
 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 315

Towards Effective Troubleshooting With

Data Truncation

Shirisha S Adavelli Ramesh Machukonda Kishore

Mtech (CSE) Asso. Prof & HOD(CSE) Assit. Prof. & Mtech(CSE)

 SLC’s College of Engineering and Technology, hyd

Abstract: The process of fixing bug is bug triage or bug assortment. The aim of this, to correctly assign a developer to

a new bug. Triaging these incoming reports manually is error-prone and time consuming.Software companies pay most
of their cost in dealing with these bugs. For software repositories traditional software analysis is not completely suitable
for the large-scale and complex data.To reduce time and cost of bug triaging,present an automatic approach to predict a
developer with relevant experience to solve the new coming report. In proposed approach explain data reduction on bug
data set which will reduce the scale of the data as well as increase the quality of the data.And also give domain specific
bugs with their solution by developers. For implementing this use instance selection and feature selection for reducing
bug of data. And Top-K pruning algorithms for tackling domain specific task.

Keywords: Bug,Bug Triage,repositories,instance selection.

 I. INTRODUCTION

For managing software bugs bug repository or bug fixing  Improving Bug Triage with Bug Tossing Graphs

plays an important role. Large of software which are open In this paper[3], authors studied on 445,000 bug reports as

source projects have an open bug repository which allows well as their overall activities from the Mozilla and

developers as well as users to submit issues or defects in Eclipse projects.This steps takes long time for assign and

the software that suggest possible solutions and remark on toss bugs. For improving the bug assignment process and

existing bug reports. The number of regular occurring reduce unnecessary tossing steps, they used tossing graph

bugs for open source large-scale software projects is so model which used existing tossing history.This results as

much large that makes the triaging process very difficult model reduces tossing steps by up to 72% and up to 23

and challenging .For fixing software bugs most of percentage points improving the accuracy of automatic

software companies pays a lot . The large scale and the bug assignment.

low quality are main two challenges which are related

with bug data that may affect the effective use of bug  COSTRIAGE: A Cost-Aware Triage Algorithm for

repositories in software development tasks. Bug is Bug Reporting Systems:

maintained as a bug report in a bug repository that records In this paper[4], authors used COSTRIAGE technique.

the reproducing bug in textual form and updates The experiments reduces the cost without significantly

according to the status of bug fixing[1]. sacrificing accuracy. They used a proof-of-concept

A. Objectives: implementation by using cost of bug fixing time.

Developer profile model is general enough to support

1) Simultaneously reduce the scales of the bug dimension

other code indicators such as interests, efforts, and

and the word dimension. expertise to optimize for both accuracy and cost for
2) Improve the accuracy of bug triage.

automatic bug triage.

3) Improve the results of data reduction in bug triaging to

explore how to prepare a high quality set of bug data  Towards more accurate retrieval of duplicate bug

and tackle a domain specific task. reports

II. LITERATURE SURVEY

 In this paper[8],improved the accuracy of duplicate bug

 retrieval in two ways. First, BM25F is an effective textual

Following are the existing papers name with their similarity measure which is originally designed for short

description: unstructured queries, and extend it to BM25Fext specially

 Automatic bug triage using text categorization
 or lengthy structured report queries by considering weight

 of terms in queries. Second, authors proposed a new

In this paper[2], authors used an application of retrieval function REP fully utilizing not only text but also

supervised machine learning using a naive Bayes classifier other information available in reports such as product,

for automatically assign bug reports to developers. For component, priority etc: A two-round gradient descent

that they experimented their approach on bug reports contrasting similar pairs of reports against dissimilar ones,

from a large open-source project such as Eclipse.org. And is adopted to optimize REP based on a training set. They

get 30% classification accuracy. experimented on 4 sizable bug datasets extracted from 3

 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 316

large open-source projects like OpenOffice, Firefox and
Eclipse; and find that BM25Fext and REP are able to
improve the retrieval performance. The experiments on
the this showed that BM25Fext improves recall rate by 3–
13% and MAP by 4–11% over BM25F.

 Memories of bug fixes

In this paper[7],authors used project-specific bug finding
tool using memories of bug fixes. Potential bugs are
detected by BugMem and which suggests corresponding
fixes.They found that 19.3%-40.3% of bugs arrived
repeatedly, and 7.9%-15.5% of bug and fix pairs arrived

repeatedly in the history.To store histories and make
backups, source code repositories such as CVS and
Subversion are typically used.Their approach of
computing memories of bug fixes provides a useful way to

extract and deploy the knowledge latent in source code
repositories. They tackle this information to improve the
quality of source code and provide detailed guidance to
developers.

