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Abstract: The possibility of Homomorphic encryption is to 

ensure data confidentiality while outsourcing data from 

cloud server or at cloud level, however with spare abilities 

to process over encoded information, seeking encrypted 

data information, and so on. A homomorphism is a property 

by which an issue in one algebraic framework can be 

changed over to an issue in another algebraic framework, 

be tackled and the arrangement later can likewise be 

changed over back effectively. In this way, homomorphism 

makes secure point out of calculation to an outsider 

attainable. Different liable encryption schemes have either 

multiplicative or additive substance Homomorphic property 

and are without further protest being used for individual 

applications. As such, a Fully Homomorphic Encryption 

(FHE) scheme which could play out any discretionary 

calculation over encoded data. In this paper, we propose a 

multi-cloud proposal of M conveyed servers to repartition 

the information (data) and to practically allow 

accomplishing a FHE. 

Keywords: Multicloud .Homomorphic encryption, Fully 

Homomorphic Encryption. 

 

1. INTRODUCTION 
 
Cloud computing has primitive services like IaaS, PaaS, 

and SaaS. SaaS plays a vital role where data storing and 

sharing. The vision of outsourcing an expanding measure of 

information storing and control to cloud supervisions raises 

numerous new security attentiveness toward people and 

organizations alike. The protection concerns can be 

agreeably tended to if clients encode the information they 

send to the cloud. In the event that the encryption scheme is 

Homomorphic, the cloud can in any case perform 

significant calculations on the information, despite the fact 

that it is encrypted  

 

In any organization to perform some operations if they want 

to download confidential data from the cloud to a trusted 

computer and then send the encrypted results backed to the 

cloud, Cloud computing is infeasible for such business 

organizations. Encrypted data has previously been 

impossible to operate on without first decrypting them. 

Some encryption algorithms that permit arbitrary 

computation on encrypted data. For example, RSA is a 

multiplicatively homomorphic encryption algorithm where 

the decryption of the product of two encrypted data will be 

the product of the two plain data. On the other hand, RSA 

will not allow addition operation or the combination of 

additions and multiplications. Soon after, FHE has emerged 

[1] to carry out infinite chaining of algebraic operations in 

the cipher space, which   means   that   a random number of 

additions and multiplications can be applied to encrypted 

operands. Unfortunately, all executions of FHE schemes 

proved that the performance is still slow for practical 

applications. In the last two years, solutions for fully 

holomorphic encryption schemes have been proposed and 

improved upon, but the problem faced with the efficiency. 

 

In this paper we discuss the following: The Homomorphic 

encryption and interrelated definitions, its applications are 

defined in section I. In section II, we talk about the 

Homomorphic Scheme. In section III, we present some 

examples of partially holomorphic cryptosystems. In section 

IV, we propose a protected multi-cloud architecture for 

processing encrypted data. Section V deals with conclusion 

 

2. BACKGROUND: 

 

The expanding universality of cloud-based information and 

cell phones has prompted the rise of various new data 

services to address individuals' issues. In the meantime, 

there is an expanding consciousness of the issue of 

individual data getting to be open and of the should have 

the capacity to utilize individual information while keeping 

it private. Fujitsu has taken a proactive way to deal with 

protection assurance and has worked persistently on 

mechanical developments that will permit data to be 

utilized safely.  

 

Encryption is a compelling approach to ensure information, 

despite the fact that, in most encryption strategies, 

information should be incidentally unscrambled so as to 

perform counts, for example, aggregates. This is tricky on 

the grounds that the information gets to be defenseless the 

minute it is decoded. Homomorphic encryption, be that as it 

may, considers estimations to be performed on information 

in an encoded state, making it a promising innovation for 

conveying new cloud services 
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(Figure 1). Data use with privacy protection in cloud 

service using Homomorphic encryption 

3. HOMOMORPHIC ENCRYPTION 
 

Homomorphic encryption is a type of encryption that 

permit calculations to be passed out on ciphertext, along 

these lines delivering an encrypted result which, when 

decoded, matches the aftereffect of operations do on the 

plaintext. Homomorphic encryption let the binding together 

of various presidencies without presenting the information 

to each of those supervisions. For instance, a chain of 

various managements from various organizations can 

ascertain 1) the request 2) the client exchange subtle 

elements 3) shipping, on an exchange without uncovering 

the decoded information to each of those services. 

Homomorphic encryption schemes are flexible by structure. 

This permits their necessity in distributed computing 

environment for guaranteeing the security of handled 

information. Alongside that the Homomorphic property of 

different cryptosystems can be utilized to make numerous 

other secure frameworks, for instance, secure voting 

frameworks, collision-resistant hash functions, private 

information retrieval schemes, and many more.  

