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ABSTRACT: 

 The binary adder is the critical 

element in most digital circuit designs including 

digital signal processors (DSP) and microprocessor 

data path units. As such, extensive research continues 

to be focused on improving the power delay 

performance of the adder. In VLSI implementations, 

parallel-prefix adders are known to have the best 

performance. Parallel prefix adder is the most 

flexible and widely used for binary addition. Parallel 

Prefix adders are best suited for VLSI 

implementation. Numbers of parallel prefix adder 

structures have been proposed over the past years 

intended to optimize area, fan-out, and logic depth 

and inter connect count. This paper presents a new 

approach to redesign the basic operators used in 

parallel prefix architectures. The number of 

multiplexers contained in each Slice of an FPGA is 

considered here for the redesign of the basic 

operators used in parallel prefix tree.  

Parallel-prefix adders (also known as carry-

tree adders) are known to have the best performance 

in VLSI designs. However, this performance 

advantage does not translate directly into FPGA 

implementations due to constraints on logic block 

configurations and routing overhead. This paper 

investigates three types of carry-tree adders (the 

Kogge-Stone, sparse Kogge-Stone, and spanning tree 

adder) and compares them to the simple Ripple Carry  

 

Adder (RCA) and Carry Skip Adder (CSA). These 

designs of varied bit-widths were implemented on a 

Xilinx Spartan 3E FPGA and delay measurements 

were made with a high-performance logic analyzer. 

Due to the presence of a fast carry-chain, the RCA 

designs exhibit better delay performance up to 128 

bits. This new design is implemented with 16-bit 

width operands of various parallel prefix adders on 

Xilinx Spartan FPGA. The experimental results 

indicate that the new approach of basic operators 

make some of the parallel prefix adders architectures 

faster and area efficient 

In this project for simulation we use 

Modelsim for logical verification, and further 

synthesizing it on Xilinx-ISE tool using target 

technology and performing placing & routing 

operation for system verification on targeted FPGA. 

1. INTRODUCTION 

  The electronics industry has achieved a 

phenomenal growth over the last two decades, mainly 

due to the rapid advances in integration technologies, 

large-scale systems design - in short, due to the 

advent of VLSI. The number of applications of 

integrated circuits in high-performance computing, 
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telecommunications, and consumer electronics has 

been rising steadily, and at a very fast pace. The 

driving force for the fast development of this field. 

 

Fig: Evolution Of Integration Density And Minimum 
Feature Size 

Therefore, the current trend of integration will also 

continue in the foreseeable future. Advances in 

device manufacturing technology, and especially the 

steady reduction of minimum feature size (minimum 

length of a transistor or an interconnect realizable on 

chip) support this trend. 

1.1 VLSI Design Flow 

The design process, at various levels, is usually 

evolutionary in nature. It starts with a given set of 

requirements. Initial design is developed and tested 

against the requirements. When requirements are not 

met, the design has to be improved. If such 

improvement is either not possible or too costly, then 

the revision of requirements and its impact analysis 

must be considered. 

 

Fig: A more simplified view of VLSI design flow 

1.2 Design Hierarchy 

A hierarchy structure can be described in 

each domain separately. However, it is important 

for the simplicity of design that the hierarchies in 

different domains can be mapped into each other 

easily. In the physical domain, partitioning a 

complex system into its various functional 

blocks will provide a valuable guidance for the 

actual realization of these blocks on chip. 

Obviously, the approximate shape and size (area) 

of each sub-module should be estimated in order 

to provide a useful floor plan 

1.3 Low power Vlsi 

As technology advanced, chips grew, and it 

was possible to integrate more functions into one 

chip. Just as for TTL, newer technology, called 

CMOS, threatened to replace NMOS in the 

1980s because CMOS proved to consume even 

less power. With further advances InTechnology 

and fabrication, the integration densities and the 

rate at which chips operate have increased 

drastically, causing power consumption to be of 

primary concern. In addition, the new 

requirements set by device portability, reliability, 

and costs have helped in alleviating the power 
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consumption threat in CMOS circuits. Because 

the power problem is getting more concerning, 

very large-scale integrated circuit (VLSI) 

designers need to develop new efficient 

techniques to reduce the power dissipation in 

current and future technologies, a task that is full 

of challenges but yet exciting to explore. Ideally, 

in the steady state of CMOS circuits there is no 

static power consumption, which is the most 

attractive characteristic of CMOS technology. 

