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ABSTRACT: 

In this thesis we focus on the mathematical and 

numerical aspects of the Fredholm integral 

equation of the second kind due to their wide 

range of physical application such as heat 

conducting radiation, elasticity, potential theory 

and electrostatics. After the classification of 

these integral equations we will investigate some 

analytical and numerical methods for solving the 

Fredholm integral equation of the second kind. 

Such analytical methods include: the degenerate 

kernel methods, the Adomain decomposition 

method, the modified decomposition method and 

the method of successive approximations. The 

numerical methods that will be presented here 

are: Projection methods including collocation 

method and Galerkin method, Degenerate kernel 

approximation methods and Nystrom methods. 

The mathematical framework of these numerical 

methods together with their convergence 

properties will be analyzed. Some numerical 

examples implementing these numerical methods 

have been obtained for solving a Fredholm 

integral equation of the second kind. The 

numerical results show a closed agreement with 

the exact solution. 

Keywords: Fredholm integral equation, Galerkin 

method, Nystrom methods 

INTRODUCTION: 

The subject of integral equations is one of the 

most important mathematical tools in both pure 

and applied mathematics. Integral equations play 

a very important role in modern science such as 

numerous problems in engineering and 

mechanics, for more details. In fact, many 

physical problems are modeled in the form of 

Fredholm integral equations, such problems as 

potential theory and Dirichlet problems which 

discussed, electrostatics, mathematical problems 

of radiative equilibrium, the particle transport 

problems of astrophysics and reactor theory, and 

radiative heat transfer problems which 

discussed,.  Many initial and boundary value 

problems associated with ordinary differential 

equations (ODEs) and partial differential 

equations (PDEs) can be solved more effectively 

by integral equations methods. Integral equations 

also form one of the most useful tools in many 

branches of pure analysis, such as the theories of 

functional analysis and stochastic processes. 

Definition  

An integral equation is an equation in which the 

unknown function   to be determined appears 

under the integral sign. A standard integral 

equation is of the form 

 ( )   ( )   ∫  (   )  ( )  
 ( )

 ( )
 

           (1.1) 

Where  ( ) and  ( ) are limits of integration,   

is a constant parameter, and  (   ) is a function 

of two variables   and   called the kernel of the 

integral equation. The function  that will be 

determinedappears under the integral sign, and 

sometimes outside the integral sign.The 

functions   ( ) and  (   ) are known and ( ) 

is the unknown function. 

Thelimitsofintegration  ( )and  ( ) may be 

both variables, constantsor mixed, and they may 

be inone dimension or two or more.  

Fredholm integral equations 

The most standard form of Fredholm integral 

equations is given by the form 

   ( ) ( )   ( )  
 ∫  (   ) ( )                                       

 
      (   ) 

withD  a closed bounded set in   ,  for some m 

≥  1 .  

Case(i)If the function  ( )         (   ) 

yields   

                                                       ( )  
 ∫  (   )  ( )                                                         

 
  

(1.3)                                
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The equation involved the unknown function   

only under the integral sign. In this case the 

integral equation is called Fredholm integral 

equation of the first kind. 

Case( i i ) If the function  ( )     
then(1.2)becomes   

                                              ( )   ( )  
 ∫  (   )

 
  ( )                              (1.4) 

The equation involved the unknown function   

both inside as well as outside the integral 

equation. In this casetheequation is called 

Fredholm integral equation of the second kind. 

Case(iii)If  ( ) is neither         then (1.2) 

called Fredholm integral equation of the third 

kind 

 

Volterra integral equations 

The most standard form ofVolterra integral 

equations is given by the form 

                               

    ( ) ( )   ( )   ∫  (   ) ( )  
 

 
       

(1.5) 

where the upper limit of integration is a variable 

and the unknown function   appears linearly or 

nonlinearly under the integral sign. 

Case(i)If the function  ( )     then equation 

(1.5) becomes 

  ( )  

 ∫  (   )  ( )                                                         
 

 

(1.6) 

The equation involved the unknown function   

appearsonly under the integral sign. In this case 

theintegral equation is called the Volterra 

integral equation of the first kind. 

Case(ii) If the function  ( )    then equation 

(1.5) becomes 

         ( )   ( )  

 ∫  (   )  ( )                                                   (   )
 

 
 

The equation involved the unknown function   

both inside as well as outside the integral sign. In 

this case the Integral Equation is called the 

volterra integral equation of the second kind. 

Case(iii)If  ( ) is nither   nor   then (1.5) 

called Volterraintegral equation of the third kind. 

Singular integral equations 

When one or both limits of integration become 

infinite or when the kernel becomes infinite at 

one or more points within the range of 

integration, the integral equation is called 

singular. For example, 

                                   ( )
  ( )

  ∫ (   
 

  

 |   |) ( )  (   ) 
is a singular integral equation of the second kind. 

