using complex integral can easily solve 
some integral problems of trigonometric 
functions. In fact, the applications of 
complex integralare extensive, and can be 
used to deal with many difficult problems; 
we endeavor to conduct further studies on 
related applications. In addition, Maple also 
plays a vital assistive role in problem-
solving. In the future, we will extend the 
research topic to other calculus and 
engineering mathematics problems and use 
Maple to verify our results. 
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