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ABSTRACT: Blind adaptive beam forming is getting 

appreciated for its various applications in 

contemporary communication systems where sources 

are statistically dependent or independent that are 

allowed to formulate new algorithms. Qualitative 

performance and time complexity are the main issues. 

In this paper, we propose a technique for constant 

modulus signals applying basic non-negative matrix 

factorization (BNMF) in blind adaptive beam forming 

environment. We compared the existing Unscented 

Kalman Filter based Constant Modulus Algorithm 

(UKF-CMA) with proposed NMF-UKF-CMA 

algorithm. We see there is a better improvement of 

sensor array gain, signal to interference plus noise 

ratio (SINR) and mean squared deviation (MSD) as 

the noise variance and the array size increase with 

reduced computational complexity with the UKF-

CMA. 

Keywords: Blind Adaptive Beam forming, NMF-

UKF-CMA, Performance Comparison, UKF-CMA, 

MSD, SINR 

(I) Introduction 

Adaptive blind beamforming plays an important 

role in the contemporary communication systems 

where it constantly tributes to the enhancement of 

the signals that tend to be received or transmitted. 

Adaptive beamforming is achieved through varying 

the tap weights assigned to each antenna at every 

time instant applying signal processing algorithm. 

The weights are adjusted such that maximum array 

sensor gain is obtained with minimal amount of 

residual error. On processing the beamforming 

signals, the computational complexity depends on 

the algorithm which works upon the signals. The 

recent UKF-CMA algorithm for blind 

beamforming application works quite well 

compared to other beamforming techniques such as 

Least Mean Squared-Constant Modulus Algorithm 

(LMS-CMA) and Recursive Least Mean Squared-

Constant Modulus Algorithm(RLS-CMA) with 

higher computational complexity [1]. 

The UKF-CMA algorithm enabled in Gaussian 

conditions converges to optimal solution when 

measurement noise is considered. However, UKF-

CMA with process noise results in sub-optimal 

solution [2] [3]. The CM criterion is incorporated 

into Weiner filter through which adaptability is 

achieved [2]. Generally, Constant Modulus (CM) 

cost functions with quadratic nature are very 

sensitive to array tap weights and can be minimized 

using Stochastic Gradient Descent methods (SGD) 

and the stability of SGD methods relatively 

depends on the step-size selected and thus results in 

slow rate of convergence [2]. 

An approximation of various CM algorithms is 

proposed. The computational cost of the 

Lagrangian formulated beamforming methods is 

higher over the regularized beam forming methods 

[4]. In unscented transform, the choice of sigma 

points is controlled by λ, which in turn linearises 

equal to the second order Gauss filter that results in 

optimal convergence of the solution [3] [5]. A new 

discriminate based non-negative matrix 

factorization algorithm is proposed for facial image 

characterization problems where discriminate 

analysis is based on the classification features [6]. 

A variant of NMF algorithm is proposed for blind 

source separation where it is a promising solution 

for spectral unmixing in hyper-spectral image 

processing and feature extraction [7]. Different 

methods of initialization are studied for NMF 

algorithm, where initialization plays an important 

role since decomposition is non-convex with many 

local minima [8]. Non-Negative Matrix 

Factorization Algorithm Non-Negative Matrix 

Factorization (NMF), a relatively novel technique 

for dimensionality reduction, has been in the 

growing fast since its origin. It incorporates the 

non-negativity constraint and thus achieves the 

parts-based representation as well as enhancing the 

construe of the problem correspondingly [9] [10]. 

Some new algorithms for NMF are proposed for 

blind source separation application when sources 

are statistically dependent by imposing constraints 

to the matrix [11]. Multichannel NMF 

decomposition algorithms are proposed for blind 

audio source separation. More variants of NMF 

algorithms for blind sources separation techniques 

can be found in [12]-[14]. An extensive survey of 

NMF algorithms can be seen in [15]. In rectangular 

matrix, the solution is normally iterative and the 

steps normally require a s b s b × × min , ( ) . In 

NMF, we make sure that the complexity is reduced 

to s b t × × , where t is the rank of the matrix. This 

is achieved by factoring the matrix, as a product of 

2 matrices, where first matrix acts as a set of basis 
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vectors and other is positive definite. In quadratic 

problems, the coefficient matrix has to be positive-

definite which is not true in general case, NMF 

forces the coefficient matrix to be positive-definite 

that results in closed-form solution. 

Figure 1 describes about the flow of the algorithm. 

The algorithm can be given as, Initialize Uo Vo, 

and m = 0 for 

 

Where  are 

non-negative matrices and the reduced rank t is 

given by t < min (s , b) where (s , b ,t )∈ R+ . In 

this paper, we have reduced the computational 

complexity of UKF-CMA algorithm by reducing 

dimensionality of the matrix computation, which is 

achieved through the non-negative matrix 

factorization. Note: Notations followed in the paper 

are bold small letters are vector. Capital letters are 

matrix. 

(II) Beam forming Model 

Consider a linear array of size L of uniform spacing 

d ≤ λ/2 and n is the number of source signals 

(interference and desired signals). The signal 

output of an adaptive beam former is represented as 

[1], 

 

Figure 1. Flowchart of NMF-UKF-CMA algorithm. 

    
  (1) 

The input signal vector um ∈C
L×1 

as, 

   
   (2) 

The Constant Modulus (CM) cost function for 

adaptive beamforming problem can be formulated 

as 

    (3)  

Where p > 0 , q > 0 and ζ is the signal modulus of 

the desired signal sm, which is a known a priori. As 

stated, the optimization problem is non-convex and 

non-linear. 