Case (i)Singular Integral Equation: The kernel is 

of the form  

                                                                   (   )

 
 (   )

   
 

Where  (   ) is a differentiable function of 

(   ) with  (   )     then the integral 

equation is said to be a singular equation with 

Cauchy kernel where the integral 

∫
 (   )

   

 

 

  ( )   

is understood in the sense of Cauchy Principal 

Value (CPV) and the notation P.V 

∫
 (   )

   

 

 

    

 

is usually used to denote this. Thus 

                                      ∫
 (   )

   

 

 

   

     
   

{∫
 (   )

   
   

   

 

 ∫
 (   )

   
   

 

   

} 

 

Case(ii)Weakly singular integral equation: Here 

the kernel is of the form 

    (   )  
 (   )

|   | 
 

 

Or 

    (   )   (   )   |  
 | 
Where  (   ) is bounded              
      with  (   )          is a constant 

such that        For example, the equation  
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  ( )   ∫
 

(   ) 
  ( )  

 

 
      

 (1.9) 

Is a singular integral equation with a weakly 

singular kernel. 

Case (iii) Strongly singular integral equations : 

If the kernel  (   ) is of the form  

                                                                  (   )

 
 (   )

(   ) 
 

Where  (   ) is a differentiable function of 

(   )with (   )    , then the integral equation 

is said to be a strongly singular integral equation. 

For more details see [22]. 

Integro Differential equations 

In this type of equations, the unknown function 

  appears as a combination of both ordinary 

derivative and under the integral sign. In the 

electrical engineering problem, the current  ( ) 

flowing in a closed circuit containingresistance, 

inductance and capacitance is governed by the 

following integro-differential equation, 

                                                      
  

  
   

 
 

 
∫  ( )   

 

 

  ( )                                           (    ) 

Where L is the inductance, R the resistance, C 

the capacitance, and  ( ) be the applied voltage. 

Similar examples can be cited as follows 

  ( )    
 

 
  ∫   

 

 
 ( )          ( )  

                              (1.11) 

 

                            ( )
  ( )

  ∫ (   ) ( )            ( )
 

 

      ( )                    (    ) 

SOLVING FREDHOLM INTEGRAL 

EQUATIONS OF THE SECOND KIND: 

The existence and uniqueness 

Some integral equation has a solution and some 

other has no solution or that it has an infinite 

number of solutions, the following theorems 

state the existence and uniqueness among the 

solution of Fredholm integral equation of the 

second kind. 

Note: It is important to say that we will discuss 

the analytical methods in the space 

  ,   -            

Theorem (Fredholm alternative) 

Either the nonhomogeneous linear equation of 

second kind  

                                                        ( )   ( )  

 ∫  (   )  ( )                                                (   )
 

 

has a unique solution for any function  ( ) (in 

some sufficiently broad class) or the 

corresponding homogeneous equation 

 ( )   ∫  (   )      
 

 
 (2.2) 

has at least one nontrivial (that is, not identically 

zero) solution. 

Theorem. If the first alternative holds true for 

equation (2.1), then it holds true for the 

associated equation 

   ( )   ( )  

 ∫  (   )  ( )   
 

 
 (2.3) 

as well. The homogeneous integral equation 

(2.2) and its associated equation 

 

  ( )  

 ∫  (   )  ( )    
 

 
(2.4) 

have one and the same finite number of linearly 

independent solutions. 
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Note: If the functions   ( )   ( )     ( ) 

are solutions of the homogeneous equation (2.2), 

then their linear combination   

                  ( )
     ( )      ( )        ( )

 ∑    ( )                           (   )

 

   

 

where the   (         ) are arbitrary 

constants, is also a solution of the equation. 

Theorem. A necessary and sufficient condition 

for the existence of a solution  ( ) of the non-

homogeneous equation (2.1) in the latter case of 

the alternative is the condition of a orthogonality 

of the right side of the equation, i.e., of the 

function  ( ), to any solution  ( ) of the 

homogeneous equation (2.4) associated with 

(2.2) 

∫  ( ) ( )   
 

 

 

Some Analytical Methods for solving 

Fredholm integral equations of the second 

kind 

The degenerate kernel method  

The kernel  (   ) of a Fredholm integral 

equation of the second kind is called degenerate 

if it is the sum of a finite number of products of 

functions of   alone by functions of   alone, i.e.., 

if it is of the form  

                                                              (   )

 ∑  ( )  ( )

 

   

                                                        (   ) 

We shall consider the functions 

  ( )        ( )  (           ) continuous 

in the basic square           and linearly 

independent. The integral equation with 

degenerate kernel (2.6). 

                                             ( )
  ( )

  ∫
 

 

[∑  ( )  ( )

 

   

]  ( )                                      (   ) 

is solved in the following manner . 

Rewrite (2.7) as, 

                                ( )
  ( )

  ∑  ( )∫
 

 

  ( )  ( )

 

   

                                        (   ) 

and introduce the notation   

∫
 

 

  ( )  ( )      (         )(   ) 

Then (2.8) becomes 

  ( )   ( )   ∑    ( ) 
   

    (2.10) 

Where    are unknown constants, since the 

function  ( ) is unknown. Thus, the solution of 

an integral equation with degenerate kernel 

reduces to finding the constants    (  
       )  Putting the expression (2.10) into the 

integral equation (2.7), we get 

 ∑ *   ∫   ( )
 

 
, ( )   

   

 ∑     ( )-  +  ( )    
    

Whence it follows, by virtue of the linear 

independence of the functions   ( )(  
       )  that 

    ∫   ( ), ( )  
 

 

 ∑     ( )-     
    

Or 

      

 ∑   ∫   ( )    ( )   ∫   ( ) ( )   
 

 

 

 
 
   

(         ) 
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For the sake of brevity, we introduce the 

notations 

       

∫   ( )  ( )   
 

 
 

      

∫   ( ) ( )  
 

 
 

And find that 

    ∑                 (   
   

       )(2.11) 

Or, in expanded form 

(      )                     
        (      )              

                                                      
                                                 
                                            

   
                   (      )     

|

|

(2.12) 

For finding the unknowns     we have a linear 

system of n algebraic equation in n unknowns. 

