In

ternational \'uum\/:ij.\:d\
&A\‘g International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

<R

Compiler Construction

Tapodhan Singla,Varun Vashishtha, Sumeet Singh

Computer Science and Engineering Department,
Maharishi Dayanand University, Rohtak, Haryanajdnd

Abstract—

Compiler construction is a widely used software
engineering exercise, but because most students
will not be compiler writers, care must be taken to
make it relevant in a core curriculum. The course
is suitable for advanced undergraduate and
beginning graduate students. Auxiliary tools, such
as generators and interpreters, often hinder the
learning: students have to fight tool idiosyncrasies,
mysterious errors, and other poorly educative
issues. It is intended both to provide a general
knowledge about compiler design and
implementation and to serve as a springboard to
more advanced courses. Although this paper
concentrates on the implementation of a compiler,
an outline for an advanced topics course that
builds upon the compiler is also presented. We
introduce a set of tools especially designed or
improved for compiler construction educative
projectsin C.

Keywords- Lex,Yacc , Parser,Parser-
Lexer,Symptoms &Anomalies.

1. INTRODUCTION

A good course in compiler construction is hard to
design. The main problem is time. Many course

assume C or some similarly low-level language a

both the source and implementation language. Th
assumption leads in one of two directions. Either

rich source language is defined and the compiler i
not completed, or the source and target languag
are drastically simplified in order to finish the
particularly
satisfying. If the compiler is not completed, the
course cannot be considered a success: some top?
and the students are left

n :)
janguage provides essentially three components

compiler. Neither solution is

are left untaught,

unsatisfied. If the compiler is completed with a
oversimplified source language, the compiler i

language, the compiler is unrealistic on practical
grounds since the emitted code does not run on
real hardware.

Computers, however, interpret sequences of
particular instructions, but not program texts.
Therefore, the program text must be translated into
a suitable instruction sequence before it can be
processed by a computer. This translation can be
automated, which implies that it can be formulated
as a program itself. The translation program is
called a compiler, and the text to be translated is
called source code. Compilers and operating
systems constitute the basic interfaces between a
programmer and the machine. Compiler is a
program which converts high level programming
language into low level programming language or
source code into machine code. It focuses
attention on the basic relationships between
languages and machines. Understanding of these
relationships eases the inevitable transitions to
new hardware and programming languages and
improves a person's ability to make appropriate
trade off in design and implementation. Many of
the techniques used to construct a compiler are
useful in a wide variety of applications involving
ymbolic data.

he term compilation denotes the conversion of an
Igorithm expressed in a human-oriented source
anguage to an equivalent algorithm expressed in a
ardware-oriented target language. We shall be

gg)ncerned with the engineering of compilers (their

organization, algorithms, data structures and user
interfaces Programming languages are tools used
to construct formal descriptions of finite
&‘nputations (algorithms). Each computation
onsists of operations that transform a givendhiti

State into some final state. A programming

or describing such computations:

unrealistic on theoretical grounds since th
semantics of the language are weak, and if the
compiler generates code for a simplified target

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet ¢

Page | 64

ternational]nu:?k/emu‘h
f-“\g International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848
IR

[Data types, objects and values with operationglentifiers. Lex will read this pattern and produce

defined upon them. C code for a lexical analyzer that scans for

[0 Rules fixing the chronological relationshipsidentifiers.

among specified operations.

1 Rules fixing the (static) structure of a program . .
g () prog letter(letter|digit)*

What are Compilers?

_ This pattern matches a string of characters that
The compiler accepts a subset of legal Schen _ _

subset strong enough to compile itself. more letters or digits. This example nicely
_ The language is syntactically restricted so the _ _

the only numbers accepted are integers in illustrates operations allowed in regular
bounded range, _ _ _ expressions:

__All lambda expressions have a fixed aritg,,

no rest arguments.

