
 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 9
May 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 736

Secure Multi-Cloud framework by Homomorphic

Encryption
1
N.Swetha,

2
Prof. S Ramachandram

1Research Scholar, Dept. of CSE, Osmania University, Hyderabad

2Principal, Dept. of CSE, Osmania University, Hyderabad.

Abstract: The possibility of Homomorphic encryption is to

ensure data confidentiality while outsourcing data from

cloud server or at cloud level, however with spare abilities

to process over encoded information, seeking encrypted

data information, and so on. A homomorphism is a property

by which an issue in one algebraic framework can be

changed over to an issue in another algebraic framework,

be tackled and the arrangement later can likewise be

changed over back effectively. In this way, homomorphism

makes secure point out of calculation to an outsider

attainable. Different liable encryption schemes have either

multiplicative or additive substance Homomorphic property

and are without further protest being used for individual

applications. As such, a Fully Homomorphic Encryption

(FHE) scheme which could play out any discretionary

calculation over encoded data. In this paper, we propose a

multi-cloud proposal of M conveyed servers to repartition

the information (data) and to practically allow

accomplishing a FHE.

Keywords: Multicloud .Homomorphic encryption, Fully

Homomorphic Encryption.

1. INTRODUCTION

Cloud computing has primitive services like IaaS, PaaS,

and SaaS. SaaS plays a vital role where data storing and

sharing. The vision of outsourcing an expanding measure of

information storing and control to cloud supervisions raises

numerous new security attentiveness toward people and

organizations alike. The protection concerns can be

agreeably tended to if clients encode the information they

send to the cloud. In the event that the encryption scheme is

Homomorphic, the cloud can in any case perform

significant calculations on the information, despite the fact

that it is encrypted

In any organization to perform some operations if they want

to download confidential data from the cloud to a trusted

computer and then send the encrypted results backed to the

cloud, Cloud computing is infeasible for such business

organizations. Encrypted data has previously been

impossible to operate on without first decrypting them.

Some encryption algorithms that permit arbitrary

computation on encrypted data. For example, RSA is a

multiplicatively homomorphic encryption algorithm where

the decryption of the product of two encrypted data will be

the product of the two plain data. On the other hand, RSA

will not allow addition operation or the combination of

additions and multiplications. Soon after, FHE has emerged

[1] to carry out infinite chaining of algebraic operations in

the cipher space, which means that a random number of

additions and multiplications can be applied to encrypted

operands. Unfortunately, all executions of FHE schemes

proved that the performance is still slow for practical

applications. In the last two years, solutions for fully

holomorphic encryption schemes have been proposed and

improved upon, but the problem faced with the efficiency.

In this paper we discuss the following: The Homomorphic

encryption and interrelated definitions, its applications are

defined in section I. In section II, we talk about the

Homomorphic Scheme. In section III, we present some

examples of partially holomorphic cryptosystems. In section

IV, we propose a protected multi-cloud architecture for

processing encrypted data. Section V deals with conclusion

2. BACKGROUND:

The expanding universality of cloud-based information and

cell phones has prompted the rise of various new data

services to address individuals' issues. In the meantime,

there is an expanding consciousness of the issue of

individual data getting to be open and of the should have

the capacity to utilize individual information while keeping

it private. Fujitsu has taken a proactive way to deal with

protection assurance and has worked persistently on

mechanical developments that will permit data to be

utilized safely.

Encryption is a compelling approach to ensure information,

despite the fact that, in most encryption strategies,

information should be incidentally unscrambled so as to

perform counts, for example, aggregates. This is tricky on

the grounds that the information gets to be defenseless the

minute it is decoded. Homomorphic encryption, be that as it

may, considers estimations to be performed on information

in an encoded state, making it a promising innovation for

conveying new cloud services

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 9
May 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 737

(Figure 1). Data use with privacy protection in cloud

service using Homomorphic encryption

3. HOMOMORPHIC ENCRYPTION

Homomorphic encryption is a type of encryption that

permit calculations to be passed out on ciphertext, along

these lines delivering an encrypted result which, when

decoded, matches the aftereffect of operations do on the

plaintext. Homomorphic encryption let the binding together

of various presidencies without presenting the information

to each of those supervisions. For instance, a chain of

various managements from various organizations can

ascertain 1) the request 2) the client exchange subtle

elements 3) shipping, on an exchange without uncovering

the decoded information to each of those services.