The determinant of this system is  

  ( )  

|

|

                      

                          

                                                 
                                                 

                                                        
                                

|

|

 

 (2.13) 

For all values of   for which  ( )     the 

algebraic system (2.11), and there by the integral 

equation (2.7), has a unique solution. On the 

other hand, for all values of   for which  ( ) 

becomes equal to zero, the algebraic system 

(2.11), and with it the integral equation (2.7), 

either is insoluble or has an infinite number of 

solutions. Note that we have considered only the 

integral equation of the second kind, where alone 

this method is applicable. 

Example solve the integral equation 

  ( )   ∫ (        
 

  

                   )  ( )     (2.14) 

Now, write the equation (2.14) in the following 

from, 

            ( )    ∫  ( )         
 

  

        ∫     ( )  
 

  

        ∫  ( )           
 

  

 

We introduce the notation  

    ∫  ( )         
 

  
        

 ∫    ( )              ∫  ( )         
 

  

 

  
(2.15) 

 Where          are unknown constants. Then 

equation (2.14) assumes the form 

 ( )                              
(2.16) 

Substituting expression (2.16) into (2.15), we get 

         ∫ (              
 

  

          

  )           

    ∫ (              
 

  

          

  )         

                                            

  ∫ (              
 

  

            )           

Or 
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  (   ∫          
 

  

)

     ∫            
 

  

     ∫         
 

  

 

  ∫         
 

  

 

                   ∫      
 

  

    ( 

  ∫          
 

  

)

    ∫          
 

  

 

      

∫      
 

  
 

     ∫            
 

  

   ∫         
 

  
    (  

 ∫            
 

  
) 

 ∫           
 

  

 

By evaluating the integrals that enter into this 

system we obtain a system of algebraic equations 

for finding the unknowns           

           
          

                 
}   

 (2.17) 

The determinant of this system is  

 ( )  |
     
     

        
|            

The system (2.17) has a unique solution  

   
    

       
         

    

       
   

   
  

       
 

Substituting the values of           thus found 

into (2.16) we obtain the solution of the given 

integral equation 

 

                   ( )  
   

       
(    

              )    

For more examples see [54] 

The Method of successive approximations : 

Neumann’s series 

The successive approximation method, which 

was successfully applied to Volterra integral 

equations of the second kind, can be applied 

even more easily to the basic Fredholm integral 

equations of the second kind: 

                                                       ( )
  ( )

  ∫  (   ) ( )                                               (    )
 

 

 

We set   ( )   ( ). Note that the zeroth 

approximation can be any selected real-valued 

function   ( ),      . Accordingly, the 

first approximation   ( ) of the solution of 

 ( ) is defined by 

                                                      ( )
   ( )

  ∫  (   )  ( )                                            (    )
 

 

 

The second approximation   ( ) of the solution 

 ( ) can be obtained by replacing   ( ) in 

equation (2.19) by the previously obtained 

  ( )  hence we find 

 

   ( )   ( )   ∫  (   )  ( )    
 

 
   

(2.20) 

This process can be continued in the same 

manner to obtain the nth approximation. In other 

words, the various approximation can be put in a 

recursive scheme given by 
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    ( )   any selective real valued 

function 

 

   ( )  

 ( )   ∫  (   )    
( ) 

 
             (2.21) 

Even though we can select any real-valued 

function for the zeroth approximation   ( )  the 

most commonly selected functions for   ( ) are 

  ( )            We have noticed that with 

the selection of   ( )    the first 

approximation  ( )   ( ). The final solution 

 ( ) is obtained by  

       ( )          ( )
 (2.22) 

So that the resulting  ( ) is independent of the 

choice of  ( ). This is known as Picard’s 
method. 

The Neumann series is obtained if we set 

  ( )   ( ) such that 

   ( )   ( )  

 ∫  (   )  ( )    
 

 
 

 

   ( )   ∫  (   ) ( )  
 

 
 

 

  
 ( )  
   ( )                                                                (  23) 

Where 

 

   ( )  

∫  (   ) ( )  
 

 
                                                   (    )

  

The second approximation   ( ) can be 

obtained as  

  ( )   ( )   ∫  (   )  ( )    
 

 

 

  

   ( ) ∫  (   )* ( )  
 

 

    ( )+    

                                                     
  ( )     ( )
     ( )(    ) 

Where 

  ( )

 ∫  (   )  ( )                                                    (    ) 
 

 

 

Proceeding in this manner , the final solution 

 ( ) can be obtained 

  ( )   ( )     ( )  
    ( )        ( )    

                                          

  ( ) ∑     ( )                                                                             (    )

 

   

 

Where  

                  ( )

 ∫  (   )    ( )                                                   (    ) 
 

 

 

Example  

Solve the Fredholm Integral equation  

 ( )    ∫   ( )
 

 

    

By using the successive approximation method. 

For solution let us consider the zeroth 

approximation is   ( )     and then the first 

approximation can be computed as 

  ( )
  

 ∫    ( )
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   ∫     
 

 

 

 

    
  

Proceeding in this manner,we find 

  ( )
  

 ∫    ( )
 

 

    

        

∫  (   )   
 

 
 

       

    .    
 