 

3.1  Practical Applications of Homomorphic 

Encryption: 

Many approaches on Homomorphic encryption had been 

recognized very early. There are many applications which 

required a scheme that could work out homomorphically on 

encrypted data. But with the growing interest and tendency 

towards cloud computing has opened various possible 

application areas for Homomorphic Encryption. According to 

authors in [2] these applications can be majorly classified 

based on whether we expect privacy of data or circuit privacy 

or both. The categories are:  

• Private Data, Public functions: like in Medical Applications. 

 •Private data, Private functions: like in Financial 

Applications. 

 

The above mentioned applications assume single data 

(content) owner who encrypts the data and stores it on an 

untrusted cloud.  

 

3.1.1 Electronic Voting: It is a unique case of allocation of 

calculation where one would like the election authorities to 

be able to calculate the votes and display the final results, 

but dislikes the idea that individual votes are first decrypted 

and afterwards tallied. In a voting system based on 

homomorphic encryption voters take turns incrementing an 

encrypted vote tally using a homomorphic operation. They 

are only allowed to increase the encrypted tally by 1 or by 

0. Here 1 means indicating a vote for the candidate and 0 

means indicating no vote for the candidate.  In elections 

where each voter votes for one of  N candidates, voters 

modify the encrypted tallies by adding an N-bit vector, 

where accurately one entry is 1 and the rest are all 0’s. They 

are not capable to alter the counters in any other way. 

Therefore, Homomorphic encryption is one of the solution 

for creating a “secret ballot” system online, wherever the 

votes will not reveal neither to anybody else except the 

voter. 

 

3.2. A. Definition of a Homomorphic Encryption 

Scheme 

A public-key encryption scheme S=(KeyGen, Encr, Decr) 

is homomorphic if for all N and all (pk,sk) output from 

KeyGen(k), it is possible to define groups T, E so that:The 

plaintext space T, and all ciphertexts output by Encrpkare 

elements of E.For any t1 , t2 ∈  T and e1 , e2 ∈  E with t1 = 

Decrsk (e1 )  and t2 = Decrsk (e2 ) it holds that:Decrsk (e1 

* e2 ) = t1 * t2 Where the group operations ∗  are carried 

out in E and T,    respectively.Similarly, a homomorphic 

cryptosystem is a PKS with the added property that there 

exists an efficient algorithm (Eval) to calculate an 

encryption of the sum or/and the product of two messages 

given the public key and the encryptions of the messages, 

but not the messages themselves. 

 

Additionally, a fully Homomorphic scheme is capable to 

get output as a ciphertext that encrypts f (t1,...,tn), where f 

is any desired function, which of course must be calculated 

effectively. Information about t1,..., tn  or f (t1,...tn), or any 

intermediate plaintext values will not leak. The inputs, 

outputs and intermediate values are always encrypted.  

Prior to take a closer look on fully homomorphic encryption 

schemes, we will need another important notion from 

information theory. 

 

3.3 Circuits 

Casually speaking, circuits are directed, acyclic graphs 

where nodes are called gates and edges are called wires. 

Depending on the nature of the circuit the input values are 

integers, boolean values, etc. and the matching gates are set 

operations and arithmetic operations or logic gates (AND, 

OR, NOR, NAND, ...). In order to calculate a function f, we 
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express f as a circuit and topologically arrange its gates into 

levels which will be execute in sequence. 

    Example. Assume the function f outputs the expression 

 
  

                Fig. 1.    Example for circuit representation 

  

A•B+B•C•(B+C) on input (A,B,C). Then the following circuit 

represents the function f, with the logic gates AND and OR. 

 

Two important complexity measures for circuits are size and 

depth. 

 

The size of a circuit C is the number of its non-input gates. 

The depth of a circuit C is the length of its longest path, from 

an input gate to the output gate, of its underlying directed 

graph. 

 

This yields to another definition of fully homomorphic 

encryption [8]: 

 

ciphertexts Ψ = {c1 , ..., ct } where ci ← Encpk (mi ), outputs 

 

c← Evalpk (C, Ψ) 

 

under pk. 

To construct fully homomorphic encryption schemes we can 

also follow the second way. To know how this transformation 

works, we need the following definitions and corollaries. 

Definition : A homomorphic encryption scheme E is said to 

be correct for a family CE of circuits if for any pair (sk, pk) 

output by KeyGenE (λ) any circuit C ∈  CE , any plaintext 

m1,...,mt , and any ciphertexts Ψ = c1, ...,ct 

 

with ci ← Encpk (mi), it is the case that: 

 

If c ← EvalE (pk, C, Ψ),  then   DecE (sk, c) → C(m1, 

...,mt) Except with negligible probability over the random 

coins in EvalE . 