Homomorphic encryption schemes are flexible by structure.

This permits their necessity in distributed computing

environment for guaranteeing the security of handled

information. Alongside that the Homomorphic property of

different cryptosystems can be utilized to make numerous

other secure frameworks, for instance, secure voting

frameworks, collision-resistant hash functions, private

information retrieval schemes, and many more.

3.1 Practical Applications of Homomorphic

Encryption:

Many approaches on Homomorphic encryption had been

recognized very early. There are many applications which

required a scheme that could work out homomorphically on

encrypted data. But with the growing interest and tendency

towards cloud computing has opened various possible

application areas for Homomorphic Encryption. According to

authors in [2] these applications can be majorly classified

based on whether we expect privacy of data or circuit privacy

or both. The categories are:

• Private Data, Public functions: like in Medical Applications.

 •Private data, Private functions: like in Financial

Applications.

The above mentioned applications assume single data

(content) owner who encrypts the data and stores it on an

untrusted cloud.

3.1.1 Electronic Voting: It is a unique case of allocation of

calculation where one would like the election authorities to

be able to calculate the votes and display the final results,

but dislikes the idea that individual votes are first decrypted

and afterwards tallied. In a voting system based on

homomorphic encryption voters take turns incrementing an

encrypted vote tally using a homomorphic operation. They

are only allowed to increase the encrypted tally by 1 or by

0. Here 1 means indicating a vote for the candidate and 0

means indicating no vote for the candidate. In elections

where each voter votes for one of N candidates, voters

modify the encrypted tallies by adding an N-bit vector,

where accurately one entry is 1 and the rest are all 0’s. They

are not capable to alter the counters in any other way.

Therefore, Homomorphic encryption is one of the solution

for creating a “secret ballot” system online, wherever the

votes will not reveal neither to anybody else except the

voter.

3.2. A. Definition of a Homomorphic Encryption

Scheme

A public-key encryption scheme S=(KeyGen, Encr, Decr)

is homomorphic if for all N and all (pk,sk) output from

KeyGen(k), it is possible to define groups T, E so that:The

plaintext space T, and all ciphertexts output by Encrpkare

elements of E.For any t1 , t2 ∈ T and e1 , e2 ∈ E with t1 =

Decrsk (e1) and t2 = Decrsk (e2) it holds that:Decrsk (e1

* e2) = t1 * t2 Where the group operations ∗ are carried

out in E and T, respectively.Similarly, a homomorphic

cryptosystem is a PKS with the added property that there

exists an efficient algorithm (Eval) to calculate an

encryption of the sum or/and the product of two messages

given the public key and the encryptions of the messages,

but not the messages themselves.

Additionally, a fully Homomorphic scheme is capable to

get output as a ciphertext that encrypts f (t1,...,tn), where f

is any desired function, which of course must be calculated

effectively. Information about t1,..., tn or f (t1,...tn), or any

intermediate plaintext values will not leak. The inputs,

outputs and intermediate values are always encrypted.

Prior to take a closer look on fully homomorphic encryption

schemes, we will need another important notion from

information theory.

3.3 Circuits

Casually speaking, circuits are directed, acyclic graphs

where nodes are called gates and edges are called wires.

Depending on the nature of the circuit the input values are

integers, boolean values, etc. and the matching gates are set

operations and arithmetic operations or logic gates (AND,

OR, NOR, NAND, ...). In order to calculate a function f, we

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 9
May 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 738

express f as a circuit and topologically arrange its gates into

levels which will be execute in sequence.

 Example. Assume the function f outputs the expression

 Fig. 1. Example for circuit representation

A•B+B•C•(B+C) on input (A,B,C). Then the following circuit

represents the function f, with the logic gates AND and OR.