 
/ 

Similarly, the third approximation is  

  ( )
  

  ∫ (  
 

 

  
  

 
)     

        

 .    
 

 
 

 

 
/ 

Thus, we get  

  ( )     {    
 

 
 

 

  

 
 

  
        

 

    
} 

And hence  

 ( )     
   

  ( ) 

      
   

 ∑
 

  

 

   

 

    

 .   
 

 
/
  

 

      

This is the desired solution. 

Numerical Methods for Solving Fredholm 

Integral Equations of the Second Kind 

Degenerate kernel approximation methods 

We discussed the degenerate kernel method as an 

analytical method in chapter two (2.3.1) for 

solving the Fredholm integral equation  

 ( )   ( )   ∫  (   )  ( )            
 

   (3.1) 

with    and     , for some    , where 

D is a closed and bounded set. 

We said that the kernel  (   ) is degenerate if it 

can be expressed as the sum of a finitenumber of 

terms, each of which is the product of a function 

of   only and a function of   only such that  

                                 (   )

 ∑  ( )  ( )

 

   

                                                        (   ) 

but most kernel functions  (   ) are not 

degenerate. So that in this chapter we seek to 

approximate them by degenerate kernels. 

The solution of the integral equation by the 

degenerate kernel method 

In the view of the integral equation (3.1), the 

kernel function  (   ) is to be approximated by 

a sequence of degenerate kernel functions, 

 

  

         (   )  ∑     ( )    ( )                      
   

 (3.3) 

 

In such a way that the associated integral 

operators    satisfy 
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              (3.4) 

Where the associated integral operator is defined 

as  

   ( )  ∫   (   ) ( )               
 

 ( )                    (3.5) 

Where   is a closed bounded set in     for some 

     and using     ( ) with       such that 

   ( )   ( ) is compact. 

We can write the integral equation (3.1) in the 

operator from as 

(    )       (3.6) 

Then (3.6) can be written using (3.5) as  

(     )        (3.7)  

Where    is the solution of the approximating 

equation. Using the formula (3.3) for   (   )  
the integral equation (3.7) becomes    

  ( )  
 ( )   ∑     ( ) ∫     ( )  ( )  

 
 
        (3.8) 

And using the technique discussed in section 

(2.31) we have                

  ( )   ( )   ∑     ( ) 
              (3.9) 

Where  

    ∑    
 
                                 

(3.10) 

Such that 

   ∫  ( ) ( )      (3.11) 

And 

    ∫  ( )  ( )    (3.12) 

Are known constants. Again as we stated in 

section (2.31) equation (3.10) represents a 

system of   algebraic equations for the 

unknowns    whose determinant  ( ) is given 

by 

 

 

 

 

 ( )  

|

|

                      

                          

                                                 
                                                 

                                                        
                                

|

|

  (3.13) 

Which is a polynomial in   of degree at most 

n,that is not identically zero. 

To analyze the solution of (3.1) by the 

degenerate kernel method the following 

situations arise: 

Situation I: when at least one right member of 

the system (3.9)           is non zero, the 

following two cases arise under this situation. 

(i) If  ( )   , then a unique non 

zero solution of system (3.10) 

exists and so (3.1) has unique non 

zero solution given by (3.9). 

(ii) If  ( )   , then the system 

(3.10) have either no solution or 

they possess infinite solution and 

hence (3.1) has neither no 

solution or infinite solution. 

Situation II:When  ( )   , then (3.11) shows 

that      for            Hence the system 

(3.10) reduces to a system of homogeneous 

linear equation. The following two cases arises 

under this situation. 

(i) If  ( )   , then a unique non 

zero solution           
     of the system (3.10) exists 

and so we see that (3.1) has 

unique zero solution   ( )     
(ii) If  ( )   , then the system 

(3.10) posses infinite non zero 

solutions and so (3.1) has infinite 
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non zero solutions, those value of 

  for which  ( )    are known 

as eigenvalues and any nonzero 

solution of the homogeneous 

Fredholm integral equation 

 ( )   ∫  (   )  ( )   
 

 is 

known as a corresponding 

eigenfunction of integral 

equation. 

Situation III: When  ( )    but 

∫  ( )  ( )     
 

∫  ( )  ( )     
 

  

∫  ( )  ( )     
 

 (3.14) 

that is  ( ) is orthogonal to all the functions 

  ( )   ( )     ( )    
   (3.15) 

Then 

         are zeros and reduces (3.11) to a 

system of homogeneous linear equations. The 

following two cases arise under this situation

  

(i) If  ( )   , then a unique zero 

solution              
 , and hence (3.1) has only 

unique solution   ( )   . 

(ii) If  ( )   , then the system 

(3.10) possess infinite nonzero 

solutions and hence (3.1) has 

infinite nonzero solutions. 

Taylor series approximation  

Let  (   ) is a continuous function of two 

variables  and  , then the Taylor series 

expansion of function   at the neighborhood of 

any real number   with respect to the variable   

is : 

       (     )  ∑
(   ) 

  
 
   

  

    (   )     

(3.16) 

and 

       (       )  ∑
(   ) 

  

 
   

  

    (    

 )   (3.17) 

that mean the mth terms of Taylor expansion to 

the function at the neighborhood   with respect 

to the variable  . 