 

Definition: A homomorphic encryption scheme E is 

compact, if there is a polynomial f so that, for every value 

of the security parameter λ, E’s decryption algorithm can be 

expressed as a circuit DE of size at most f (λ).A 

homomorphic encryption scheme E efficiently evaluates 

circuits in CE if E is compact and also correct for circuits in 

CE. 

 

Corollary: A homomorphic encryption scheme E is fully 

homomorphic if it compactly evaluates all circuits. 

This requirement is considered to be approximately too 

strong for practical purpose, therefore it uses a certain 

relaxation to comprise leveled schemes, which only 

estimate circuits of depth up to some d, and whose public 

key length may be poly(d). 

 

Definition: (leveled fully homomorphic). A family of 

homomorphic encryption schemes {E(d) : d ∈  Z+ } is said 

leveled fully homomorphic if, for all d ∈  Z+ , it all uses the 

same decryption circuit, E (d) compactly evaluates all 

circuits of depth at most d (that use some specified set of 

gates), and the computational complexity of E (d) ’s 

algorithms is polynomial in λ, d, and (in the case of EvalE ) 

the size of the circuit C. 

 

An encryption scheme which supports both addition and 

multiplication    (a    fully    homomorphic    scheme)   

thereby Preserves the ring structure of the plaintext space 

and is therefore far more powerful. Using such a scheme 

makes it achievable to let an untrusted party do the 

computations without ever decrypting the data, and as a 

result preserving their confidentiality. 

 

An extensively valued application of homomorphic 

encryption schemes is cloud computing. Currently, the need 

for cloud computing is growing rapidly, as the data we are 

dealing out and computing on is getting superior and 

superior every day. 

 

In order to be clear consider a small example Say, Seeta 

wants to store a sensitive file m ∈  {0, 1}n on Ram’s server. 

So she sends Ram Encr(m1), ..., Encr(mn). Assume that the 

file is a database (a catalog of people with specific data 

about them) and Seeta wants to find out how many of them 

are 35 years old. Instead of retrieving the data from Ram, 

decrypting it and searching for the wanted information, she 

will ask Ram to do the computations, without him knowing 

what or who he is computing on. 

 

The answer from Ram comes in form of a ciphertext which 

only she can decrypt with her secret key. The advantage of 

fully homomorphic encryption has long been acknowledged. 

The query for constructing such a scheme arises within a 

year of the improvement of RSA [2]. 

 

     During this period, the most excellent encryption system 

was the Boneh-Goh-Nissim cryptosystem [9] which supports 

estimation of an infinite number of addition operations but 

one multiplication at the most. 

A general reason why a scheme cannot compute circuits of a 

certain depth is that after a certain amount of computations 

too much error will build ups, which results the decryption to 

obtain a wrong value. The decryption usually is able to handle 
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small amounts of error within a certain range and boots 

trappable encryption enables "refreshing" after some time. 

The basic idea of "refreshing" is to encrypt under a first key. 

Calculate until right before the error grows too large. Encrypt 

under a second key. Compute the decryption circuit, which 

since it stopped before the error grew too large, gives the 

correct value encrypted under the second key. The first key is 

no longer required. Continue computation under the second 

key, and repeat the same with a new key as frequently as 

needed. When the computation has finished, decrypting with 

the last used key gives the original plaintext. 

Gentry's method can be broken down into three main steps: 

 

Step 1: creating an encryption scheme by means of ideal 

lattices that is somewhat homomorphic, which means it is 

limited to estimating low-degree polynomials over encrypted 

data. This scheme is very similar to the Goldreich-

Goldwasser- Halevi scheme published in 1997 [10] which is 

based on lattice problems as well. 

 

Step 2: "Squeezing" the decryption circuit of the original 

somewhat homomorphic scheme to make it bootstrappable. 

 

Step 3: Bootstrapping to some extent improved original 

scheme of step 2 to yield the fully homomorphic encryption 

scheme. This will be done with a "refreshing" procedure. 

The innovative idea of Gentry's method of creating a fully 

homomorphic scheme out of a somewhat homomorphic 

scheme is the method of squashing and boot-strapping. 

Mathematically the most appealing step is the first step. 

