

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4706

Parallel-Prefix Adders Implementation Using Reverse Converter
Design

Submitted by: M.SHASHIDHAR

 Guide name: J.PUSHPARANI, M.TECH

Department of ECE

ABSTRACT:

 The binary adder is the critical

element in most digital circuit designs including

digital signal processors (DSP) and microprocessor

data path units. As such, extensive research continues

to be focused on improving the power delay

performance of the adder. In VLSI implementations,

parallel-prefix adders are known to have the best

performance. Parallel prefix adder is the most

flexible and widely used for binary addition. Parallel

Prefix adders are best suited for VLSI

implementation. Numbers of parallel prefix adder

structures have been proposed over the past years

intended to optimize area, fan-out, and logic depth

and inter connect count. This paper presents a new

approach to redesign the basic operators used in

parallel prefix architectures. The number of

multiplexers contained in each Slice of an FPGA is

considered here for the redesign of the basic

operators used in parallel prefix tree.

Parallel-prefix adders (also known as carry-

tree adders) are known to have the best performance

in VLSI designs. However, this performance

advantage does not translate directly into FPGA

implementations due to constraints on logic block

configurations and routing overhead. This paper

investigates three types of carry-tree adders (the

Kogge-Stone, sparse Kogge-Stone, and spanning tree

adder) and compares them to the simple Ripple Carry

Adder (RCA) and Carry Skip Adder (CSA). These

designs of varied bit-widths were implemented on a

Xilinx Spartan 3E FPGA and delay measurements

were made with a high-performance logic analyzer.

Due to the presence of a fast carry-chain, the RCA

designs exhibit better delay performance up to 128

bits. This new design is implemented with 16-bit

width operands of various parallel prefix adders on

Xilinx Spartan FPGA. The experimental results

indicate that the new approach of basic operators

make some of the parallel prefix adders architectures

faster and area efficient

In this project for simulation we use

Modelsim for logical verification, and further

synthesizing it on Xilinx-ISE tool using target

technology and performing placing & routing

operation for system verification on targeted FPGA.

1. INTRODUCTION

 The electronics industry has achieved a

phenomenal growth over the last two decades, mainly

due to the rapid advances in integration technologies,

large-scale systems design - in short, due to the

advent of VLSI. The number of applications of

integrated circuits in high-performance computing,

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4707

telecommunications, and consumer electronics has

been rising steadily, and at a very fast pace. The

driving force for the fast development of this field.

Fig: Evolution Of Integration Density And Minimum
Feature Size

Therefore, the current trend of integration will also

continue in the foreseeable future. Advances in

device manufacturing technology, and especially the

steady reduction of minimum feature size (minimum

length of a transistor or an interconnect realizable on

chip) support this trend.

1.1 VLSI Design Flow

The design process, at various levels, is usually

evolutionary in nature. It starts with a given set of

requirements. Initial design is developed and tested

against the requirements. When requirements are not

met, the design has to be improved. If such

improvement is either not possible or too costly, then

the revision of requirements and its impact analysis

must be considered.

Fig: A more simplified view of VLSI design flow

1.2 Design Hierarchy

A hierarchy structure can be described in

each domain separately. However, it is important

for the simplicity of design that the hierarchies in

different domains can be mapped into each other

easily. In the physical domain, partitioning a

complex system into its various functional

blocks will provide a valuable guidance for the

actual realization of these blocks on chip.

Obviously, the approximate shape and size (area)

of each sub-module should be estimated in order

to provide a useful floor plan

1.3 Low power Vlsi

As technology advanced, chips grew, and it

was possible to integrate more functions into one

chip. Just as for TTL, newer technology, called

CMOS, threatened to replace NMOS in the

1980s because CMOS proved to consume even

less power. With further advances InTechnology

and fabrication, the integration densities and the

rate at which chips operate have increased

drastically, causing power consumption to be of

primary concern. In addition, the new

requirements set by device portability, reliability,

and costs have helped in alleviating the power

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4708

consumption threat in CMOS circuits. Because

the power problem is getting more concerning,

very large-scale integrated circuit (VLSI)

designers need to develop new efficient

techniques to reduce the power dissipation in

current and future technologies, a task that is full

of challenges but yet exciting to explore. Ideally,

in the steady state of CMOS circuits there is no

static power consumption, which is the most

attractive characteristic of CMOS technology.