Consider the one-dimensional integral equation 

 ( )   ( )   ∫  (   )  ( )   
 

 
 (3.18) 

Often we can write   as a power series in  , 

 (   )  ∑   ( )(   )  
        (3.19) 

or in   

 (   )  ∑   ( )(   )  
       (3.20) 

Let    denote the partial sum of the first n terms 

on the right side of (3.19) 

  (   )  ∑   ( )(   )    
       (3.21) 

Using the notation of (3.3),    is a degenerate 

kernel with 

       ( )          ( )  (   )          
                        (3.22) 

The linear system (3.14) becomes 

    ∑   ∫ (   )       ( )   
 

 
 
   

∫  ( )(   )      
 

 
                  (3.23) 

and the solution    is given by 

  ( )   ( )   ∑     
   
     ( )(3.24) 

   The integrals in (3.23) must often be calculated 

numerically. However, there is not much that can 

be said for integrals of this generality. First, they 

involve the entire interval [a, b], as contrasted 

with some later methods we consider. In 

addition, most of the integrands will be zero or 

quite small, in the neighborhood of    , the 

left end of the interval. The latter may aid in 

choosing a more efficient method of numerical 

integration. The following example avoids the 

numerical calculation of most of these integrals. 

 

Interpolator degenerate kernel 

approximations 
Interpolation is a simple way to obtain 

degenerate kernel approximations. There are 

many kinds of interpolation, but we consider 

interpolation using only the values of 

 (   ).There are many candidates for 

interpolation functions, including polynomials, 
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trigonometric polynomials, piecewise 

polynomial functions (including spline 

functions), and others. We give a general 

framework for all of these, 

   Let   ( )   ( ) be a basis for the space of 

interpolation functions we are using. For 

example, with polynomial interpolation of 

degree   , we would use 

  ( )                                            
(3.25) 

Let       be interpolation nodes in the 

integration region D. The interpolation problem 

is as follows: Given data      f i nd  

 ( )  ∑     ( ) 
   (3.26) 

With 

 (  )                 
                                                        (3.27) 

Thus, we want to find the coefficients          

solving the linear system 

 

∑     (  )    
 
           

                                              (3.28) 

   In order for the interpolation problem to have a 

unique solution for all possible data {  }, it is 

necessary and sufficient that 

   (  )           ,  (  )-                                          
(3.29) 

 

 

With polynomial interpolation and the basis of 

(3.25) 

   [  
   ]

     

 
 

This is called a Vandermonde matrix, and it is 

known that     (  )    for all 

distinct choices of      . 

   To give an explicit formula for   (   )we 

introduce a special basis for the 

interpolation method. Define   ( )to be the 

interpolation function for which 

  (  )                    

Then the solution to the interpolation problem is 

given by  

 ( )  ∑     ( ) 
                                                 

(3.30) 

For polynomial interpolation, this is called 

Lagrange’s form of the interpolation polynomial. 

We often use this name when dealing with other 

types of interpolation, and the functions   ( ) 

are usually called Lagrange basis functions. With 

polynomial interpolation, 

  ( )  ∏(
    

     
)

 

   
   

 

 

 

Interpolation with respect to the variable t 

Define 

  (   )  ∑   ( )⏟  
  ( )

 
    (    )⏟    

  ( )

(3.31) 

Then   (    )   (    )        all    . 

For the case D = [a, b], 

With  (   ) being considered on the domain 

,   -    ,   -,  we have that 

  (    )         (   )alongall lines    . 

The linear system      associated with the 

degenerate kernel method (     )     is  

    ∑   ∫   ( ) (    )   
 

 
   

∫  (    ) ( )    
 

                        (3.32) 

The solution,    is given by, 

  ( )   ( )   ∑     ( ) 
                  (3.33) 

Note the integrals in (3.32) must generally be 

evaluated numerically. 

   When analyzing this degenerate kernel method 

within the context of the space  ( ), the error 

depends on 

‖    ‖        ∫ | (   )    (   )|   
 

    

(3.34) 

which in turn depends on the interpolation 

error (   )    (   ). Some special cases are 

considered below. 

NUMERICAL EXAMPLES AND RESULTS 

 

In this chapter we try to apply some of the 

numerical methods illustrated in chapter three to 

approximate the solution of the Fredholm 

integral equation 

 ( )   
 

 
   ( )  

 

 
∫    (   )  ( )  

 

 
 

   

(4.1) 

These methods include: the degenerate 

kernel method, the Nystr  ̈m 

methodandthe collocation method  we 

will use suitable algorithms and Matlab software, 
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then we will compare the exact solution with the 

approximate one using suitable number of n 

points. 

 

The numerical realization of equation (4.1) 

using the degenerate kernel method 

First we expand the kernel (   )withrespect to t 

using the Taylor seriessuch that 

       (     )  ∑
(   ) 

  

 
   

  

   
  (     )    

(4.2) 

where m is the number of Taylor series terms, by 

this expansion, the kernel can be written as the 

sum of two separated functions one with respect 

to  ,  and the other with respect to  , such that 

  (   )  ∑   ( )  ( )
   
                 (4.3) 

Where 

    ( )  .
 