 

4. SOMEWHAT HOMOMORPHIC 

SCHEME 
 

The intend of this somewhat homomorphic scheme (SHS) 

is to build an encryption scheme that is "almost" 

bootstrappable with respect to a universal set of gates. The 

first step is to design a SHE scheme which is a scheme that 

supports some computations over encrypted data. Gentry 

then demonstrated that if you can handle to design a SHE 

scheme that supports the evaluation of its own decryption 

algorithm (and a little more), then there is a common 

method to transform the SHE scheme into a FHE scheme. 

A SHE that can estimate its own decryption algorithm 

homomorphically is called bootstrappable and the 

procedure that changes a bootstrappable SHE scheme into a 

FHE scheme is called bootstrapping. 

 

Bootstrapping.  First we discuss about how the currently-

known SHE schemes work. In general, the ciphertexts of all 

these schemes contain noise in it and unfortunately this 

noise gets better as more and more homomorphic 

operations are carry out. There may be some situations that 

the encryptions become useless due to much noise i.e., they 

do not decrypt correctly. This is the main drawback of SHE 

schemes and this is the reason that they can only carry out a 

restricted set of computations. Bootstrapping allows us to 

control this noise. 

 

The design is to take a ciphertext with a huge noise in it and 

an encryption of the secret key and to homomorphically 

decrypt the ciphertext. Note that this can only work if the 

SHE scheme has enough homomorphic ability to evaluate 

its own decryption algorithm which is why we need the 

SHE scheme to be bootstrappable. This homomorphically 

computed decryption will effect in a new encryption of the 

message but without the noise or at least with less noise 

than before.  More concretely, say we have two ciphertexts: 

 

c1=Epk (m1) and c2=Epk (m2) 

 

with noise n1 and n2, respectively. We can multiply these 

encryptions using the homomorphic property of the SHE 

scheme to get an encryption: 

 

c3= Epk (m1 x m2)  of m1 x m2 under key pk ,but C3 will 

now have noise n1xn2. The plan behind bootstrapping is to 

get rid of this noise as follows. First, we encrypt C3 and sk 

under pk .This results in two new ciphertexts 

 

C4=Epk(C3) =(Epk (m1 x m2)) and C5= Epk(sk) 

 

Given C4 and C5, we now homomorphically decrypt C4 

using C5. similarly, we compute the following operation 

over C4 and C5: “decrypt c3= Epk (m1 x m2) using sk“. 

This is allowed since the scheme has enough homomorphic 

ability to assess its own decryption algorithm. 

 

Through this technique during a computation whenever the 

ciphertexts get too noisy, we can remove the main 

drawback of the SHE scheme and turn it into a FHE 

scheme.It turns out that constructing a bootstrappable SHE 

scheme is complex. To do this, Gentry build his scheme 

using complex methods [1] so a lot of the recent work in 

FHE has attempted to figure out how to design simpler 

bootstrappable SHE schemes. 

 

3.1 Partially Homomorphic Cryptosystems 

 

A. RSA-A Multiplicatively Homomorphic Scheme: 

 

In 1978, Rivest, Shamir, and Adleman published their 

public-key cryptosystem that make use of elementary 

thoughts from number theory, in their paper "A Method for 

Obtaining Digital signatures and Public-Key 

Cryptosystems" [3]. It was one of the first homomorphic 

cryptosystem. The RSA cryptosystem is the most 

extensively used public-key cryptosystem. It may be used 

to give both confidentiality and digital signatures and its 

security is based on the intractability of the integer 

factorization problem. 



   International Journal of Research 

 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 9 
May 2016 

  

Available online: https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 740  

 

 
  

                                    Fig. 3.    RSA Algorithm 

 

 The encryption algorithm takes a message m as input from 

the plaintext space Zn and calculates according   ciphertext. 

c = me mod n. This integer c ∈  Zn cannot be traced back to 

the original message without the knowledge of p and q, 

which will be proved later in this section. 

Decryption takes as input the ciphertext c and the secret key   

(d, n) and computes m = cd mod n. Since d is the inverse of 

e in Zn this is indeed the original message. 

The three steps (key generation, encryption and decryption) 

can be found in the following table. 

 

B. B. Paillier - An Additively Homomorphic Scheme: 

Pascal Paillier introduced his cryptosystem in 1999 and 

published paper "Public-Key Cryptosystems Based on 

Composite Degree Residuosity Classes" [11]. The proposed 

technique is based on composite residuosity classes, whose 

computation is supposed to be computationally difficult. It    

is a probabilistic asymmetric algorithm for public key 

cryptography and inherits additive homomorphic properties. 

The encryption process takes a message m ∈  Zn as input 

and randomly chooses an integer r in Z∗  , this random 

number is used to satisfy the probabilistic algorithm’s n 

property, that one plaintext can have many ciphertexts. It is 

later revealed that this random variable does not delay the 

correct decryption, but has the eff ect of altering the 

corresponding ciphertext. 

