

cc

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet Singh

P a g e | 64

Compiler Construction

Tapodhan Singla,Varun Vashishtha, Sumeet Singh
Computer Science and Engineering Department,

Maharishi Dayanand University, Rohtak, Haryana, India

Abstract—
Compiler construction is a widely used software
engineering exercise, but because most students
will not be compiler writers, care must be taken to
make it relevant in a core curriculum. The course
is suitable for advanced undergraduate and
beginning graduate students. Auxiliary tools, such
as generators and interpreters, often hinder the
learning: students have to fight tool idiosyncrasies,
mysterious errors, and other poorly educative
issues. It is intended both to provide a general
knowledge about compiler design and
implementation and to serve as a springboard to
more advanced courses. Although this paper
concentrates on the implementation of a compiler,
an outline for an advanced topics course that
builds upon the compiler is also presented. We
introduce a set of tools especially designed or
improved for compiler construction educative
projects in C.

Keywords- Lex,Yacc , Parser,Parser-
Lexer,Symptoms &Anomalies.

1. INTRODUCTION

A good course in compiler construction is hard to
design. The main problem is time. Many courses
assume C or some similarly low-level language as
both the source and implementation language. This
assumption leads in one of two directions. Either a
rich source language is defined and the compiler is
not completed, or the source and target languages
are drastically simplified in order to finish the
compiler. Neither solution is particularly
satisfying. If the compiler is not completed, the
course cannot be considered a success: some topics
are left untaught, and the students are left
unsatisfied. If the compiler is completed with an
oversimplified source language, the compiler is
unrealistic on theoretical grounds since the
semantics of the language are weak, and if the
compiler generates code for a simplified target

language, the compiler is unrealistic on practical
grounds since the emitted code does not run on
real hardware.

 Computers, however, interpret sequences of
particular instructions, but not program texts.
Therefore, the program text must be translated into
a suitable instruction sequence before it can be
processed by a computer. This translation can be
automated, which implies that it can be formulated
as a program itself. The translation program is
called a compiler, and the text to be translated is
called source code. Compilers and operating
systems constitute the basic interfaces between a
programmer and the machine. Compiler is a
program which converts high level programming
language into low level programming language or
source code into machine code. It focuses
attention on the basic relationships between
languages and machines. Understanding of these
relationships eases the inevitable transitions to
new hardware and programming languages and
improves a person's ability to make appropriate
trade off in design and implementation. Many of
the techniques used to construct a compiler are
useful in a wide variety of applications involving
symbolic data.

The term compilation denotes the conversion of an
algorithm expressed in a human-oriented source
language to an equivalent algorithm expressed in a
hardware-oriented target language. We shall be
concerned with the engineering of compilers (their
organization, algorithms, data structures and user
interfaces Programming languages are tools used
to construct formal descriptions of finite
computations (algorithms). Each computation
consists of operations that transform a given initial
state into some final state. A programming
language provides essentially three components
for describing such computations:

cc

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet Singh

P a g e | 65

� Data types, objects and values with operations
defined upon them.
� Rules fixing the chronological relationships
among specified operations.
� Rules fixing the (static) structure of a program .

What are Compilers?

The compiler accepts a subset of legal Scheme
programs as defined in the Revised report, a
subset strong enough to compile itself.
_ The language is syntactically restricted so that
the only numbers accepted are integers in a
bounded range,
_ All lambda expressions have a fixed arity,i.e.,
no rest arguments.
_ Programs cannot have free variables other than
references to primitives in operator position,
_ Symbols cannot be interned at runtime,
_ _Rest-class continuations and I/O are not
supported,
_ Derived syntax is not directly supported,
_ Garbage-collection is not provided, and the
runtime library is minimal.

2. LEX AND YACC

A. Availability:
 Lex and yacc were both developed at
Bell.T.Laboratories in the 1970s. Yacc was the
first of the two, developed by Stephen C. Johnson.
Lex was designed by Mike Lesk and Eric Schmidt
to work with yacc. Both lex and yacc have been
standard UNIX utilities since 7th Edition UNIX.
System V and older versions of BSD use the
original AT&T versions, while the latest version of
BSD uses flex and Berkeley yacc. The articles
written by the developers remain the primary
source of information on lex and yacc.