  
/

    

      (   )           (4.4) 

And  

    ( )  (   )                   (4.5) 

then we calculate the values    , and    such that  

    ∫   ( )  ( )
 

 
    

   ∫   ( )
 

 
 ( )                (4.6) 

using the relations in section 2.3.1, and the above 

relations, we have 

    ∑      
 
                      (4.7) 

now putting this relations in the matrix form we 

have, where 

 ,  -    
Where  

       
such that I is the identity matrix, 

   [   ]               

    ,  -             

And the matrix 

,  -       

The solution    is given by 

  ( )   ( )   ∑       ( )   
           (4.8) 

The following algorithm implements the 

degenerate kernel method  using the 

Matlabsoftware. 

Algorithm 1 

1.  Input a, b,    ( )  (   ) 

2.  Input the number of Taylor series terms m 

3.  Calculate the Taylor expansion of (   ) with 

respect to  

from  find   ( )       ( ),               

4.  Calculate     ∫   ( )  ( )          
 

 

        

5.  Calculate     ∫   ( )  ( )        
 

 

        
6.  Calculate the matrix 

  

|

|

                      

                          

                                                 
                                                 

                                                        
                                

|

|

 

7.  Calculate the determinate D(A) of matrix A 

8.  If  ( )   go to step 12. 

9. If ( )      the system has infinite number of 

solutions ,go to step 16 

10. The system has unique solution       
       go to step 16 

11. If     go to step 15 

12. If D(A) = 0, the system has infinite number 

of solutions, go to step 16, thesystem has    

unique solution                

13. If ( )     the system has no real solution, 

go to step 16 

14. The solution of system is,  -  ,   -  ,  -
  

then 

  ( )   ( )   ∑    

 

   

( ) 

1. End. 

For more details see [20]. 

By returning to3.1.2 and using algorithm 1, the 

kernel of this integral equation  (   )  
   (   )can be expanded using Taylor series 

for 5 terms as 

      (   (   )     )     ( )      ( )  
  

 
   ( )  

  

 
   ( )  

  

  
   ( )       (4.10) 

Implies 
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  ( )     ( )

  ( )     ( )

  ( )   
 

 
   ( )

  ( )   
 

 
   ( )

  ( )  
 

  
   ( ) }

  
 

  
 

                                                   

(4.11) 

and 

 

  ( )   

  ( )   

  ( )    

  ( )    

  ( )    }
 
 

 
 

                                                    

(4.12)   

The related Matlab program gives the following 

results. 

The matrix C = 

1.0000 1.0000 -0.5000 -0.1667 0.0417 

0.5708 1.0000 -0.2854 -0.1667  0.0238 

0.4674 1.1416 -0.2337 -0.1903 0.0195 

0.4510 1.4022 -0.2255 -0.2337 -0.1895 

0.4793 1.8040 -0.2396 -0.3007 0.0200 

The Matrix           

-0.2732 -1.2732 0.6366 0.2122 -0.0531 

-0.7268 -0.2732 0.3634 0.2122 -0.0303 

-0.5951 -1.4535 1.2976 0.2423 -0.0248 

-0.5742 -1.7853 0.2871 1.2976   0.2413 

-0.6102 -2.2970 0.3051 0.3828   0.9746 

The matrix ,  -         

0.8752 

0.9251 

1.0775 

0.8782 

1.7330 

then 

   
  

 
   (  )  

 

 
,  -,  (  )-                       (4.13) 

where 

        
(   )

   
                                           (4.14) 

Table 1: The exact and numerical solution of applying Algorithm 1 for equation (4.1). 
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Analytical solution 

      ( ) 

Approximate solution 

   
Error = |     | 

0 0 -0.116299822082018 0.116299822082018 

0.3927 0.382683432365090 0.271988984127792 0.110694448237297 

0.7854 0.707106781186547 0.618869933090427 0.088236848096121 

1.1781 0.923879532511287 0.871533544809957 0.052345987701329 

1.5708 1.000000000000000 0.991514074803429 0.008485925196571 

 

 

Figure 2: shows the exact solution  ( )        ( ) and the approximate one when      

 
 

 The exact and numerical solution of applying Algorithm 1 for equation (4.1). While Figure shows the 

absolute error which approaches zero. 
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Figure 3: The resulting error of applying algorithm 1 to equation (4.1). 

 

The numerical realization of equation (4.1) 

using the Nystr ̈m method 

To solve the Fredholm integral equation of the 

second kind which is given by 

 ( )   
 

 
   ( )  

 

 
∫    (   )  ( )  

 

 

 

 

byNystr ̈m method, first we should remember 

that the kernel    (   ) and the function 

 
 

 
   ( ) must be continuous, secondly, we 

should know that we can approximate the 

integral ∫  ( )  
 

 
 using quadrature rule by 

∑    (  )
 
   . By such approximation, for 

     , the Fredholm integral equation 

 ( )   ( )   ∫  (   )
 

 ( )                                  

(4.15) 

can be reduced to  

  ( )   ∑     (  
      )  (  )   ( )                          

(4.16) 

where its solution   ( ) is an approximation of 

the exact solution  ( ) to (4.15). A solution to a 

functional equation (4.16) can be obtained if we 

assign      to   in which              and 

        . In this way, (4.16) is reduced to a 

system of equations 

  (  )   ∑     (  
 
      )  (  )   (  )                               

(4.17) 

Next, writing the equation (4.17) in the matrix 

form 

         

         

  (     )         (4.18) 

where 

  ,  (  )-
       , (  )-

         [ (     )] 

      (         ) 

It's worth to mention that in order to approximate 

the integral, we will use the Trapezoidal Rule. 

