
   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 486 

Vulnerability Injection overhead markup using XSS 

CHALLA PRATHYUSH KUMAR
1
 & Mrs. M.SRIDEVI 

2
 

1
M-Tech Dept of CSE Laqshya Institute of Technology and Science, Khammam. 

Mail id: prathyushchalla@gmail.com 

2
Asst. Professor & HOD, Department of CSE in Laqshya Institute of Technology and Science, 

Khammam. Mail Id: - sridevi279.gunti@gmail.com 

Abstract 

Researchers have devised multiple solutions to cross-site scripting, but vulnerabilities persists in many 

Web applications due to developer’s lack of expertise in the problem identification and their 

unfamiliarity with the current mechanisms. As proclaimed by the experts, cross-site scripting is among 

the serious and widespread threats in Web applications these days more than buffer overflows. Recent 

study shows XSS has ranked first in the MITRE Common Weakness Enumeration (CWE)/SANS 

Institute list of Top 25 Most Dangerous Software Errors and second in the Open Web Application 

Security Project (OWASP). However, vulnerabilities continue to exist in many Web applications due to 

developers‟ lack of understanding of the problem and their unfamiliarity with current guarding strengths 

and limitations. Existing techniques for defending against XSS exploits suffer from various weaknesses: 

inherent limitations, incomplete implementations, complex frameworks, runtime overhead, and intensive 

manual-work requirements. Security researchers can address these weaknesses from two different 

perspectives. They need to look beyond current techniques by incorporating more effective input 

validation and sanitization features. In time, development tools will incorporate security frameworks 

such as ESAPI that implement state-of-the-art technology. This paper focus on program verification 

perspective, how researchers must integrate program analysis, pattern recognition, concolic testing, data 

mining, and AI algorithms to solve different software engineering problems and to enhance the 

effectiveness of vulnerability detection. Focus on such issues would improve the precision of current 

methods by acquiring attack code patterns from outside experts as soon as they become available. 

Keywords: XSS, vulnerability, Injection, overhead, markup. 

1. Introduction 

Cross-site scripting (XSS) is a type of computer 

insecurity vulnerability typically found in Web 

applications, such as web browsers which 

breach the security that enables attackers to 

infuse client-side script into Web pages viewed 

by other users [1]. A cross-site scripting 

vulnerability may be used by attackers to bypass 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 487 

access controls such as the same origin policy. 

Several major websites including Face book, 

Twitter, MySpace, eBay, Google, and McAfee 

have been the targets of XSS exploits. XSS is 

the result of limitations inherent in many Web 

applications‟ security mechanisms i.e. the lack 

or insufficient refinement of user inputs. XSS 

flaws exist in Web applications written in 

various programming languages such as PHP, 

Java, and .NET where application WebPages 

reference unrestricted user inputs. Attackers 

inject malicious code via these inputs, thereby 

causing unintended script executions through 

clients‟ browsers. Researchers have proposed 

multiple XSS solutions ranging from simple 

static analysis to complex runtime protection 

mechanisms. Cross-site scripting carried out on 

websites accounted for roughly 80.5% of all 

security vulnerabilities recorded by Symantec as 

of 2007. Their effect may range from a petty 

trouble to a significant overhead of security risk, 

depending on the value of the data handled by 

the vulnerable site and the nature of any security 

mitigation implemented by the site's owner. 

From a development perspective, researchers 

need to craft simpler, better, and more flexible 

security alternatives.  

Cross-site scripting flaws are web-application 

vulnerabilities which allow attackers to bypass 

client-side security mechanisms normally 

imposed on web content by modern web 

browsers. By finding ways of injecting 

malicious scripts into web pages, an attacker can 

gain elevated access-privileges to sensitive page 

content, session cookies, and a variety of other 

information maintained by the browser on 

behalf for user. Cross-site scripting attacks are 

therefore a unique case of code injection [2]. 

The expression "cross-site scripting" originally 

referred to the act of inducing the attacked, 

third-party web application from a distinct 

attack site, in a manner that executes a section 

of JavaScript programmed by the attacker in the 

security framework of the targeted domain. The 

definition gradually expanded to encompass 

other modes of code injection, including 

persistent and nonJavaScript vectors (including 

Java, ActiveX, VBScript, Flash, or even pure 

HTML, and SQL Queries), causing some 

uncertainty to newcomers to the field of 

information security [3]. XSS vulnerabilities 

have been reported and exploited since the 

1990s. Well-known sites affected in the history 

include the social-networking sites Twitter, Face 

book, MySpace, and Orkut. In recent years, 

cross-site scripting flaws surpassed buffer 

overflows to become the most common 

publicly-reported security vulnerability, with 

some researchers in 2007 viewing as many as 

68% of websites as likely open to XSS attacks. 