During the first phase the compiler reads the input
and converts strings in the source to tokens. With
regular expressions we can specify patterns to lex
so it can generate code that will allow it to scan
and match strings in the input. Each pattern
specified in the input to lex has an associated
action. Typically an action returns a token that
represents the matched string for subsequent use
by the parser. Initially we will simply print the
matched string rather than return a token value.
The following represents a simple pattern,
composed of a regular expression, that scans for

identifiers. Lex will read this pattern and produce
C code for a lexical analyzer that scans for
identifiers.

letter(letter|digit)*

This pattern matches a string of characters that

begins with a single letter followed by zero or

more letters or digits. This example nicely

illustrates operations allowed in regular

expressions:

� repetition, expressed by the “*” operator

� alternation, expressed by the “|” operator

� concatenation

Any regular expression expressions may be

expressed as a finite state automaton (FSA). We

can represent an FSA using states, and transitions

between states. There is one start state and one or

more final or accepting states.

Sample program. :program for lex

%{
#include "y.tab.h"
#include <stdlib.h>
void yyerror(char *);
%}
%%
[0-9]+
{ yylval = atoi(yytext); return INTEGER; }
[-/*+\n] { return *yytext; }
[\t];
yyerror("Unknown character");
%%
int yywrap(void) { return 1;}
program for independent parser
%{
#include <stdio.h>
int yylex(void);
void yyerror(char *);
%}

cc

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet Singh

P a g e | 66

%token INTEGER
%%
program : program expr '\n' { printf("%d\n", $2); }
| ;
expr : INTEGER
| expr '+' expr { $$ = $1 + $3; }
| expr '*' expr { $$ = $1 * $3; }
| expr '-' expr { $$ = $1 - $3; }
| expr '/' expr { $$ = $1 / $3; }
;
%%
void yyerror(char *s)
{
printf(stderr, "%s\n", s);
}
int main(void)
{
yyparse();
return 0;
}

B. Grammar :

For some applications, the simple kind of word
recognition we've already done may be more than
adequate; others need to recognize specific
sequences of tokens and perform appropriate
actions. Traditionally, a description of such a set of
actions is known as a grammar.
When you use a lex scanner and a yacc parser
together, the parser is the higher level routine. It
calls the lexer yylex() whenever it needs a token
from the input. The lexer then scans through the
input recognizing tokens.As soon as it finds a
token of interest to the parser, it returns to the
parser ,returning the token's code as the value of
yyfex().Not all tokens are of interest to the parser-
in most programming languages the parser doesn't
want to hear about comments and white space,for
example. For these ignored tokens, the lexer
doesn't return so that it can continue on to the next
token without bothering the parser.The lexer and
the parser have to agree what the token codes are.
We solve this problem by letting yacc define the
token codes. The tokens in our grammar are the
parts of speech: NOUN, PRONOUN, VERB,
ADVERB, ADJECTIVE,PREPOSITION, and
CONJUNCTION. Yacc defines each of these as a
small integer using a preprocessor #define, Here
are the definitions it used
in this example:
define NOUN 257

define PRONOUN 258
define VERB 259
define ADVERB 260
define ADJECTIVE 261
define PREPOSITICN 262
define cXwUNCTICN 263
Token code zero is always returned for the logical
end of the input. Yaccdoesn't define a symbol for
it, but you can yourself if you want.

The Parts of Speech Lexer
Example : shows the declarations and rules
sections of the newlexer.
Example : lexer to be called from the parser
%{
/*
* We now build a lexical analyzer to be used by a
higher-level parser.
* /
#include ""y.tab.hn /* token codes from the parser
*/
#define LOOKUP 0 /* default - not a defined
word type. */
int state;
\n { state = LOOKUP; 1
\.\n I state = LOOKUP;
Example : lexer to be called from the parser
(continued)
return 0; /* end of sentence */
1
lrerb (state = VERB; 1
^adj { state = ADJECTIVE; 1
"adv { state = ADVERB; 1
"noun { state = NOUN; 1
Prep { state = PREPOSITION; 1
pron { state = FTUXOUN; 3
"conj { state = CONJUNCTI~; 1
[a-zA-Z]+ {
if (state != LOOKUP) {
add-word(state, yytext) ;
) else I
switch (lookUpPword (yytext)) {
case VERB:
return (VERB) ;
case ALXEXTIVE:
return (ALUBTIVE) ;
case ADVERB:
return (ADVERB);
case NOUN:
return (NOUN) ;
case PREPOSITION:
return (PREPOSITION);
case PRONOUN:

cc

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet Singh

P a g e | 67

return (PRONOUN) ;
case CONmION:
return (CONJUWTION) ;
default :
printf("%s: don't reccgnize\nu, yytext):
/* don't return, just ignore it */
}
}
}
% %
... same add-word() and lookup.word() as before ...
There are several important differences here.
We've changed the part of speech names used in
the lexer to agree with the token names in the
parser. We have also added return statements to
pass to the parser the token codes for the words
that it recognizes. There aren't any return
statements for the tokens that define new words to
the lexer, since the parser doesn't care about them.