Here, we implement it in the form such that 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.3927 0.7854 1.1781 1.5708
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∫  (   )
 

 
    ∑     (  

 
   
   

   )                              

(4.19) 

where D is a diagonal matrix such that the 

elements of its diagonal equal h where h depends 

on the initial and the end points of the interval [a, 

b], and the number of the approximations n such 

that     
   

 
 .The elements of the matrix   

consist of the entries  (     ) where     

         such that the approximations 

     obtained as         , where    
            and         

The following algorithm implements the 

Nystr ̈m methodusing the Matlabsoftware. 

Algorithm 2 

Input          ( )  ( ) 

  
   

 
 

          

For             

         

End 

For          

    (  ) 

      

       is diagonal matrix 

For          

     (     ) 

end 

  identity matrix  

          

  the answer of         

 ( )  the interpolating polynomial at ,     - 

Table     shows the exact solution  ( )  
    ( ) and the approximate one when     , 

and showing the error resulting of using the 

numerical solution. 

Note: The table shows the first 10 values and the 

last 10 values only 

Table     The exact and numerical solution of 

applying Algorithm   for equation (   )  

x 
Analytical solution 

       ( ) 

Approximate solution 

   
Error  |     | 

0 0 0.031405592470328 0.031405592470328 

0.0314 0.031410759078128 0.062780191412531 0.031369432334402 

0.0628 0.062790519529313 0.094092833885359 0.031302314356046 

0.0942 0.094108313318514 0.125312618091103 0.031204304772588 

0.1257 0.125333233564304 0.156408733871965 0.031075500307661 

0.1571 0.156434465040231 0.187350493115954 0.030916028075723 

0.1885 0.187381314585725 0.218107360042338 0.030726045456613 
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0.2199 0.218143241396543 0.248648981336784 0.030505739940241 

0.2513 0.248689887164855 0.278945216106394 0.030255328941540 

0.2827 0.278991106039229 0.308966165625180 0.029975059585951 

1.2881 0.960293685676943 0.968423843447016 0.008130157770073 

1.3195 0.968583161128631 0.975756237987680 0.007173076859049 

1.3509 0.975916761938747 0.982125678925927 0.006208916987179 

1.3823 0.982287250728689 0.987525880392547 0.005238629663858 

1.4137 0.987688340595138 0.991951513040665 0.004263172445527 

1.4451 0.992114701314478 0.995398209305166 0.003283507990688 

1.4765 0.995561964603080 0.997862567712965 0.002300603109885 

1.5080 0.998026728428272 0.999342156239842 0.001315427811571 

1.5394 0.999506560365732 0.999835514710546 0.000328954344814 

 

 

 

Figure 4: The exact and numerical solution of applying Algorithm 2 for equation (   )  

The CPU time is 0.064010 seconds. 

The error analysis of the Nystr ̈m method 

If we consider the trapezoidal numerical 

integration rule 
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  ∫  ( )  
 

 
  ∑   (  )

 
                                      

(4.20) 

with  
   

 
 and         for        . 

The notation     means the first and last terms 

are to be halved before summing. For the error, 

∫  ( )  
 

 
 

 ∑   (  )   
  (   )

  

 
     (  )           

,   -    (4.21)                    

with   some point in ,   -  There is also the 

asymptotic error formula 

∫  ( )    ∑   (  )
 
     

  

  
,  ( )  

 

 

  ( )-   (  )            ,   -       (4.22) 

When this is applied to the integral equation 

 

  ( )  

 ( )   ∫  (   ) ( )  
 

 
                    

(4.23) 

we obtain the approximating linear system  

   (  )  
 (  )    ∑   (     )  (  )              

    

(4.24) 

which is of order        

The Nystrom interpolation formula is given by 

  ( )   ( )    ∑   (    )  (  )    
   

      (4.25) 

The speed of convergence is based on the 

numerical integration error 

(    ) ( )   
  (   )

  
0
   (   ) ( )

   
1      

(4.26) 

with   ( )  ,   -. From (    ), the asymptotic 

integration error is 

(    ) ( )   
  

  
0
  (   ) ( )

  
1   (  )     

(4.27) 

From (    ), we see the Nystr ̈m method 

converges with an order of   (  ), provided 

 (   ) ( ) is twice continuously differentiable 

with respect to  , uniformly in    For more 

details see ,  -. 

These results show that the algorithm  , yields 

acceptable results since the maximum absolute 

error which is         (  )  

The numerical realization of equation (4.1) 

using the Collocation method 

First we expand the function   ( ) as a sum of 

basis *       + such that 

    ( )  ∑     ( )           
  
   

0  
 

 
1          (4.28) 

Since the residual   ( ) can be written as  

 

   ( )    ( )   ∫  (   )  ( )   
 

 ( )      (4.29) 

Then by substituting (4.15) into the equation 

(4.16) so as to determine the values of the 

coefficients *       +  such that 

    ( )  ∑   {  ( )   
   

 ∫  (   )  ( )  
 

}   ( )  (4.30) 

But we pick distinct node points            
such that            

               (  )                              (4.31) 

Then (    ) can be rewritten as 

 

 ∑   {  ( )   ∫  (   )  ( )  
 

}   
   

 ( )          (4.32) 

In this example we have   ,   -   (  
 )  . Hence we take the node points are , 
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We introduce the language basis functions for 

piecewise linear interpolation as  

   ( )  {
  |

    

 
|             

                                      
                                               

(4.33) 

Where the subspace    is the set of all functions 

that are piecewise linear on [a,b], with 

breakpoints *       +. Its dimension is    . 