2. Related Work 

2.1 TYPES OF XSS EXPLOIT: 

Persistent or Stored Attacks: The persistent or 

stored XSS vulnerability is transpired when the 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 488 

attacker is provided the data is saved back by 

the server, and then returned to other users in 

the course of normal browsing permanently 

displayed as "normal" pages, without 

appropriate HTML escaping. Mostly this type of 

vulnerability occurs in the Social websites 

where-in members scan the profiles of other 

members [2]. For privacy reasons, this site hides 

everybody's unique personal identity and email. 

These are kept secret on the server. Particularly 

in the case of social networking sites, the code 

would be further designed to self-propagate 

across accounts, creating an indirect kind of a 

client-side worm. Persistent XSS can be more 

significant than other types because an attacker's 

malicious script is turned into automatic nature, 

without the need to individually target victims 

or also lure them to a third-party website. Any 

data received by the web application (via email, 

system logs, etc.) that can be controlled by an 

attacker could befall into injection vector.  

Non-persistent or Reflected Attacks: Non-

persistent XSS vulnerabilities in Google could 

permit malicious sites to attack Google users 

who visit them whilst logged in. A potential 

vector is a site search engine, given a search for 

a string; the search string will typically be 

redisplayed verbatim on the result page to 

indicate what was searched for. If this response 

does not properly escape or reject HTML 

control characters, a cross-site scripting flaw 

would result in. A reflected attack is typically 

delivered via email or a neutral web site. These 

holes show up when the data provided by a web 

client, most frequently in HTTP query 

parameters or in HTML form submissions, is 

used immediately by server-side scripts to 

generate a page of results for that user, without 

properly cleansing the request. Because HTML 

documents have a flat, serial structure that 

blends control statements, formatting, and the 

actual content, any non-validated user-supplied 

data included in the resulting page without 

proper HTML encoding[5]. This may result in 

markup injection. In this class of scripting 

languages are also used, e.g., Action Script and 

VBScript. Mostly attackers would write the 

scripting in java language only for common 

practice of the attack includes a design step. In 

this context the attacker creates and tests an 

offending URI (Uniform Resource Indicator), a 

social engineering step, in which the offender 

convinces his victims to load this URI on their 

browsers, and the eventual execution of the 

offending code [4]. The web application might 

filter out” 

DOM-Based Attacks: This name refers to the 

standard model for representing HTML or XML 

contents which is called the Document Object 

Model (DOM). JavaScript programs manipulate 

the state of a web page and populate it with 

dynamically computed data primarily by acting 

upon the DOM. With the arrival of web 2.0 

applications a new class of XSS flaws has 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 489 

emerged i.e. DOM-based vulnerabilities. DOM-

based vulnerabilities occur in the content 

processing stages performed by the client, 

typically in client-side JavaScript [1]. 

2.2 TYPES OF XSS DEFENCES: 

XSS defenses can be broadly classified into four 

types:  

a. Defensive coding  

b. XSS testing  

c. Vulnerability detection  

d. Runtime attack prevention.  

It compares various current techniques, which 

each have strengths and weaknesses. 

Defensive Coding  

XSS arises from the improper handling of 

inputs, using defensive coding practices that 

validate and sanitize inputs is the best way to 

eliminate XSS vulnerabilities. The user must 

make sure that the inputs are validated and 

conform to a required input format [3]. The four 

basic input sanitization options are:  

a. Replacement and elimination methods search 

for known bad characters (blacklist).  

b. The former replaces them with non-malicious 

characters, whereas the latter simply removes 

them.  

c. Escaping methods search for characters that 

have special meanings for client-side 

interpreters and remove those meanings.  

d. Restriction techniques limit inputs to known 

good inputs (white list).  

Checking blacklisted characters in the inputs is 

more scalable, but blacklist comparisons often 

fall short as it is difficult to foresee every attack 

signature alternative. White list comparisons are 

considered more protected, but they can result in 

the denial of many unlisted valid inputs. 

OWASP has issued rules that define proper 

escaping schemes for inputs referenced in 

different HTML output locations. 

XSS Testing: Input validation testing could 

expose XSS vulnerabilities in Web applications. 