(III). Algorithm Formulation 

The constant modulus criterion in (3) assumes that 

the unknown system model fm for the input signal 

um is equal to the constant modulus of the desired 

signal ζ in (5). 

   
   (4) 

  
   (5) 

The final state space model is obtained by 

incorporating process noise qm. Since initial 

received signal is unknown, so we take it as noise 

vm adding to the model in (7). Applying the non-

linearity 

 
   (6) 

 
   (7) 

   (8) 

 

Where is the 

process noise. In (10) is approximated 

by non-negative matrix factorization 

   
   (9) 

   
   (10) 

Where 

 are non-negative matrices and the reduced rank t is 

given by t < min ( s, b ) where (s ,b ,t )∈ R+ . In the 

algorithm formulation, we ignore the process noise 

qm on including leads to suboptimal solution. 

(V). Proposed NMF-UKF-CMA Algorithm 
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The proposed NMF-UKF-CMA algorithm is as 

follows, 

 

 

 Extract the sigma points 

 as 

(11) 

Where w ∈ R
nw×1 

is an initial weight vector. 

 Extract matrix Am for the input signal um 

as 

 

And then get the sigma points  

For the updated state as 

  (12) 

 Extract the posteriori estimate 

as 

(13) 

Where j denotes the j-th column vector for 

and j—the element for vector 

 

 Extract the sigma priori covariance 

 

(14) 

Where j is the j-th column vector for w−m and j-th 

element for vector w c. 

 Extract the sigma points 

 through non-linear 

function as 

 (15) 

Where  for each element of the j-th 

column vector for  for  

 The output sigma points are approximated 

using non-negative matrix factorization 

algorithm as   

 (16) 

Where  are 

non-negative matrices and reduced rank 

 (17) 

 The obtained cross covariance matrix 

 as 

 (18) 

 The obtained auto covariance Rmm as 

(19) 

Where  

 Now apply the Kalman innovation matrix 

and the update formulas as 

 (20) 

 (21) 

(22) 

 Update the optimal weight vector  
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5 SIMULATION RESULTS 

In this section, we compare the performance of the 

proposed UKF-CMA algorithm with the LMS-

CMA [6] and RLS-CMA [3] algorithms in linear 

adaptive beamforming application. We consider a 

uniform linear array of 60 sensors i.e., with spacing  

 and the number of remote sources 

m to be 4. The desired signal was a minimum shift 

keying (MSK) signal with unity modulus and the 

magnitude of the interference signals were set 

equal to the amplitudes of Gaussian noise signal 

with unity variance and their phases were set equal 

to a uniformly distributed noise signal in the range 

of  -pi to pi . 

The direction of arrival of the desired signal was 

set to 10 and for the interference signals they were 

set as -30
o
, -45

o
, and 25, respectively. We set 

p=1since in the simulations in [3], [4], this lead 

LMS-CMA and RLS-CMA to achieve the highest 

signal-to-interference-plus-noise ratio (SINR). In 

addition to SINR, we used sensor array gain [3] and 

the mean square deviation (MSD), where s1,k is the 

desired signal component in , to assess the 

performance of all the algorithms. All curves were 

obtained by averaging the ensemble of 500 

independent 

In Experiment 1 we set the variance of the white 

Gaussian measurement noise signal to 0.1. The 

SINR, array gain, and MSD plots obtained are 

shown in Fig. 2. In Experiment 2 we set the 

variance of the white Gaussian measurement noise 

signal to 0.0316. The SINR, array gain, and MSD 

plots obtained are illustrated in Fig. 3. 

As seen from Fig. 2 (a) and Fig. 3(a), the proposed 

UKF-CMA yields a faster convergence and a 

slightly higher steady-state SINR compared to 

LMS-CMA and RLS-CMA. The plot for LMS-

CMA in Fig. 2 (b) is obtained after 60,000 

iterations at which point it achieves similar SINR to 

the other two algorithms. From Fig. 1 (middle) and 

Fig. 3 (b), we note that the proposed UKF-CMA 

offers better attenuation in most regions away from 

the desired direction 10 and hence it provides more 

noise reduction compared to other algorithms. 

From Fig. 2 (c) and Fig. 3 (c), we note that UKF-

CMA outperforms the other two algorithms in 

terms of MSD. In addition, LMS-CMA 

outperforms RLS-CMA because in RLS-CMA, the 

gradient vector ( ), and subsequently, relies instead 

of the true input signal, which results in larger 

phase distortion. 

 

 

 
Fig.2.Experiment1 (a) SINR in dB algorithm. 

 

 
Fig.2. Experiment1 (b) Sensor array gain in dB 

(middle) algorithm 

 
Fig 2 Experiment 1 (c) MSD in dB (right) of the 

algorithm 

 
Fig.3.Experiment 2 (a) SINR in dB algorithm. 
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Fig.3. Experiment2 (b) Sensor array gain in dB 

(middle) algorithm 

 

 
Fig 3 Experiment 2 (c) MSD in dB (right) of the 

algorithm 

 
Fig 4 Experiment 3: SINR in DB 

 
Fig 5 Experiment 4: SINR in DB 

 
(VI) CONCLUSIONS 

An unscented Kalman filter-based constant modulus 

algorithm for blind adaptive beamforming is developed. 

The proposed algorithm considers the output signal as 

part of the state transition equation of the Kalman filter. 

In doing so, it turns out that no a priori information about 

the process noise and measurement noise covariance 

matrices is required and furthermore, the modulus of the 

output signal is not required to be differentiable with 

respect to the weight vector. Simulation results showed 

that the proposed algorithm offers improved performance 

compared to two other blind adaptive beamforming 

methods, LMS-CMA and RLS-CMA. 
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