A Yacc Parser
Example 1-7 introduces our first cut at the yacc
grammar.
Example 1-7: Simple yacc sentence parser
% t
/*
* A lexer for the basic g r m to use for recognizing
mlish sentences.
/
#include <stdio.h>
% 1
%token NOUN PRCXWUN VERB AIXlERB
ADJECl'IVE J3EPOSITIM CONJUNCTIM
% %
sentence: subject VERB object(printf("Sentence is
valid.\nn);)
subject: NOUN
I PRONOUN
object: NOUN
extern FILE win;
main ()
(
while (!f eof (yyin)) {
yparse() ;
example : Simple yacc sentence parser (continued)
yyerror (s)
char *s;
fprintf (stderr, "%s\na , s) ;
}

The structure of a yacc parser is, not by accident,
similar to that of a lexlexer. Our first section, the
definition section, has a literal code block,enclosed

in "%{" and "%I". We use it here for a C comment
(as with lex, Ccomments belong inside C code
blocks, at least within the definition section)and a
single include file.

The Rules Section
In our grammar we use the special character " I ",
which introduces a rule with the same left-hand
side as the previous one. It is usually read as
"or,"e.g., in our
grammar a subject can be either a NOUN or a
PRONOUN. The action part of a rule consists of a
C block, beginning with "{" and ending with "{".
The parser executes an action at the end of a rule
as soon as the rule matches. In our sentence rule,
the action reports that we've successfully parsed a
sentence. Since sentence is the top-level symbol,
the entire input must match a sentence. The parser
returns to its caller, in this case the main program,
when the lexer reports the end of the input.
Subsequent calls to yyparse() reset the state and
begin processing again. Our example prints a
message if it sees a "subject VERB object" list of
input tokens. What happens if it sees "subject
subject" or some other invalid list of tokens? The
parser calls yyerroro, which we provide in the user
subroutines section,and then recognizes the special
rule error. You can provide error recovery code
that tries to get the parser back into a state where it
can continue parsing, If error recovery fails or: as
is the case here, there is no error recovery code,
yyparse() returns to the caller after it finds an
error.

C. Storage Management:
In this section we shall discuss management of
storage for collections of objects, including
temporary variables,during their lifetimes. The
important goals are the most economical use of
memory and the simplicity of access functions to
individual objects. Source language properties
govern the possible approaches, as indicated by
the following questions :
� Is the exact number and size of all objects
known at compilation time?
� Is the extent of an object restricted, and what
relationships hold between the extents of distinct
objects (e.g. are they nested)?
� Does the static nesting of the program text
control a procedure's access to global objects,or is
access dependent upon the dynamic nesting of
calls?

cc

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet Singh

P a g e | 68

Static Storage Management
We speak of static storage management if the
compiler can provide fixed addresses for all
objects at the time the program is translated (here
we assume that translation includes binding), i.e.
we can answer the first question above with 'yes'.
Arrays with dynamic bounds recursive procedures
and the use of anonymous objects are prohibited.
The condition is fulfilled for languages like
FORTRAN and BASIC, and for the objects lying
on the outermost contour of an ALGOL 60 or
Pascal program. (In contrast, arrays with dynamic
bounds can occur even in the outer block of an
ALGOL 68 program.)If the storage for the
elements of an array with dynamic bounds is
managed separately,the condition can be forced to
hold in this case also. That is particularly
interesting when we have additional information
that certain procedures are not recursive, for
example because recursivity must be noted
specially (as in PL/1) or because we have
determined it from analysis of the procedure calls.
We can then allocate storage statically for contours
other than the outermost.Static storage allocation is
particularly valuable on computers that allow
access to any location in main memory via an
absolute address in the instruction. Here, static
storage corresponds exactly to the class of objects
with direct access paths .If, however, it is unknown
during code generation whether or not an object is
directly addressable(as on the IBM 370) because
this depends upon the _nal addressing carried out
during binding, then we must also access
statically-allocated objects via a base register. The
only advantage of static allocation then consists of
the fact that no operations for storagere servation
or release need be generated at block or procedure
entry and exit.