Two important complexity measures for circuits are size and

depth.

The size of a circuit C is the number of its non-input gates.

The depth of a circuit C is the length of its longest path, from

an input gate to the output gate, of its underlying directed

graph.

This yields to another definition of fully homomorphic

encryption [8]:

ciphertexts Ψ = {c1 , ..., ct } where ci ← Encpk (mi), outputs

c← Evalpk (C, Ψ)

under pk.

To construct fully homomorphic encryption schemes we can

also follow the second way. To know how this transformation

works, we need the following definitions and corollaries.

Definition : A homomorphic encryption scheme E is said to

be correct for a family CE of circuits if for any pair (sk, pk)

output by KeyGenE (λ) any circuit C ∈ CE , any plaintext

m1,...,mt , and any ciphertexts Ψ = c1, ...,ct

with ci ← Encpk (mi), it is the case that:

If c ← EvalE (pk, C, Ψ), then DecE (sk, c) → C(m1,

...,mt) Except with negligible probability over the random

coins in EvalE .

Definition: A homomorphic encryption scheme E is

compact, if there is a polynomial f so that, for every value

of the security parameter λ, E’s decryption algorithm can be

expressed as a circuit DE of size at most f (λ).A

homomorphic encryption scheme E efficiently evaluates

circuits in CE if E is compact and also correct for circuits in

CE.

Corollary: A homomorphic encryption scheme E is fully

homomorphic if it compactly evaluates all circuits.

This requirement is considered to be approximately too

strong for practical purpose, therefore it uses a certain

relaxation to comprise leveled schemes, which only

estimate circuits of depth up to some d, and whose public

key length may be poly(d).

Definition: (leveled fully homomorphic). A family of

homomorphic encryption schemes {E(d) : d ∈ Z+ } is said

leveled fully homomorphic if, for all d ∈ Z+ , it all uses the

same decryption circuit, E (d) compactly evaluates all

circuits of depth at most d (that use some specified set of

gates), and the computational complexity of E (d) ’s

algorithms is polynomial in λ, d, and (in the case of EvalE)

the size of the circuit C.

An encryption scheme which supports both addition and

multiplication (a fully homomorphic scheme)

thereby Preserves the ring structure of the plaintext space

and is therefore far more powerful. Using such a scheme

makes it achievable to let an untrusted party do the

computations without ever decrypting the data, and as a

result preserving their confidentiality.

An extensively valued application of homomorphic

encryption schemes is cloud computing. Currently, the need

for cloud computing is growing rapidly, as the data we are

dealing out and computing on is getting superior and

superior every day.

In order to be clear consider a small example Say, Seeta

wants to store a sensitive file m ∈ {0, 1}n on Ram’s server.

So she sends Ram Encr(m1), ..., Encr(mn). Assume that the

file is a database (a catalog of people with specific data

about them) and Seeta wants to find out how many of them

are 35 years old. Instead of retrieving the data from Ram,

decrypting it and searching for the wanted information, she

will ask Ram to do the computations, without him knowing

what or who he is computing on.

The answer from Ram comes in form of a ciphertext which

only she can decrypt with her secret key. The advantage of

fully homomorphic encryption has long been acknowledged.

The query for constructing such a scheme arises within a

year of the improvement of RSA [2].

 During this period, the most excellent encryption system

was the Boneh-Goh-Nissim cryptosystem [9] which supports

estimation of an infinite number of addition operations but

one multiplication at the most.

A general reason why a scheme cannot compute circuits of a

certain depth is that after a certain amount of computations

too much error will build ups, which results the decryption to

obtain a wrong value. The decryption usually is able to handle

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 9
May 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 739

small amounts of error within a certain range and boots

trappable encryption enables "refreshing" after some time.

The basic idea of "refreshing" is to encrypt under a first key.

Calculate until right before the error grows too large. Encrypt

under a second key. Compute the decryption circuit, which

since it stopped before the error grew too large, gives the

correct value encrypted under the second key. The first key is

no longer required. Continue computation under the second

key, and repeat the same with a new key as frequently as

needed. When the computation has finished, decrypting with

the last used key gives the original plaintext.