The projection operator is defined by 

   ( )  ∑  (  )  ( ) 
                        (4.34) 

Now for convergence of   ( ) 

         

 {
  (   )                ,   -            

  

 
                    ,   -                

                         

(4.35) 

Where the function   is defined by  

 (   )            
|   |  

| ( )   ( )|                                      

(4.36) 

And it is called the modulus of the function 

 .This shows that      for all   
 ,   - Now for any compact operator 

   ,   -   ,   - Lemma (3.6) implies 
‖     ‖    as     .Therefore the results 

of Theorem (3.4) can be applied directly to the 

numerical solution of the integral equation 

(   )    For sufficiently large n, say 

   , the equation (     )       has a 

unique solution    for each    ,   - ; and we 

can write  

‖    ‖  | | ‖     ‖  

For     ,   - 

‖    ‖  | |  
  

 
‖  ‖              (4.37) 

The linear system (4.32) takes the simpler form  

  (  )   ∑   (  )
 
   ∫  (    )  

 

 
( )   

 (  )        (4.38) 

And we simplify the integral for            

∫  (    )  ( )  
 

 
  

 

 
∫  (    )(  

  

    

    )   
 

 
∫  (    )(    )  

    

  
(4.39) 

We have calculated the integrals above 

numerically using quadrature rules specifically 

Trapezoidal Rule which is of the form  

∫  ( )   
 

 
 

   

 
0
 

 
 (  )  ∑  (  )     

   

 

 
 (  )1 (4.40) 

Now substituting (4.39) in (4.38) and putting this 

relation in the matrix form we have 

  
 

 
 (       )    (  

 

 
(       ))     (4.41) 

Where 

  ,  (  )-
    
  , (  )-

     [ (     )]  

     (          ) 

  [       ]            ,     - 

 

The following algorithm implements the 

collocation method using the Matlab Software. 

Algorithm 3 

Input          ( )  ( ) 

  
   

 
 

            

For           

         

End 
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For            

    (  ) 

      

       is a diagonal matrix 

For            

     (     ) 

end 

  identity matrix  

For            

For            

            

          

            

          

      
 

 
(       ) 

                        

 ( )
                                 ,     - 

Table 4.2 compare the exact solution  ( )  
    ( ) with the approximate one when   
  and showing the error resulting of using the 

numerical solution. 

Table 3: The exact and numerical solution of applying Algorithm 3 for equation (4.1). 

  
Analytical solution 

       ( ) 

Approximate solution 

   
Error = |     | 

0 0 -0.031467686762045 0.031467686762045 

0.0314 0.031410759078128 -0.000000000000004 0.031410759078132 

0.0628 0.062790519529313 0.031467686762042 0.031322832767271 

0.0942 0.094108313318514 0.062904318716399 0.031203994602115 

0.1257 0.125333233564304 0.094278871702702 0.031054361861602 

0.1571 0.156434465040231 0.125560382825064 0.030874082215167 

0.1885 0.187381314585725 0.156717981008673 0.030663333577051 

0.2199 0.218143241396543 0.187720917465807 0.030422323930735 

0.2513 0.248689887164855 0.218538596041232 0.030151291123623 

0.2827 0.278991106039229 0.249140603406845 0.029850502632384 

1.2881 0.960293685676943 0.952780175523255 0.007513510153688 
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1.3195 0.968583161128631 0.962034086005045 0.006549075123586 

1.3509 0.975916761938747 0.970338584991732 0.005578176947016 

1.3823 0.982287250728689 0.977685476945429 0.004601773783260 

1.4137 0.987688340595138 0.984067511370779 0.003620829224359 

1.4451 0.992114701314478 0.989478389970310 0.002636311344168 

1.4765 0.995561964603080 0.993912772860129 0.001649191742951 

1.5080 0.998026728428272 0.997366283839667 0.000660444588605 

1.5394 0.999506560365732 0.999835514710550 0.000328954344819 

1.5708 1.000000000000000 1.001318028640015 0.001318028640015 

 

Figure 4: shows the exact solution  ( )      ( ) with the approximate one when       ,  

 

 

Figure 4: The exact and numerical solution of applying Algorithm 3 for equation (4.1). 

The CPU time is 0.066202 seconds. 

These results show that the algorithm yields 

acceptable results since the maximum absolute 

error which is 0.03 is less than or equal  ( ). 

Conclusion: 

   In this thesis we have presented some 

analytical and numerical methods for solving a 

fredholm integral equation of the second kind. 
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The analytical methods are the degenerate kernel 

methods,the Adomain decomposition method, 

the modified decomposition method and the 

method of successive approximations. Moreover, 

we have used the following numerical methods: 

Projection methods including collocation method 

and Galerkin method, Degenerate kernel 

approximation methods and Nystr ̈m methods, 

for approximating the solution of the Fredholm 

integral equations. The have presented each 

numerical method as algorithm and applied these 

algorithms on the same Freedholm integral 

equation using Matlab Software; we have found 

that the numerical solution was approximately as 

the exact solution. The absolute error has 

approached zero which was shown that 

numerical results were acceptable. 
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