2. INTRODUCTION TO ADDERS

In electronics, an adder or summer is a digital

circuit that performs addition of numbers. In many

computers and other kinds of processors, adders

are used not only in the arithmetic logic unit(s), but

also in other parts of the processor, where they are

used to calculate addresses, table indices, and

similar. Although adders can be constructed for

many numerical representations, such as binary-

coded decimal or excess-3, the most common

adders operate on binary numbers. In cases where

two's complement or ones' complement is being

used to represent negative numbers.The half adder

adds two one-bit binary numbers A and B. It has

two outputs, S and C (the value theoretically

carried on to the next addition); the final sum is 2C

+ S. The simplest half-adder design, pictured on

the right, incorporates an XOR gate for S and an

AND gate for C. With the addition of an OR gate

to combine their carry outputs, two half adders can

be combined to make a full adder

A full adder adds binary numbers and accounts for

values carried in as well as out. A one-bit full adder

adds three one-bit numbers, often written as A, B, and

Cin; A and B are the operands, and Cin is a bit carried

in from the next less significant stage. The full-adder

is usually a component in a cascade of adders, which

add 8, 16, 32, etc. binary numbers

A carry-look ahead adder (CLA) is a type of

adder used in digital logic. A carry-look ahead adder

improves speed by reducing the amount of time

required to determine carry bits. It can be contrasted

with the simpler, but usually slower, ripple carry

adder for which the carry bit is calculated alongside

the sum bit, and each bit must wait until the previous

carry has been calculated to begin calculating its own

result and carry bits (see adder for detail on ripple

carry adders). The carry-look ahead adder calculates

one or more carry bits before the sum, which reduces

the wait time to calculate the result of the larger value

bits. The Kogge-Stone adder and Brent-Kung adder

are examples of this type of adder.

A carry-save adder is a type of digital

adder, used in computer micro architecture to

compute the sum of three or more n-bit numbers in

binary. It differs from other digital adders in that it

outputs two numbers of the same dimensions as the

inputs, one which is a sequence of partial sum bits

and another which is a sequence of carry bits.

In electronics, a carry-select adder is a

particular way to implement an adder, which is a

logic element that computes the -bit sum of

two -bit numbers. The carry-select adder is simple

but rather fast, having a gate level depth of .

A 16-bit carry-select adder with a uniform

block size of 4 can be created with three of these

blocks and a 4-bit ripple carry adder. Since carry-in is

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4709

known at the beginning of computation, a carry select

block is not needed for the first four bits. The delay

of this adder will be four full adder delays, plus three

MUX delays.

A 16-bit carry-select adder with variable

size can be similarly created. Here we show an adder

with block sizes of 2-2-3-4-5. This break-up is ideal

when the full-adder delay is equal to the MUX delay,

the total delay is two full adder delays, and four mux

delays.

3. PARALLEL PREFIX ADDERS

3.1 Introduction

 Computer arithmetic is a wide

topic. It spans from the selection of a suitable number

system to the implementation of a complete

arithmetic-logic unit (ALU). This chapter will,

however, focus on only three topics: single-bit

adders, wide-bit adders, and multipliers. Those

circuits are crucial for the performance of many

components such as digital signal processors (DSPs)

and general purpose processors. Fused multiply add

unit plays an important role in modern

microprocessor. It performs floating point

multiplication followed by an addition of the product

with a third floating point operand. In 2007, a seven

cycle fused multiply add pipeline unit was proposed

as a part of the floating point unit in IBM's POWER6

microprocessor. In this fused multiply add dataflow,

the product should be aligned before it is added with

the addend. Because the magnitude of the product is

unknown in the early stages prior to the combination

with the addend it is difficult to determine a priori

which operand is bigger.

Parallel Prefix Adders

A parallel prefix circuit is a combinational

circuit with n inputs x1, x2,xn producing the outputs

x1,x20x1, :::; xn xn�1:::x1 where is the associatively

binary operation. The first stage of the adder

generates individual P and G signals. The remaining

stages constitute the parallel prefix circuit with the

fundamental carry operation serving as the

associative binary operation. This part of the adder

can be designed in many different ways.

Although computing carry-propagate

addition can use generate and propagate signals, its

implementation in VLSI can be quite inefficient due

to the number of wires that have to be connected

together. Parallel-prefix adders solve this problem by

making the wires shorter with simple gate structures

to aid in the passing of groups of carries to the next

weight

3.2 Tree or Parallel-Prefix Adders

 To describe parallel-prefix adders, first of all

the parallel-prefix or dot operator needs to be

defined:

(GI, PI’). (GX,PX’) = (GI + PI’GX,PI’PX’)

 Here the Ps and Gs can be either single or

group propagate and generate signals. The Ps and Gs

with index X are from a lower significance level than

those with index I. In state-of-the-art designs

conventional domino and static CMOS logic are used

to implement the dot-operator cells. Alternative and

more efficient implementations of the dot-operator

cells are presented in Paper 6 where a dynamic pass-

transistor logic style is employed. The new cells

dissipate less power and use fewer transistors than

their corresponding domino implementations and the

speed penalty is small to none.