 

2.  INTRODUCTION TO ADDERS          

In electronics, an adder or summer is a digital 

circuit that performs addition of numbers. In many 

computers and other kinds of processors, adders 

are used not only in the arithmetic logic unit(s), but 

also in other parts of the processor, where they are 

used to calculate addresses, table indices, and 

similar. Although adders can be constructed for 

many numerical representations, such as binary-

coded decimal or excess-3, the most common 

adders operate on binary numbers. In cases where 

two's complement or ones' complement is being 

used to represent negative numbers.The half adder 

adds two one-bit binary numbers A and B. It has 

two outputs, S and C (the value theoretically 

carried on to the next addition); the final sum is 2C 

+ S. The simplest half-adder design, pictured on 

the right, incorporates an XOR gate for S and an 

AND gate for C. With the addition of an OR gate 

to combine their carry outputs, two half adders can 

be combined to make a full adder 

 

A full adder adds binary numbers and accounts for 

values carried in as well as out. A one-bit full adder 

adds three one-bit numbers, often written as A, B, and 

Cin; A and B are the operands, and Cin is a bit carried 

in from the next less significant stage. The full-adder 

is usually a component in a cascade of adders, which 

add 8, 16, 32, etc. binary numbers 

A carry-look ahead adder (CLA) is a type of 

adder used in digital logic. A carry-look ahead adder 

improves speed by reducing the amount of time 

required to determine carry bits. It can be contrasted 

with the simpler, but usually slower, ripple carry 

adder for which the carry bit is calculated alongside 

the sum bit, and each bit must wait until the previous 

carry has been calculated to begin calculating its own 

result and carry bits (see adder for detail on ripple 

carry adders). The carry-look ahead adder calculates 

one or more carry bits before the sum, which reduces 

the wait time to calculate the result of the larger value 

bits. The Kogge-Stone adder and Brent-Kung adder 

are examples of this type of adder. 

A carry-save adder is a type of digital 

adder, used in computer micro architecture to 

compute the sum of three or more n-bit numbers in 

binary. It differs from other digital adders in that it 

outputs two numbers of the same dimensions as the 

inputs, one which is a sequence of partial sum bits 

and another which is a sequence of carry bits. 

In electronics, a carry-select adder is a 

particular way to implement an adder, which is a 

logic element that computes the -bit sum of 

two -bit numbers. The carry-select adder is simple 

but rather fast, having a gate level depth of . 

A 16-bit carry-select adder with a uniform 

block size of 4 can be created with three of these 

blocks and a 4-bit ripple carry adder. Since carry-in is 
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known at the beginning of computation, a carry select 

block is not needed for the first four bits. The delay 

of this adder will be four full adder delays, plus three 

MUX delays. 

A 16-bit carry-select adder with variable 

size can be similarly created. Here we show an adder 

with block sizes of 2-2-3-4-5. This break-up is ideal 

when the full-adder delay is equal to the MUX delay, 

the total delay is two full adder delays, and four mux 

delays. 

3. PARALLEL PREFIX ADDERS 

3.1 Introduction 

 Computer arithmetic is a wide 

topic. It spans from the selection of a suitable number 

system to the implementation of a complete 

arithmetic-logic unit (ALU). This chapter will, 

however, focus on only three topics: single-bit 

adders, wide-bit adders, and multipliers. Those 

circuits are crucial for the performance of many 

components such as digital signal processors (DSPs) 

and general purpose processors. Fused multiply add 

unit plays an important role in modern 

microprocessor. It performs floating point 

multiplication followed by an addition of the product 

with a third floating point operand. In 2007, a seven 

cycle fused multiply add pipeline unit was proposed 

as a part of the floating point unit in IBM's POWER6 

microprocessor. In this fused multiply add dataflow, 

the product should be aligned before it is added with 

the addend. Because the magnitude of the product is 

unknown in the early stages prior to the combination 

with the addend it is difficult to determine a priori 

which operand is bigger.  

Parallel Prefix Adders 

A parallel prefix circuit is a combinational 

circuit with n inputs x1, x2,xn producing the outputs 

x1,x20x1, :::; xn xn�1:::x1 where is the associatively 

binary operation. The first stage of the adder 

generates individual P and G signals. The remaining 

stages constitute the parallel prefix circuit with the 

fundamental carry operation serving as the 

associative binary operation. This part of the adder 

can be designed in many different ways. 

Although computing carry-propagate 

addition can use generate and propagate signals, its 

implementation in VLSI can be quite inefficient due 

to the number of wires that have to be connected 

together. Parallel-prefix adders solve this problem by 

making the wires shorter with simple gate structures 

to aid in the passing of groups of carries to the next 

weight 

3.2 Tree or Parallel-Prefix Adders 

 To describe parallel-prefix adders, first of all 

the parallel-prefix or dot operator needs to be 

defined: 

(GI, PI’). (GX,PX’) = (GI + PI’GX,PI’PX’)   

 Here the Ps and Gs can be either single or 

group propagate and generate signals. The Ps and Gs 

with index X are from a lower significance level than 

those with index I. In state-of-the-art designs 

conventional domino and static CMOS logic are used 

to implement the dot-operator cells. Alternative and 

more efficient implementations of the dot-operator 

cells are presented in Paper 6 where a dynamic pass-

transistor logic style is employed. The new cells 

dissipate less power and use fewer transistors than 

their corresponding domino implementations and the 

speed penalty is small to none. 
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             Fig: Taxonomy of prefix networks 

4. INTRODUCTION TO VERILOG 

 Inthe semiconductor and electronic 

design industry, Verilog is a hardware description 

language(HDL) used to model electronic 

systems. Verilog HDL, not to be confused 

with VHDL (a competing language), is most 

commonly used in the design, verification, and 

implementation of digital logic chips at the register-

transfer level of abstraction. It is also used in the 

verification of analog and mixed-signal circuits. 