Gentry's method can be broken down into three main steps:

Step 1: creating an encryption scheme by means of ideal

lattices that is somewhat homomorphic, which means it is

limited to estimating low-degree polynomials over encrypted

data. This scheme is very similar to the Goldreich-

Goldwasser- Halevi scheme published in 1997 [10] which is

based on lattice problems as well.

Step 2: "Squeezing" the decryption circuit of the original

somewhat homomorphic scheme to make it bootstrappable.

Step 3: Bootstrapping to some extent improved original

scheme of step 2 to yield the fully homomorphic encryption

scheme. This will be done with a "refreshing" procedure.

The innovative idea of Gentry's method of creating a fully

homomorphic scheme out of a somewhat homomorphic

scheme is the method of squashing and boot-strapping.

Mathematically the most appealing step is the first step.

4. SOMEWHAT HOMOMORPHIC

SCHEME

The intend of this somewhat homomorphic scheme (SHS)

is to build an encryption scheme that is "almost"

bootstrappable with respect to a universal set of gates. The

first step is to design a SHE scheme which is a scheme that

supports some computations over encrypted data. Gentry

then demonstrated that if you can handle to design a SHE

scheme that supports the evaluation of its own decryption

algorithm (and a little more), then there is a common

method to transform the SHE scheme into a FHE scheme.

A SHE that can estimate its own decryption algorithm

homomorphically is called bootstrappable and the

procedure that changes a bootstrappable SHE scheme into a

FHE scheme is called bootstrapping.

Bootstrapping. First we discuss about how the currently-

known SHE schemes work. In general, the ciphertexts of all

these schemes contain noise in it and unfortunately this

noise gets better as more and more homomorphic

operations are carry out. There may be some situations that

the encryptions become useless due to much noise i.e., they

do not decrypt correctly. This is the main drawback of SHE

schemes and this is the reason that they can only carry out a

restricted set of computations. Bootstrapping allows us to

control this noise.

The design is to take a ciphertext with a huge noise in it and

an encryption of the secret key and to homomorphically

decrypt the ciphertext. Note that this can only work if the

SHE scheme has enough homomorphic ability to evaluate

its own decryption algorithm which is why we need the

SHE scheme to be bootstrappable. This homomorphically

computed decryption will effect in a new encryption of the

message but without the noise or at least with less noise

than before. More concretely, say we have two ciphertexts:

c1=Epk (m1) and c2=Epk (m2)

with noise n1 and n2, respectively. We can multiply these

encryptions using the homomorphic property of the SHE

scheme to get an encryption:

c3= Epk (m1 x m2) of m1 x m2 under key pk ,but C3 will

now have noise n1xn2. The plan behind bootstrapping is to

get rid of this noise as follows. First, we encrypt C3 and sk

under pk .This results in two new ciphertexts

C4=Epk(C3) =(Epk (m1 x m2)) and C5= Epk(sk)

Given C4 and C5, we now homomorphically decrypt C4

using C5. similarly, we compute the following operation

over C4 and C5: “decrypt c3= Epk (m1 x m2) using sk“.

This is allowed since the scheme has enough homomorphic

ability to assess its own decryption algorithm.

Through this technique during a computation whenever the

ciphertexts get too noisy, we can remove the main

drawback of the SHE scheme and turn it into a FHE

scheme.It turns out that constructing a bootstrappable SHE

scheme is complex. To do this, Gentry build his scheme

using complex methods [1] so a lot of the recent work in

FHE has attempted to figure out how to design simpler

bootstrappable SHE schemes.

3.1 Partially Homomorphic Cryptosystems

A. RSA-A Multiplicatively Homomorphic Scheme:

In 1978, Rivest, Shamir, and Adleman published their

public-key cryptosystem that make use of elementary

thoughts from number theory, in their paper "A Method for

Obtaining Digital signatures and Public-Key

Cryptosystems" [3]. It was one of the first homomorphic

cryptosystem. The RSA cryptosystem is the most

extensively used public-key cryptosystem. It may be used

to give both confidentiality and digital signatures and its

security is based on the intractability of the integer

factorization problem.