_ Programs cannot have free variables other th:'! repetition, expressed by the “*” operator
references to primitives in operator position,

_ Symbols cannot be interned at runtime,

_ _Rest-class continuations and /O are nc
supported,

_ Derived syntax is not directly supported, [concatenation
_ Garbage-collection is not provided, and the

runtime library is minimal

[1 alternation, expressed by the “|” operator

Any regular expression expressions may be
2. LEX AND YACC expressed as a finite state automaton (FSA). We

can represent an FSA using states, and transitions

A. Availability:
Lex and vyacc were both developed abetween states. There is one start state and one o
Bell.T.Laboratories in the 1970s. Yacc was the : .
first of the two, developed by Stephen C. Johnsoi;0'¢ final or accepting states.
Lex was designed by Mike Lesk and Eric Schmidt
to work with yacc. Both lex and yacc have beer?
standard UNIX utilities since 7th Edition UNIX.
System V and older versions of BSD use the/®{ . .
original AT&T versions, while the latest version of #include "y.tab.h
BSD uses flex and Berkeley yacc. The articledinclude <Std|'b'hf
written by the developers remain the primary?Cid yyerror(char*);
source of information on lex and yacc. %}

%%
During the first phase the compiler reads the inpdio'gzI+ _
and converts strings in the source to tokens. WithYylval = atoi(yytext); return INTEGER; }
regular expressions we can specify patterns to ldg -\l { return *yytext; }
so it can generate code that will allow it to scarl \U: . .
and match strings in the input. Each patteryYerror("Unknown character);
specified in the input to lex has an associate(_(:)("%]
action. Typically an action returns a token thatnt yywrap(void) { return 1}
represents the matched string for subsequent uB&Pgram for independent parser
by the parser. Initially we will simply print the %{ .
matched string rather than return a token value. #include <stdio.h>
The following represents a simple pattern Nt yylex(void);

composed of a regular expression, that scans f?of/P}id yyerror(char *);
0

mple program. :program for lex

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet ¢

Page |65

v

;‘%g International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848
IR

%token INTEGER # define PRONOUN 258

%% # define VERB 259

program : program expr \n' { printf("%d\n", $2); } # defineADVERB 260

|; # define ADJECTIVE 261

expr: INTEGER # define PREPOSITICN 262

| expr '+ expr { $$ = $1 + $3; } # define cXwUNCTICN 263

| expr *" expr { $$ = $1 * $3; } Token code zero is always returned for the logical

| expr - expr { $$ = $1 - $3; } end of the input. Yaccdoesn't define a symbol for

| expr '/"expr {$$ = $1/$3; } it, but you can yourself if you want.

%% The Parts of Speech L exer

void yyerror(char *s) Example : shows the declarations and rules
sections of the newlexer.

printf(stderr, "%s\n", s); Example: lexer to be called from the parser

} %{

int main(void) [*

{ * We now build a lexical analyzer to be used by a

yyparse(), higher-level parser.

return O; * [

} #include "'y.tab.hn /* token codes from the parser
*/

B. Grammar : #define LOOKUP 0 /* default - not a defined

word type. */

For some applications, the simple kind of wordNt State;

recognition we've already done may be more thalf) { state = LOOKUP; 1
adequate; others need to recognize specifie!n | state = LOOKUP;
sequences of tokens and perform appropriatex@mple: lexer to be called fromthe parser
actions. Traditionally, a description of such acfet (continued)

actions is known asgrammar. return O; /* end of sentence */
When you use a lex scanner and a yacc parsér

together, the parser is the higher level routine. irerb (state = VERB; 1

calls the lexeryylex() whenever it needs a token "adj { state = ADJECTIVE; 1
from the input. The lexer then scans through theddV { state = ADVERB:1
input recognizing tokens.As soon as it finds anoun {state = NOUN; 1
token of interest to the parser, it returns to thérep { state = PREPOSITION;
parser ,returning the token's code as the value 8fon { state = FTUXOUN; 3
yyfex().Not all tokens are of interest to the parser-conj { state = CONJUNCTI~1
in most programming languages the parser doesﬁ%‘ZA'Z]’L{

want to hear about comments and white space,fé(State != LOOKUP) {
example. For these ignored tokens, the lexepdd-word(state, yytext)
doesn't return so that it can continue on to the ne) el_se |

token without bothering the parser.The lexer an@Witch (lookUpPword (yytext)) {
the parser have to agree what the token codes aFé&S€ VERB:

We solve this problem by letting yacc define the'€turn (VERB) ;

token codes. The tokens in our grammar are the2Se ALXEXTIVE:

parts of speech: NOUN, PRONOUN/ERB, return (ALUBTIVE);
ADVERB, ADJECTIVE,PREPOSITION, and C¢ase ADVERB:
CONJUNCTION. Yacc defines each of these as &tUrn(ADVERB);

small integer using a preprocessatefine, Here ~ ¢ase NOUN:

are the definitions it used return (NOUN) ;
in this example: case PREPOSITION:
define NOUN 257 return (PREPOSITION);

case PRONOUN:

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet ¢

Page | 66

m\.\nurul]ampll/»mmm
ﬁg International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848
IR

return (PRONOUN) ; in "%{" and "%I". We use it here for a C comment
case CONmION: (as with lex, Ccomments belong inside C code
return (CONJUWTION) ; blocks, at least within the definition section)aand
default : single include file.

printf("%s: don't reccgnize\nu, yytext):

/* don't return, just ignore it */ The Rules Section

} In our grammar we use the special character " | ",
} which introduces a rule with the same left-hand
} side as the previous one. It is usually read as
% % "or,"e.g., in our

... same add-word() and lookup.word() as before... grammar a subject can be either a NOUN or a

There are several important differences herePRONOUN. The action part of a rule consists of a
We've changed the part of speech names used @block, beginning with "{" and ending with "{".
the lexer to agree with the token names in th&he parser executes an action at the end of a rule
parser. We have also added return statements & soon as the rule matches. In our sentence rule,
pass to the parser the token codes for the wordlse action reports that we've successfully parsed a
that it recognizes. There arent any returrsentence. Since sentence is the top-level symbol,
statements for the tokens that define new words tthe entire input must match a sentence. The parser
the lexer, since the parser doesn't care about themeturns to its caller, in this case the main progra
when the lexer reports the end of the input.

A Yacc Parser Subsequent calls to yyparse() reset the state and
Example 1-7 introduces our first cut at the yacc begin processing again. Our example prints a
grammar. message Iif it sees a "subject VERB object” list of
Example 1-7: Smple yacc sentence parser input tokens. What happens if it sees "subject
% t subject” or some other invalid list of tokens? The
I* parser calls yyerroro, which we provide in the user
* A lexer for the basic g r m to use for recognizin subroutines section,and then recognizes the special
mlish sentences. rule error. You can provide error recovery code
/ that tries to get the parser back into a state evhier
#include <stdio.h> can continue parsing, If error recovery fails @: a
% 1 is the case here, there is no error recovery code,
%token NOUN PRCXWUN VERB AIXIERB yyparse() returns to the caller after it finds an
ADJECI'IVE J3EPOSITIM CONJUNCTIM error.
% %
sentence: subject VERB object(printf("Sentence iC, Stor age M anagement:
valid.\nn);) In this section we shall discuss management of
subject: NOUN storage for collections of objects, including
| PRONOUN temporary variables,during their lifetimes. The
object: NOUN important goals are the most economical use of
extern FILE win; memory and the simplicity of access functions to
main () individual objects. Source language properties
govern the possible approaches, as indicated by
while ('!f eof (yyin)) { the following questions :
yparse() ; 11 Is the exact number and size of all objects
example : Smple yacc sentence parser (continued) known at compilation time?
yyerror ('s) 11 Is the extent of an object restricted, and what
char *s; relationships hold between the extents of distinct
fprintf (stderr, "%s\na , s) ; objects (e.g. are they nested)?
} [1 Does the static nesting of the program text

control a procedure's access to global objects,or i

The structure of a yacc parser is, not by accidenjccess dependent upon the dynamic nesting of
similar to that of a lexlexer. Our first sectiohet ¢g||s?

definition section, has a literal code block,enetbs

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet ¢

Page | 67

Z
;‘%g International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848
IR

popped of the stack. (The entire activation record
Static Storage Management is stacked, we do not deal with single objects
We speak of static storage management if thandividually’)An object of automatic extent
compiler can provide fixed addresses for alloccupies storage in the activation record of the
objects at the time the program is translated (hergyntactic construct with which it is associatedeTh
we assume that translation includes binding), i.eposition of the object is characterized by the base
we can answer the first question above with 'yesaddress, b, of the activation record and the xaati
Arrays with dynamic bounds recursive proceduresocation offset), R, of its storage with in the
and the use of anonymous objects are prohibitedctivation record. R must be known at compile
The condition is fulfiled for languages like time but b cannot be known (otherwise we would
FORTRAN and BASIC, and for the objects lying have static storage allocation). To access the
on the outermost contour of an ALGOL 60 orobject, b must be determined at runtime and
Pascal program. (In contrast, arrays with dynamiplaced in a register. R is then either added to the
bounds can occur even in the outer block of amegister and the result use das an indirect address
ALGOL 68 program.)If the storage for the or R appears as the constant in a direct access
elements of an array with dynamic bounds idunction of the form'register+constant'.The
managed separately,the condition can be forced &xtension, which may vary in size from activation
hold in this case also. That is particularlyto activation, is often called the second order
interesting when we have additional informationstorage of the activation record. Storage withi th
that certain procedures are not recursive, foextension is always accessed indirectly via
example because recursivity must be noteihformation held in the static part; in fact, the
specially (as in PL/1) or because we havestatic part of an object may consist solely of a
determined it from analysis of the procedure callspointer tothe dynamic part.
We can then allocate storage statically for corgtour
other than the outermost.Static storage allocasion D, Error Handlinag:

particularly valuable on computers that allowError handling is concerned with failures due to
access to any location in main memory via ammany causes: errors in the compiler orfétitures
absolute address in the instruction. Here, Statigue to many causes: errors in the Comp”er or its
storage corresponds exactly to the class of objectvironment (hardware, operating system), design
with direct access paths If, however, it is unknow errors in the program being Comp”ed, an
during code generation whether or not an object if\complete understanding of the source language,
directly addressable(as on the IBM 370) becausganscription errors, incorrect data, etthe tasks
this depends upon the _nal addressing carried obt the error handling process are to detect each
during binding, then we must also accessrror, report it to the user, apdssibly make some
statically-allocated objects via a base registée T repair to allow processing to continue. It cannot
only advantage of static allocation then consiéts qyenerally determinéhe cause of the error, but can
the fact that no operations for storagere servatiopnly diagnose the visible symptoms. Similarly,
or release need be generated at block or procedugfly repaircannot be considered a correction (in

entry and exit. the sense that it carries out the user's intent); i
_ ' merelyneutralizes the symptom so that processing
Dynamic Storage Management Using a Stack may continueThe purpose of error handling is to

All declared values in languages such as Pascg|d the programmer by highlighting
and SIMULA have restricted lifetimes. Further, inconsistencies.lt has a low frequency in

the environments in these languages ar@omparison with other compiler tasks, and hence
nested:The extent of all objects belonging to théhe time requiredto complete it is largely
contour of a block or procedure ends before that qfrelevant, but it cannot be regarded as an ‘add-on
objects from the dynamically enclosing contourfeature of acompiler. Its inuence upon the overall
Thus we can use a stack discipline to manage theg@sign is pervasive, and it is a necessary
objects: Upon procedure call or block entry, thejebugging tool during construction of the
activation record containing storage for the locatompiler itself. Proper design and implementation
objects of the procedure or block is pushed ontgf an errorhandler, however, depends strongly

the stack. At block end, procedure return or a jumppon complete understanding of the compilation
out of these constructs the activation record igrocess.

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet ¢

Page | 68

Z
;‘:ﬂg International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848
_/I]R
This is why we have deferred consideration obut not in FORTRAN, which will simply treat the
error handling until now.It is perhaps useful tomisspellings a new implicit declaration. We shall
make a distinction between the correctness of ase the term anomaly to denote something that
system and its appears suspicious, but that we cannot be certain
reliability. The former property is derived fromis an error. Anomalies cannot be derived
certain assumptions regarding both the primitivesnechanically from the language definition, but
upon which the system is based and the inputs thegquire some exercise of judgement on the part of
drive it. For example, program verification the implementor. As experience is gained with
techniques might be used to prove that a certaimsers of a particular language, one can spot
compiler will produce correct object programs forfrequently-occurring errors and report them as
all source programs obeying the rules of the sourcanomalies before their symptoms arise.
language. This would not be a useful property,
however, if the compiler collapsed whenever somg. CONCL USION

illegal source program was presented to it. Thu§pig report outlines a course in compiler
we are more interested in the reliability of theconstruction. The implementation and source
compiler: language is Scheme, and the target language is
its ability to produce useful results under theassemply code. This choice of languages allows a
weakest possible assumptions about the quality inrect-style,stack-based compiler to be
the environment, input data and human operatofmplemented by an undergraduate in one semester
Proper error handling techniques contribute to thgnat touches on more aspects of compilation than a
reliability of a system by providing it with a mean stydent is likely to see in a compiler course for
for dealing with violations of some assumptions ommgore traditional Languages. Furthermore,
which its design was based. expressiveness is barely sacrificed; the compiler
can be bootstrapped provided there is enough run-
Errors, Symptoms, Anomaliesand Limitations time support. Besides covering basic compilation
We distinguish between the actual error and itgssues, the course yields an implemented compiler
symptoms. Like a physician, the error handler seeat can serve as a test bed for coursework
only symptoms. From these symptoms, it mayanguage implementation. The compiler has been
attempt to diagnose the underlying error. Thesed, for example, to study advanced topic such as

diagnosis always involves some uncertainty, SO Wghe implementation of first-class continuations and
may choose simply to report the symptoms with n@egister allocation.