Dynamic Storage Management Using a Stack
All declared values in languages such as Pascal
and SIMULA have restricted lifetimes. Further,
the environments in these languages are
nested:The extent of all objects belonging to the
contour of a block or procedure ends before that of
objects from the dynamically enclosing contour.
Thus we can use a stack discipline to manage these
objects: Upon procedure call or block entry, the
activation record containing storage for the local
objects of the procedure or block is pushed onto
the stack. At block end, procedure return or a jump
out of these constructs the activation record is

popped of the stack. (The entire activation record
is stacked, we do not deal with single objects
individually!)An object of automatic extent
occupies storage in the activation record of the
syntactic construct with which it is associated. The
position of the object is characterized by the base
address, b, of the activation record and the relative
location offset), R, of its storage with in the
activation record. R must be known at compile
time but b cannot be known (otherwise we would
have static storage allocation). To access the
object, b must be determined at runtime and
placed in a register. R is then either added to the
register and the result use das an indirect address,
or R appears as the constant in a direct access
function of the form'register+constant'.The
extension, which may vary in size from activation
to activation, is often called the second order
storage of the activation record. Storage within the
extension is always accessed indirectly via
information held in the static part; in fact, the
static part of an object may consist solely of a
pointer tothe dynamic part.

D. Error Handling:
Error handling is concerned with failures due to
many causes: errors in the compiler or its failures
due to many causes: errors in the compiler or its
environment (hardware, operating system), design
errors in the program being compiled, an
incomplete understanding of the source language,
transcription errors, incorrect data, etc. The tasks
of the error handling process are to detect each
error, report it to the user, and possibly make some
repair to allow processing to continue. It cannot
generally determine the cause of the error, but can
only diagnose the visible symptoms. Similarly,
any repair cannot be considered a correction (in
the sense that it carries out the user's intent); it
merely neutralizes the symptom so that processing
may continue. The purpose of error handling is to
aid the programmer by highlighting
inconsistencies. It has a low frequency in
comparison with other compiler tasks, and hence
the time required to complete it is largely
irrelevant, but it cannot be regarded as an 'add-on'
feature of a compiler. Its inuence upon the overall
design is pervasive, and it is a necessary
debugging tool during construction of the
compiler itself. Proper design and implementation
of an error handler, however, depends strongly
upon complete understanding of the compilation
process.

cc

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet Singh

P a g e | 69

This is why we have deferred consideration of
error handling until now.It is perhaps useful to
make a distinction between the correctness of a
system and its
reliability. The former property is derived from
certain assumptions regarding both the primitives
upon which the system is based and the inputs that
drive it. For example, program verification
techniques might be used to prove that a certain
compiler will produce correct object programs for
all source programs obeying the rules of the source
language. This would not be a useful property,
however, if the compiler collapsed whenever some
illegal source program was presented to it. Thus
we are more interested in the reliability of the
compiler:
its ability to produce useful results under the
weakest possible assumptions about the quality of
the environment, input data and human operator.
Proper error handling techniques contribute to the
reliability of a system by providing it with a means
for dealing with violations of some assumptions on
which its design was based.

Errors, Symptoms, Anomalies and Limitations
We distinguish between the actual error and its
symptoms. Like a physician, the error handler sees
only symptoms. From these symptoms, it may
attempt to diagnose the underlying error. The
diagnosis always involves some uncertainty, so we
may choose simply to report the symptoms with no
further attempt at diagnosis. Thus the word 'error'
is often used when 'symptom' would be more
appropriate.A simple example of the
symptom/error distinction is the use of an
undeclared identifier in LAX. The use is only a
symptom, and could have arisen in several ways:
� The identifier was misspelled on this use.
� The declaration was misspelled or omitted.
� The syntactic structure has been corrupted,
causing this use to fall outside of the scope of the
declaration.