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 9
May 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 740

 Fig. 3. RSA Algorithm

 The encryption algorithm takes a message m as input from

the plaintext space Zn and calculates according ciphertext.

c = me mod n. This integer c ∈ Zn cannot be traced back to

the original message without the knowledge of p and q,

which will be proved later in this section.

Decryption takes as input the ciphertext c and the secret key

(d, n) and computes m = cd mod n. Since d is the inverse of

e in Zn this is indeed the original message.

The three steps (key generation, encryption and decryption)

can be found in the following table.

B. B. Paillier - An Additively Homomorphic Scheme:

Pascal Paillier introduced his cryptosystem in 1999 and

published paper "Public-Key Cryptosystems Based on

Composite Degree Residuosity Classes" [11]. The proposed

technique is based on composite residuosity classes, whose

computation is supposed to be computationally difficult. It

is a probabilistic asymmetric algorithm for public key

cryptography and inherits additive homomorphic properties.

The encryption process takes a message m ∈ Zn as input

and randomly chooses an integer r in Z∗ , this random

number is used to satisfy the probabilistic algorithm’s n

property, that one plaintext can have many ciphertexts. It is

later revealed that this random variable does not delay the

correct decryption, but has the eff ect of altering the

corresponding ciphertext.

The three steps (key generation, encryption and decryption)

can be found in the following table:

 Fig. 4. Paillier Algorithm

4. PROPOSED FRAMEWORK

The fully homomorphic encryption schemes [1] are very time-

consuming. Assuming the evaluation of one gate demanding a

refresh, the run-time will be significant as well as the

processing of security parameters. A suggestion of a nearly

FHE scheme based architecture for allowing the evaluation of

any function and producing encrypted data is illustrated in

Figure 6. In our proposed architecture, the service provider

repartitions the processing among the servers to fasten the

evaluation process of any function.

Fig. 5. An architecture of distributed cloud servers for

processing encrypted data

In this proposed system, we supply a high leveled

architectural scheme during the usage of several servers in

the computation. This computational system will nearly

allow attaining an FHE, and thus a large number of

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 9
May 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 741

operations containing additions and multiplications can be

performed. For instance, in Fig. 5, it is clearly shown that

Client 1 sends a query and requests the results of a given

function, Let us consider a function f(x)=ax²+bx+c. In this

scenario, the function elements are encrypted and divided

into several portions depending on the number of operations

(addition and Multiplication), and will be processed

independently on N different servers, equivalent to the

number of addition operations. At last, the outcome or

result is sent back to a Central Server in order to be

forwarded to Client 1 and then decrypted.

The advantage is that no longer ciphertext after encryption,

unlike the classical method. The keys are simply handled

and more security is maintained since it is not possible to

read relevant information in distributed systems. In the

cloud, the N servers consist of hypervisors hosting multiple

virtual machines which support developing the response

time and augment the number of the involved

computational entities in the distributed system.

In this proposal, we evaluate the added value of the distributed

systems in processing operations requested by clients. The

scheme of homomorphic encryption is transmitted to the

servers and this can be practical and help to develop the

security of the cloud in terms of confidentiality of data and

performance.

An additional concern that must be measured in our

architecture is the confidentiality of the processed data over

the distributed systems, nowadays which is the main anxiety

of most organizations when using third-party hosting. The

approach concerning this issue is the divide the stored data

among multiple Cloud service providers to reduce the

danger of data violators and increase the parallel processing

as well as the number of the servers involved in performing

holomorphic encryption. Partitioning and outsourcing the

data, applications onto different cloud infrastructures has the

advantage of making them uncertain for third-parties and

opponents, and thus this assist enhancing the privacy as well

as the confidentiality.