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4710

 Fig: Taxonomy of prefix networks

4. INTRODUCTION TO VERILOG

 Inthe semiconductor and electronic

design industry, Verilog is a hardware description

language(HDL) used to model electronic

systems. Verilog HDL, not to be confused

with VHDL (a competing language), is most

commonly used in the design, verification, and

implementation of digital logic chips at the register-

transfer level of abstraction. It is also used in the

verification of analog and mixed-signal circuits.

A Verilog design consists of a hierarchy of

modules. Modules encapsulate design hierarchy, and

communicate with other modules through a set of

declared input, output, and bidirectional ports.

Internally, a module can contain any combination of

the following: net/variable declarations, concurrent

and sequential statement blocks, and instances of

other modules (sub-hierarchies). Sequential

statements are placed inside a begin/end block and

executed in sequential order within the block. But the

blocks themselves are executed concurrently,

qualifying Verilog as a dataflow language. A subset

of statements in the Verilog language

is synthesizable. Verilog modules that conform to a

synthesizable coding style, known as RTL (register-

transfer level), can be physically realized by

synthesis software. Synthesis software

algorithmically transforms the (abstract) Verilog

source into a net list, a logically equivalent

description consisting only of elementary logic

primitives (AND, OR, NOT, flip-flops, etc.) that are

available in a specific FPGA or VLSI technology.

Further manipulations to the net list ultimately lead to

a circuit fabrication blueprint

Simulation Results

The below figures shows the simulation

results of test cases applied to the DUT . figure

6.1shows the response of the device for the control

test case at the usb interface.

Fig: shows the master transmitter sending random

data to the external slave device

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4711

 Fig: 16 -Bit Ripple Carry Adder

Fig: 16 -Bit Kogge_Stone Adder

CONCLUSION

In this project I designed the ripple carry

adder,Kogge stone adder, brent kung adder for

8,16,32,64,128 bits.And I found out the delay and

area of the designed adders. As per the results I

conclude that for higher order applications parallel

pefix adders are best choice. In brent kung adder has

more than 200% speed as compared to the RCA,but

we required very less amount of delay. If we go for

the Kogge stone it has a more than 600% speed as

compared to the RCA. That’s why for high speed

applications we choose kooge stone adders. The 128

bit kooge stone adder delay is almost equal to the 16

bit RCA. The above all designs are done by the

Verilog HDl , the simulation is done by model sim,

and for synthesis we go for the Xilinx ISE.

 Future Work:

In Kogge stone it has high speed but it requires more

amount of area. To overcome that problem we go for

the sparse Kogge stone. In practically there is no

difference between the both adders. For testing of the

design we use the Verilog Hdl, If we go for the

advanced verification methods we can reduce the

verification of designs.

REFERENCES

[1] A. Omondi and B. Premkumar, Residue Number

Systems: Theory and Implementations. London,

U.K.: Imperial College Press, 2007.

 [2] B. Parhami, Computer Arithmetic: Algorithms

and Hardware Designs, 2nd ed., New York, NY,

USA: Oxford Univ. Press, 2010.

 [3] J. Chen and J. Hu, “Energy-efficient digital

signal processing via voltage over scaling-based

residue number system,” IEEE Trans. Very Large

Scale Integer. (VLSI) Syst., vol. 21, no. 7,

 [4] C. H. Vun, A. B. Premkumar, and W. Zhang, “A

new RNS based DA approach for inner product

computation,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 60, no. 8, pp. 2139–2152, Aug. 2013.

 [5] S. Antão and L. Sousa, “The CRNS framework

and its application to programmable and

reconfigurable cryptography,” ACM Trans. Archit.

Code Optim., vol. 9, no. 4, p. 33, Jan. 2013.

 [6] A. S. Molahosseini, S. Sorouri, and A. A. E.

Zarandi, “Research challenges in next-generation

residue number system architectures,” in Proc. IEEE

Int. Conf. Comput. Sci. Educ., Jul. 2012, pp. 1658–

1661.

 [7] K. Navi, A. S. Molahosseini, and M.

Esmaeildoust, “How to teach residue number system

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 03 Issue 14

October2016

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 4712

to computer scientists and engineers,” IEEE Trans.

Educ., vol. 54, no. 1, pp. 156–163, Feb. 2011.

 [8] Y. Wang, X. Song, M. Aboulhamid, and H.

Shen, “Adder based residue to binary numbers

converters for (2n − 1, 2n, 2n + 1),” IEEE Trans.

Signal Process., vol. 50, no. 7, pp. 1772–1779, Jul.

2002.

 [9] B. Cao, C. H. Chang, and T. Srikanthan, “An

efficient reverse converter for the 4-moduli set {2n −

1, 2n, 2n + 1, 22n + 1} based on the new Chinese

remainder theorem,” IEEE Trans. Circuits Syst. I,

Fundam. Theory Appl., vol. 50, no. 10, pp. 1296–13