Most compilers simply report the symptom and let
the user perform the diagnosis.An error is
detectable if and only if it results in a symptom
that violates the definition of the language. This
means that the error handling procedure is
dependent upon the language definition, but
independent of the particular source program being
analyzed. For example,the spelling errors in an
identifier will be detectable in LAX (provided that
they do not result in another declared identifier)

but not in FORTRAN, which will simply treat the
misspellings a new implicit declaration. We shall
use the term anomaly to denote something that
appears suspicious, but that we cannot be certain
is an error. Anomalies cannot be derived
mechanically from the language definition, but
require some exercise of judgement on the part of
the implementor. As experience is gained with
users of a particular language, one can spot
frequently-occurring errors and report them as
anomalies before their symptoms arise.

7. CONCLUSION
This report outlines a course in compiler
construction. The implementation and source
language is Scheme, and the target language is
assembly code. This choice of languages allows a
direct-style,stack-based compiler to be
implemented by an undergraduate in one semester
that touches on more aspects of compilation than a
student is likely to see in a compiler course for
more traditional Languages. Furthermore,
expressiveness is barely sacrificed; the compiler
can be bootstrapped provided there is enough run-
time support. Besides covering basic compilation
issues, the course yields an implemented compiler
that can serve as a test bed for coursework
language implementation. The compiler has been
used, for example, to study advanced topic such as
the implementation of first-class continuations and
register allocation.

 8. REFERENCES

[1] William M. WaiteDepartment of Electrical
EngineeringUniversity of ColoradoBoulder,
Colorado 80309USAemail:
William.Waite@colorado.edu.

[2] GerhardGoosInstitutProgrammstrukturen und
DatenorganisationFakultat fur Informatik

[3] Universit•at KarlsruheD-76128
KarlsruheGermanyemail: ggoos@ipd.info.uni-
karlsruhe.de

[4] Niklaus WirthThis is a slightly revised version
of the book published by Addison-Wesley in
1996ISBN 0-201-40353-6Zürich, November
2005.

[5] Aho, Alfred V., Hop croft, J. E., and Ullman,
Jeffrey D. [1974]. The Design andAnalysis of

cc

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler Construction Tapodhan Singla,Varun Vashishtha, Sumeet Singh

P a g e | 70

Computer Algorithms.Addision Wesley, Reading,
MA.
[6] Aho, Alfred V. and Johnson, Stephen C.
[1976]. Optimal code generation for expression
trees. Journal of the ACM, 23(3):488501.

[7] Aho, Alfred V. and Ullman, Jeffrey D. [1972].
The Theory of Parsing, Translation,

[8] and Compiling. Prentice-Hall, Englewood
Cliffs.
[9] Aho, Alfred V. and Ullman, Jeffrey D. [1977].
Principles of Compiler Design.Addision
[10] Wesley, Reading, MA.

[11] Ross, D. T. [1967]. The AED free storage
package. Communications of the ACM,
10(8):481492.

[12] Rutishauser, H. [1952]. Automatische
Rechenplanfertigung bei Programm-gesteuerten

[13] Rechenmaschinen. Mitteilungen aus dem
Institut f•ur Angewandte Mathematik der
ETHZurich, 3.
[14] Sale, Arthur H. J. [1971]. The classi_cation of
FORTRAN statements. Computer
Journal,14:1012.

[15] Sale, Arthur H. J. [1977]. Comments on
'report on the programming language Euclid'.ACM
SIGPLAN Notices, 12(4):10.

[16] Sale, Arthur H. J. [1979]. A note on scope,
one-pass compilers, and Pascal. Pascal
News,15:6263.

[17] Salomaa, Arto [1973]. Formal Languages.
Academic Press, New York.
[18] Samelson, K. and Bauer, Friedrich L. [1960].
Sequential formula translation. Communicationsof
the ACM, 3(2):7683.

[19] Satterthwaite, E. [1972]. Debugging tools for
high level languages. Software{Practice
andExperience, 2:197217.

[20] Scarborough, R. G. and Kolsky, H. G. [1980].
Improved optimization of FORTRAN

[21] object programs. IBM Journal of Research
and Development, 24(6):660676.

[22] Schulz, Waldean A. [1976]. Semantic
Analysis and Target Language Synthesis in a
Translator.Ph.D. thesis, University of Colorado,
Boulder, CO.

[23] Seegm•uller, G. [1963]. Some remarks on the
computer as a source language machine.

[24] In Popplewell, C.M., editor, Information
processing 1962, pages 524{525. North-
Holland,Amsterdam, NL.