 Towards Effective Bug Triage with Software Data

Reduction Techniques 

In this paper[1], For reducing the scale of bug data sets as
well as improve the data quality combine feature selection
with instance selection. For determinining the order of
applying instance selection and feature selection for a new
bug data set, This takes attributes of each bug data set and
train a predictive model based on historical data sets. For
experiments they use bug data set of Eclipse and Mozilla
and get high quality bug data set.

III. PROPOSED SYSTEM

Manual Bug fixing is time consuming task and did’t get
accurate result.So that proposed system is provided.There
is problem of getting accurate bug solution according to
domain.In existing approach, get reduced bug dataset and
high quality bug dataset. For that purpose, proposed
system is provided.We used existing system instance
selection and feature selection for reducing bug
dataset.And additionaly use Top-K pruning algorithm for
improving results of data reduction quality as compared to
existing system and get domain wise bug solution.

 FS(feature selection) which aims to obtain a subset of
relevant features (i.e.,words in bug data).


 Sorting of words according to feature values
In that uses FS->IS to denote the bug data reduction,
which first applies FS and then IS; on the other hand, IS-
>FS denotes first applying IS and then FS. After applying
this get reduced dataset .When developer wants bug
according to domain that time use Top-K Pruning
algorithms.

Fig. 1 System Architecture

B. Algorithm

Following algorithm is used for data reduction in bug
fixing,which is based on feature selection and instance
selection.

A. Architecture

For fixing the bugs first we have to assign the bugs to
developer.So,In this figure when there is new bugs arrived
that time check this bug in bug repository, if this bug
solution is already available, then fix this bug by already
assign developers. But there is no bug solution that time
assign this bug to new developer for fixing the bug based
on the knowledge of historical bug fixing.For that purpose
use instance selection and feature selection combinely for
reducing the bug dataset and use Top-K pruning algorithm
for solving the bug domain wise.

 IS(Instance selection) is for obtaining a subset of

relevant instances (i.e., bug reports in bug data) . 
 Remove noise and redundant instances



 Remove non-representative instances


 International Journal of Research

 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 317

IV. CONCLUSION

Software Companies spend most of their money for fixing
bug.This is necessary for companies to solve the bugs.And

this task is time consuming.So,In this paper we use
existing system instance selection and feature selection

method for getting reduced bug dataset.And additionaly
use Top-K pruning algorithm for improving results of data
reduction quality as compared to existing system and get
domain wise bug solution.This work provides the accurate
high quality bug dataset as well as provide domain
specific task.

REFERENCES
[1] B Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou,

Zhongxuan Luo, and Xindong Wu,” Towards Effective Bug Triage
with Software Data Reduction Techniques” ieee transactions on
knowledge and data engineering, vol. 27, no. 1, january 2015.

[2] D. Cubranic and G. C. Murphy, “Automatic bug triage using text
categorization,” in Proc. 16th Int. Conf. Softw. Eng. Knowl.
Eng.,Jun. 2004, pp. 92–97.

[3] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
tossing graphs,” in Proc. Joint Meeting 12th Eur. Softw. Eng. Conf.
17th ACM SIGSOFT Symp. Found. Softw. Eng., Aug. 2009,pp.
111–120.

[4] J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S.
Kim,“Costriage: A cost-aware triage algorithm for bug reporting
systems,”in Proc. 25th Conf. Artif. Intell., Aug. 2011, pp. 139–144.

[5] A. E. Hassan, “The road ahead for mining software repositories,”in
Proc. Front. Softw. Maintenance, Sep. 2008, pp. 48–57.

[6] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp.
25–35.

[7] S. Kim, K. Pan, E. J. Whitehead, Jr., “Memories of bug fixes,” in
Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2006, pp.
35–45.

[8] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp.
25–35.

[9] H. Brighton and C. Mellish, “Advances in instance selection for
instance-based learning algorithms,” Data Mining Knowl.
Discovery, vol. 6, no. 2, pp. 153–172, Apr. 2002.

[10] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in Proc. 26th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2011, pp. 253–262.