A Verilog design consists of a hierarchy of 

modules. Modules encapsulate design hierarchy, and 

communicate with other modules through a set of 

declared input, output, and bidirectional ports. 

Internally, a module can contain any combination of 

the following: net/variable declarations, concurrent 

and sequential statement blocks, and instances of 

other modules (sub-hierarchies). Sequential 

statements are placed inside a begin/end block and 

executed in sequential order within the block. But the 

blocks themselves are executed concurrently, 

qualifying Verilog as a dataflow language. A subset 

of statements in the Verilog language 

is synthesizable. Verilog modules that conform to a 

synthesizable coding style, known as RTL (register-

transfer level), can be physically realized by 

synthesis software. Synthesis software 

algorithmically transforms the (abstract) Verilog 

source into a net list, a logically equivalent 

description consisting only of elementary logic 

primitives (AND, OR, NOT, flip-flops, etc.) that are 

available in a specific FPGA or VLSI technology. 

Further manipulations to the net list ultimately lead to 

a circuit fabrication blueprint 

 

Simulation Results 

The below figures shows the simulation 

results of test cases applied to the DUT . figure 

6.1shows the response of the device for the control 

test case at the usb interface. 

 

Fig: shows the master transmitter sending random 

data to the external slave device 
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 Fig: 16 -Bit Ripple Carry Adder 

 

Fig: 16 -Bit Kogge_Stone Adder 

CONCLUSION 

In this project I designed the ripple carry 

adder,Kogge stone adder, brent kung adder for 

8,16,32,64,128 bits.And I found out the delay and 

area of the designed adders. As per the results I 

conclude that for higher order applications parallel 

pefix adders are best choice. In  brent kung  adder has 

more than 200%  speed  as compared to the RCA,but 

we required  very less amount of delay. If we go for 

the Kogge stone it has a more than 600% speed as 

compared to the RCA. That’s why for high speed 

applications we choose kooge stone adders. The 128 

bit kooge stone adder delay is almost equal to the 16 

bit RCA. The above all designs are done by the 

Verilog HDl , the simulation is done by model sim, 

and for synthesis we go for the Xilinx ISE. 

 Future Work: 

In Kogge stone it has high speed but it requires more 

amount of area. To overcome that problem we go for 

the sparse Kogge stone. In practically there is no 

difference between the both adders. For testing of the 

design we use the Verilog Hdl, If we go for the 

advanced verification methods we can reduce the 

verification of designs. 

REFERENCES 

[1] A. Omondi and B. Premkumar, Residue Number 

Systems: Theory and Implementations. London, 

U.K.: Imperial College Press, 2007. 

 [2] B. Parhami, Computer Arithmetic: Algorithms 

and Hardware Designs, 2nd ed., New York, NY, 

USA: Oxford Univ. Press, 2010. 

 [3] J. Chen and J. Hu, “Energy-efficient digital 

signal processing via voltage over scaling-based 

residue number system,” IEEE Trans. Very Large 

Scale Integer. (VLSI) Syst., vol. 21, no. 7,  

 [4] C. H. Vun, A. B. Premkumar, and W. Zhang, “A 

new RNS based DA approach for inner product 

computation,” IEEE Trans. Circuits Syst. I, Reg. 

Papers, vol. 60, no. 8, pp. 2139–2152, Aug. 2013. 

 [5] S. Antão and L. Sousa, “The CRNS framework 

and its application to programmable and 

reconfigurable cryptography,” ACM Trans. Archit. 

Code Optim., vol. 9, no. 4, p. 33, Jan. 2013. 

 [6] A. S. Molahosseini, S. Sorouri, and A. A. E. 

Zarandi, “Research challenges in next-generation 

residue number system architectures,” in Proc. IEEE 

Int. Conf. Comput. Sci. Educ., Jul. 2012, pp. 1658–

1661. 

 [7] K. Navi, A. S. Molahosseini, and M. 

Esmaeildoust, “How to teach residue number system 



  
 

 

International Journal of Research 
 Available at https://edupediapublications.org/journals 

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 03 Issue 14 

October2016 
 

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e  | 4712 

to computer scientists and engineers,” IEEE Trans. 

Educ., vol. 54, no. 1, pp. 156–163, Feb. 2011. 

 [8] Y. Wang, X. Song, M. Aboulhamid, and H. 

Shen, “Adder based residue to binary numbers 

converters for (2n − 1, 2n, 2n + 1),” IEEE Trans. 

Signal Process., vol. 50, no. 7, pp. 1772–1779, Jul. 

2002. 

 [9] B. Cao, C. H. Chang, and T. Srikanthan, “An 

efficient reverse converter for the 4-moduli set {2n − 

1, 2n, 2n + 1, 22n + 1} based on the new Chinese 

remainder theorem,” IEEE Trans. Circuits Syst. I, 

Fundam. Theory Appl., vol. 50, no. 10, pp. 1296–13 

 

 

 

 

 