Like the stored encrypted data is repartitioned among a

Multi-Cloud Architecture belonging to different Cloud

Service Providers mentioned in Fig. 6, Client 1 can carry

out operations on them and clearly get back the future

results. The data is segmented during a Data Partitioning

Algorithm (DPA) which permits partitioning, collecting and

reconstructing the data. The main operation will be chunked

into subsets to be handled by the N Clouds/N Servers. The

mixture of N Clouds and homomorphic encryption using N

servers gives an improved security strategy which is a safe

approach to avoid any potential data breaches even if the

data have been previously encrypted.

Selecting a trusted CSP needs a Service Level Agreement

(SLA), agreement cooperation and risk estimation. In most

cases, it may be logical to believe that a CSP to be

trustworthy and handling the clients’ sensitive data and

applications in a responsible manner.

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 9
May 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 742

Fig. 6. The suggested architecture to secure data using Homomorphic encryption

5. CONLUSION

In this paper we considering the scheme of Gentry

proposed his expansion in regards to FHE, and made

colossal endeavor to make FHE more commonsense. While

a great deal of advancement has been made, unfortunately

we are still while in transit to demonstrate the FHE as

practical. Majority of FHE schemes depend on Gentry

outline which incorporates of first developing a SHE and

afterward utilizing Nobility's bootstrapping method to

change over it into a FHE proposal. It changes over out that

bootstrapping are a noteworthy bottleneck and that SHE is

great requested. In this way, in the event that we consider

about functional applications, then it might be sensible to

examine what precisely we can do with SHE as an option.

Distributed systems and multi-could models can pass on

bunches of focal points to the utilization of homomorphic

encryption and making it more reasonable on account of the

security of information and applications. The future upgrade

will concentrate on the usage of our proposition is to achieve

security and execution tests keeping in mind the end goal to

clarify its reasonableness.

REFERENCES
[1] C. Gentry, “A fully homomorphic encryption

scheme,” Doctoral dissertation, Stanford University,

2009.

[2]K.Lauter, M.Naehrig and V.Vaikunthnathan, “Can

homomorphic encryption be practical?”, Proc of 3rd ACM

workshop on Cloud Computing Security Workshop , pp 113-

124, 2011.

[3] R. L. Rivest, A. Shamir, and L. Adleman, “A method

for obtaining digital signatures and public-key

cryptosystems,” Communications of the ACM, 21(2):120-

126, 1978.

[4] P. Paillier, “Public-key cryptosystems based on

composite degree residuosity classes,” In 18th Annual

Eurocrypt Conference (EUROCRYPT'99) Prague, Czech

Republic , volume 1592, 1999.

[5] J. Bringe and al., “An Application of the Goldwasser-

Micali Cryptosystem to Biometric Authentication”,

Springer-Verlag, 2007.

[6] R. Rivest, A. Shamir, and L. Adleman, “A method for

obtaining digital signatures and public key cryptosystems,”

Communications of the ACM, 21(2):120-126, 1978.

Computer Science, pages 223-238.Springer, 1999.

[7] T. ElGamal, “A public key cryptosystem and a signature

sche based on discrete logarithms,” IEEE Transactions on

Information Theory, 469- 472, 1985.

[8] C. Gentry, “Fully homomorphic encryption using ideal

lattices,” InSTOC, Vol. 9, pp. 169-178, 2009.

[9] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf

formulas on ciphertexts,” In Proceedings of Theory of

Cryptography (TCC) '05, LNCS 3378, pages 325-341, 2005.

[10] O. Goldreich, S. Goldwasser, and S. Halevi, “Public-

key cryptosystems from lattice reduction problems,” In

Proceedings of the 17th Annual International Cryptology

Conference on Advances in Cryptology, pages 112-131.

Springer-Verlag, 1997.

[11] P. Paillier, “Public-key cryptosystems based on

composite degree residuosity classes,” Advances in

Cryptology Eurocrypt, 1592:223-238, 1999.

[12] S. Goluch, “The development of homomorphic

cryptography: From RSA to Gentry’s privacy

homomorphism” Doctoral dissertation, Vienna university of

Technology, 2010.