Specification based IVT methods generate test 

cases with a plan of exercising various 

combinations of valid or invalid input 

conditions stated in specifications. In general, 

the effectiveness of both specification and code 

based approaches depends largely on the 

completeness of specifications or the sufficiency 

of generated test suites for discovering XSS 

vulnerabilities in source code. Hossain Shahriar 

and Mohammad Zulkernine developed 

MUTEC, a fault based XSS testing tool that 

creates mutated programs by changing 

responsive program statements, or sinks, with 

mutation operators. Only test cases containing 

adequate XSS attack vectors can bring about 

original and mutated programs to behave. 

Example 1 

Vulnerability Detection: This type of XSS 

defenses focus on identifying vulnerabilities in 

server-side scripts. Static-analysis based 

approaches can demonstrate the absence of 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 490 

vulnerabilities, but they tend to produce many 

false positives. Recent approaches combine 

static analysis with dynamic analysis techniques 

to improve accuracy.  

Static Analysis: Benjamin Livs and Monica 

Lam used binary decision diagrams to relate 

points to analysis to server-side scripts. Their 

approach requires users to specify vulnerability 

patterns in Program Query Language [6] 

.Yichen Xie and Alex Aiken proposed a static 

analysis technique that acquire block and 

function summary information from symbolic 

execution Pixy, an open source vulnerability 

scanner and also includes alias analysis to 

improve precision. These techniques identify 

tainted inputs accessed from exterior data 

sources, track the flow of tainted data, and 

check if any reached sinks such as SQL 

statements and HTML output statements. For 

example, for the program traveler Tip it reports 

the following statements as vulnerable: 

3. Implementation 

3.1 IMPLEMENTATION OF XSS 

DEFENCES: 

We all consent that cross-site scripting is a 

serious problem, but what continues to amaze 

me is the lack of good documentation on the 

subject. It is easy to find instructions how to 

execute attacks against applications vulnerable 

to XSS, but finding something adequate to cover 

defense is a real challenge [2]. No wonder 

programmers keep making the same errors over 

and over again. I am sure that one page that 

describes the problems and the solutions is 

somewhere out there, but I have been unable to 

find it. All I am getting is a page after page after 

page of half-truths and partial information, and 

even people saying that XSS is impossible to 

defend against [3]. To help developers practice 

its defensive coding rules, OWASP has created 

the Enterprise SecurityAPI 

(https://owasp.org/index.php/Category:OWASP

_Enterprise_ Security_API) i.e. ESAPI, an open 

source library for many different programming 

languages. Microsoft also provides the Web 

Protection Library (http://wpl.codeplex.com) for 

.NET developers. To produce web applications 

that is safe against XSS and other injection 

attacks [7]. Every such function must be aware 

of the character encoding used in the 

application. Then, for every piece of code that 

sends data from one component into another, 

make sure you use the correct function to 

encode data to make it safe check that every 

piece of data you receive is in the correct 

character encoding and that the format matches 

that of the type you are expecting (input 

validation). One must use white listing (as 

blacklisting does not work) in preventing 

attackers from executing JavaScript code in data 

pretending to be an Internet address. 

4. Experimental Work 

To avoid the conflict arise in this scenario the 

URL-SAP is designed and implemented. Now 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 491 

the end-users first validate the given URL and 

can enter into the authentication process. Only 

registered valid URLs will be available to enter 

into the system. Thus it avoids the data 

capturing by hackers through URL. More devise 

thing followed in this URL-SAP is whatever 

URL an end-user can get through, but in 

authentication process the given details cannot 

be attain by hacking. Because of dynamic 

mechanism involved in authentication process 

no such malicious person capture the data given 

by the end-users. 

 

3(a) 

 

3(b) 

 

3(c) 

 

3(d) 

Figure 3: URL Obfuscation Attacks and Cross-

Site Scripting Attacks Representation in 

Different Views: 3.a) Normal Mail 

Representation 3.b) URL with more number of 

dots 3.c) Black-listed URL 3.d) Encoded URL 

3. 

5. Conclusion 

Inherent limitations, unfinished 

implementations, complex frameworks, runtime 

overhead and rigorous manual-work 

requirements. These are the existing techniques 

for defending against XSS exploits suffer from 

various weaknesses. Security researchers can 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 492 

deal with these weaknesses from two different 

perspectives. Researchers need to craft simpler, 

better, and more flexible security defenses [6] . 