The three steps (key generation, encryption and decryption) 

can be found in the following table: 

  
                               Fig. 4.    Paillier Algorithm 

 

4. PROPOSED FRAMEWORK 
 

The fully homomorphic encryption schemes [1] are very time-

consuming. Assuming the evaluation of one gate demanding a 

refresh, the run-time will be significant as well as the 

processing of security parameters. A suggestion of a nearly 

FHE scheme based architecture for allowing the evaluation of 

any function and producing encrypted data is illustrated in 

Figure 6. In our proposed architecture, the service provider 

repartitions the processing among the servers to fasten the 

evaluation process of any function. 

  

 
  

Fig. 5.   An architecture of distributed cloud servers for 

processing encrypted data 

 

In this proposed system, we supply a high leveled 

architectural scheme during the usage of several servers in 

the computation. This computational system will nearly 

allow attaining an FHE, and thus a large number of 
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operations containing additions and multiplications can be 

performed. For instance, in Fig. 5, it is clearly shown that 

Client 1 sends a query and requests the results of a given 

function, Let us consider a function f(x)=ax²+bx+c. In this 

scenario, the function elements are encrypted and divided 

into several portions depending on the number of operations 

(addition and Multiplication), and will be processed 

independently on N different servers, equivalent to the 

number of addition operations. At last, the outcome or 

result is sent back to a Central Server in order to be 

forwarded to Client 1 and then decrypted. 

 

The advantage is that no longer ciphertext after encryption, 

unlike the classical method. The keys are simply handled 

and more security is maintained since it is not possible to 

read relevant information in distributed systems. In the 

cloud, the N servers consist of hypervisors hosting multiple 

virtual machines which support developing the response 

time and augment the number of the involved 

computational entities in the distributed system. 

In this proposal, we evaluate the added value of the distributed 

systems in processing operations requested by clients. The 

scheme of homomorphic encryption is transmitted to the 

servers and this can be practical and help to develop the 

security of the cloud in terms of confidentiality of data and 

performance. 

 

An additional concern that must be measured in our 

architecture is the confidentiality of the processed data over 

the distributed systems, nowadays which is the main anxiety 

of most organizations when using third-party hosting. The 

approach concerning this issue is the divide the stored data 

among multiple Cloud service providers to reduce the 

danger of data violators and increase the parallel processing 

as well as the number of the servers involved in performing 

holomorphic encryption. Partitioning and outsourcing the 

data, applications onto different cloud infrastructures has the 

advantage of making them uncertain for third-parties and 

opponents, and thus this assist enhancing the privacy as well 

as the confidentiality. 

 

Like the stored encrypted data is repartitioned among a 

Multi-Cloud Architecture belonging to different Cloud 

Service Providers mentioned in  Fig. 6, Client 1 can carry 

out operations on them and clearly get back the future 

results. The data is segmented during a Data Partitioning 

Algorithm (DPA) which permits partitioning, collecting and 

reconstructing the data. The main operation will be chunked 

into subsets to be handled by the N Clouds/N Servers. The 

mixture of N Clouds and homomorphic encryption using N 

servers gives an improved security strategy which is a safe 

approach to avoid any potential data breaches even if the 

data have been previously encrypted. 

 

Selecting a trusted CSP needs a Service Level Agreement 

(SLA), agreement cooperation and risk estimation. In most 

cases, it may be logical to believe that a CSP to be 

trustworthy and handling the clients’ sensitive data and 

applications in a responsible manner. 
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Fig. 6.   The suggested architecture to secure data using Homomorphic encryption 

 

5. CONLUSION 
 

In this paper we considering    the scheme of Gentry 

proposed his expansion in regards to FHE, and made 

colossal endeavor to make FHE more commonsense. While 

a great deal of advancement has been made, unfortunately 

we are still while in transit to demonstrate the FHE as 

practical. Majority of FHE schemes depend on Gentry 

outline which incorporates of first developing a SHE and 

afterward utilizing Nobility's bootstrapping method to 

change over it into a FHE proposal. It changes over out that 

bootstrapping are a noteworthy bottleneck and that SHE is 

great requested. In this way, in the event that we consider 

about functional applications, then it might be sensible to 

examine what precisely we can do with SHE as an option.  

 

Distributed systems and multi-could models can pass on 

bunches of focal points to the utilization of homomorphic 

encryption and making it more reasonable on account of the 

security of information and applications. The future upgrade 

will concentrate on the usage of our proposition is to achieve 

security and execution tests keeping in mind the end goal to 

clarify its reasonableness. 
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