further attempt at diagnosis. Thus the word ‘error'

is often used when 'symptom' would be moreg REFERENCES
appropriate.A simple example of the
symptom/error distinction is the use of an
undeclared identifier in LAX. The use is only a
symptom, and could have arisen in several ways:
[0 The identifier was misspelled on this use.

[1 The declaration was misspelled or omitted.

[0 The syntactic structure has been corrupte
causing this use to fall outside of the scope ef th

[1] William M. WaiteDepartment of Electrical
EngineeringUniversity ~ of ColoradoBoulder,
Colorado 80309USAemail:
Ci/\/iIIiam.Waite@coIorado.edu.

2

1 GerhardGooslnstitutProgrammstrukturen und

declaration. DatenorganisationFakultat fur Informatik
[3] Universiteat KarlsruheD-76128
Most compilers simply report the symptom and leKarlsruheGermanyemail: ~ ggoos@ipd.info.uni-

the user perform the diagnosis.An error iskarlsruhe.de

detectable if and only if it results in a symptom[4] Niklaus WirthThis is a slightly revised version
that violates the definition of the language. Thisof the book published by Addison-Wesley in
means that the error handling procedure i9996ISBN 0-201-40353-6Ziirich, November
dependent upon the language definition, bup005.

independent of the particular source program being) ano, Alfred V., Hop croft, J. E., and Ullman,

analyzed. For example,the spelling errors in aeffrey D. [1974]. The Design andAnalysis of
identifier will be detectable in LAX (provided that

they do not result in another declared identifier)

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet ¢

Page | 69

mmmrulhm?ﬁ

;‘?g International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848
<—JR

Computer Algorithms.Addision Wesley, Reading,[17] Salomaa, Arto [1973]. Formal Languages.

MA. Academic Press, New York.

[6] Aho, Alfred V. and Johnson, Stephen C.[18] Samelson, K. and Bauer, Friedrich L. [1960].

[1976]. Optimal code generation for expressiorSequential formula translation. Communicationsof

trees. Journal of the ACM, 23(3):488501. the ACM, 3(2):7683.

[7] Aho, Alfred V. and Ullman, Jeffrey D. [1972]. [19] Satterthwaite, E. [1972]. Debugging tools for
The Theory of Parsing, Translation, high level languages. Software{Practice
[8] and Compiling. Prentice-Hall, Englewood andExperience, 2:197217.

Cliffs. [20] Scarborough, R. G. and Kolsky, H. G. [1980].
[9] Aho, Alfred V. and Ullman, Jeffrey D. [1977]. mproved optimization of FORTRAN

Principles of Compiler Design.Addision [21] object programs. IBM Journal of Research
[10] Wesley, Reading, MA. and Development, 24(6):660676.

[11] Ross, D. T. [1967]. The AED free storagel22] Schulz, Waldean A. [1976]. Semantic
package. Communications of the ACM,Analysis and Target Language Synthesis in a
10(8):481492. Translator.Ph.D. thesis, University of Colorado,
[12] Rutishauser, H. [1952]. Automatische Boulder, CO.

Rechenplanfertigung bei Programm-gesteuerten [23] Seegmeuller, G. [1963]. Some remarks on the
[13] Rechenmaschinen. Mitteilungen aus denfOMPUter as a source Ianguage'machlne. _
Institut feur Angewandte Mathematik der [24] In Popplewell, C.M., editor, Information
ETHZurich, 3. processing 1962, pages 524{525. North-
[14] Sale, Arthur H. J. [1971]. The classi_catidn o Holland,Amsterdam, NL.

FORTRAN statements. Computer

Journal,14:1012.

[15] Sale, Arthur H. J. [1977]. Comments on

‘report on the programming language Euclid.ACM

SIGPLAN Notices, 12(4):10.

[16] Sale, Arthur H. J. [1979]. A note on scope,

one-pass compilers, and Pascal. Pascal

News,15:6263.

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet ¢

Page |70