They need to look beyond current techniques by 

incorporating more effective input validation 

and sanitization features. In time to come many 

development tools would be incorporated for 

security frameworks such as ESAPI that 

implement state-of-the-art technology. 

Researchers must integrate program analysis, 

pattern recognition, concolic testing, data 

mining, and AI algorithms would be used 

rigorously in future to solve different software 

engineering problems to improve the 

effectiveness of vulnerability detection. They 

can also improve the precision of current 

methods by gaining attack code patterns from 

outside experts. 

6. References 

[1]https://www.owasp.org/index.php/Top_10_2

013-Top_10  

[2] Nilesh Kochre, Satish Chalukar, Santosh 

Kakde, “Survey On SQL Injection Attacks And 

Their Countermeasures “, International Journal 

Of Computational Engineering And 

Management, Vol -14, October 2011  

[3]https://www.owasp.org/index.php/Top_10_2

013-A2- 

Broken_Authentication_and_Session_Managem

ent [4] Hossain Shaihriar and Mahammad 

Zulkernine, “S2 XS2 : A Server Side Approach 

To Automatically Detect XSS Attacks”, Ninth 

International Conference on Dependable, 

Automatic Secure Computing, IEEE, 2011 

PP.7-17 

[5] Jeom-Goo Kim, “Injection Attack Detection 

Using Removal of SQL Query Attribute Values 

“, IEEE 2011  

[6] Chai Wenguuang, Tan Chunhui, Duan 

Yuting, “Research Of Intelligent Intrusion 

Detection System Based On Web Data Mining 

Technology”, IEEE 4th International 

Conference On Business Intelligence And 

Financial Engg. 2011, PP. 14-17  

[7] Sruthy Mamadhan, Manesh T, Varghese 

Paul, “SQLStor: Blockage of Stored Procedure 

SQL Injection Attack Using Dynamic Query 

Structure Validation” 12th International 

Conference on Intelligent Systems Design and 

Applications (ISDA), IEEE, Nov. 2012, PP. 

240-245  

[8] Gao Jiao, Chang-Ming XU, JING Maohua 

“SQLIMW: a new mechanism against SQL-

Injection” in Proc. Of 2012 International 

Conference on Computer Science and Service 

System, 2012, PP. 1178-1180  

[9] Jaskanwal Minhas, Raman Kumar, 

“Blocking of SQL Injection Attacks by 

Comparing Static and Dynamic Queries” in 

International Journal Computer Network and 

Information Security, vol.2, 2013 PP.1-9  

[10] D.Huluka, O.Popov, “Root cause analysis 

of session management and broken 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 493 

authentication vulnerabilities”, IEEE World 

Congress on Internet Security, 2012, PP. 82-86  

[11] Yusuki Takamastu, Yuji Kosuga, Kenji 

Kono, “Automatic Detection Of Session 

Fixation Vulnerabilities “, 2012 Tenth Annual 

International Conference on Privacy, Security 

and Trust IEEE, PP- 112-119  

[12] Atul S. Choudhary and M.L Dhore, “CIDT: 

Detection Of Malicious Code Injection Attacks 

On Web Application”, International Journal Of 

Computing Applications Volume-52-N0.2, 

August 2012, PP. 19- 25  

[13] Takeshi Matsuda, Daiki Koizumi, “Cross 

Site Scripting Attacks Detection Algorithm 

Based on the Appearance Position of 

Characters”, 5th Intern 

ational Conference on Communications, 

Computers and Applications, IEEE, October 

2012, PP. 65-70  

[14] Yousra Faisal Gad Mahgoup Elhakeem , 

Bazara I. A. Barry,” Developing a Security 

Model to Protect Websites from Cross-site 

Scripting Attacks Using Zend Framework 

Application”, International Conference on 

Computing, Electrical and Electronics 

Engineering (ICCEEE), August 2013, PP. 624-

629. 

Author’s profile 

 

CHALLA PRATHYUSH KUMAR  

B-Tech in Laqshya Institute of Technology And 

Science, Khammam, M-Tech Computer Science 

and Engineering In Laqshya Institute of 

Technology and Science, Khammam, 

Mail id: prathyushchalla@gmail.com  

Phone number: 9666560146 

 

 

M.SRI DEVI  

Working as Asst.Professor and HOD , 

Department of CSE in Laqshya Institute of 

Technology and Sciences since 2008 July to till 

date. Working as IEEE student branch 

councellor, Deputy Representative for ISO 

certification work. 

Email id: - sridevi279.gunti@gmail.com 

 


