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ABSTRACT 

This paper mainly addresses the building of face recognition system by using Principal Component 

Analysis (PCA).   PCA is a statistical approach used for reducing the number of variables in face 

recognition. In PCA, every image in the training set is represented as a linear combination of weighted 

eigenvectors called eigenfaces. These eigenvectors are obtained from covariance matrix of a training 

image set. The weights are found out after selecting a set of most relevant Eigenfaces. Recognition is 

performed by projecting a test image onto the subspace spanned by the eigenfaces and then 

classification is done by measuring minimum Euclidean distance. A number of experiments were done to 

evaluate the performance of the face recognition system. In this thesis, we used a training database of 

students of Electronics and Telecommunication Engineering department, Batch-2007, Rajshahi 

University of Engineering and Technology, Bangladesh. 

I. INTRODUCTION 

Over the last ten years or so, face recognition 

has become a popular area of research in 

computer vision and one of the most successful 

applications of image analysis and 

understanding. Because of the nature of the 

problem, not only computer science 

researchers are interested in it, but 

neuroscientists and psychologists also. It is the 

general opinion that advances in computer 

vision research will provide useful insights to 

neuroscientists and psychologists into how 

human brain works, and vice versa [1].The 

goal is to implement the system (model) for a 

particular face and distinguish it from a large 

number of stored faces with some real-time 

variations as well. It gives us efficient way to 

find the lower dimensional space. Further this 

algorithm can be extended to recognize the 

gender of a person or to interpret the facial 

expression of a person. Recognition could be 

carried out under widely varying conditions 

like frontal view, a 45° view, scaled frontal 

view, subjects with spectacles etc are tried, 

while the training data set covers limited 

views. The algorithm models the real-time 

varying lighting conditions as well. But this is 

out of scope of the current implementation. 

The aim of this research paper is to study and 

develop an efficient MATLAB program for 

face recognition using principal component 

analysis and to perform test for program 

optimization and accuracy. This approach is 

preferred due to its simplicity, speed and 

learning capability [2]. 

FACE RECOGNITION 

 Face recognition is a biometric which 

uses computer software to determine the 

identity of the individual.  Face recognition 

falls into the category of biometrics which is 

―the automatic recognition of a person using 

distinguishing traits‖ [6].  Other types of 

biometrics include fingerprinting, retina scans, 

and iris scan. 

Eigenface-based Recognition 

 2D face recognition using eigenfaces is 

one of the oldest types of face recognition.  

Turk and Pentland published the 

groundbreaking ―Face Recognition Using 

Eigenfaces‖ in 1991.  The method works by 

analyzing face images and computing 

eigenfaces which are faces composed of 
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eigenvectors. The comparison of eigenfaces is 

used to identify the presence of a face and its 

identity.  

 There is a five step process involved with 

the system developed by Turk and Pentland. 

First, the system needs to be initialized by 

feeding it a set of training images of faces. This 

is used these to define the face space which is 

set of images that are face like.  Next, when a 

face is encountered it calculates an eigenface 

for it. By comparing it with known faces and 

using some statistical analysis it can be 

determined whether the image presented is a 

face at all. Then, if an image is determined to 

be a face the system will determine whether it 

knows the identity of it or not. The optional 

final step is that if an unknown face is seen 

repeatedly, the system can learn to recognize it.  

 The eigenface technique is simple, 

efficient, and yields generally good results in 

controlled circumstances [1].  The system was 

even tested to track faces on film.  There are 

also some limitations of eigenfaces.  There is 

limited robustness to changes in lighting, 

angle, and distance [6].  2D recognition 

systems do not capture the actual size of the 

face, which is a fundamental problem [4].  

These limits affect the technique‘s application 

with security cameras because frontal shots and 

consistent lighting cannot be relied upon.  

3D Face Recognition 

 3D face recognition is expected to be 

robust to the types of issues that plague 2D 

systems [4].  3D systems generate 3D models 

of faces and compare them.  These systems are 

more accurate because they capture the actual 

shape of faces.  Skin texture analysis can be 

used in conjunction with face recognition to 

improve accuracy by 20 to 25 percent [3].  The 

acquisition of 3D data is one of the main 

problems for 3D systems.  

How Humans Perform Face Recognition 

 It is important for researchers to know the 

results of studies on human face recognition 

[8].  Knowing these results may help them 

develop ground breaking new methods.  After 

all, rivaling and surpassing the ability of 

humans is the key goal of computer face 

recognition research.  The key results of a 2006 

paper ―Face Recognition by Humans: Nineteen 

Results All Computer Vision Researchers 

Should Know About‖ are as follows: 

1. Humans can recognize familiar faces in 

very low-resolution images. 

2. The ability to tolerate degradations 

increases with familiarity. 

3. High-frequency information by itself is 

insufficient for good face recognition 

performance. 

4. Facial features are processed holistically. 

5. Of the different facial features, eyebrows 

are among the most important for recognition. 

6. The important configural relationships 

appear to be independent across the width and 

height dimensions. 

7. Face-shape appears to be encoded in a 

slightly caricatured manner. 

8. Prolonged face viewing can lead to high 

level aftereffects, which suggest prototype-

based encoding. 

 

Staring at the faces in the green circles will 

cause one to misidentify the central face with 

the faces circled in red.  This is an example of 

face aftereffects [8]. 

 

9. Pigmentation cues are at least as 

important as shape cues. 

10. Color cues play a significant role, 

especially when shape cues are degraded. 
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11. Contrast polarity inversion dramatically 

impairs recognition performance, possibly due 

to compromised ability to use pigmentation 

cues. 

 

Photograph during the recording of ―We Are 

the World.‖  This figure demonstrates how 

polarity inversion effects face recognition in 

humans.  Several famous artists are in the 

picture including Ray Charles, Lionel Ritchie, 

Stevie Wonder, Michael Jackson, Tina Turner, 

Bruce Springstein, and Billy Joel though they 

are very difficult to identify. 

12. Illumination changes influence 

generalization. 

13. View-generalization appears to be 

mediated by temporal association. 

14. Motion of faces appears to facilitate 

subsequent recognition. 

15. The visual system starts with a 

rudimentary preference for face-like patterns. 

16. The visual system progresses from a 

piecemeal to a holistic strategy over the first 

several years of life. 

17. The human visual system appears to 

devote specialized neural resources for face 

perception. 

18. Latency of responses to faces in 

inferotemporal (IT) cortex is about 120 ms, 

suggesting a largely feed forward computation. 

19. Facial identity and expression might be 

processed by separate systems. 

FACE RECOGNITION PROCESS 

One of the simplest and most effective PCA 

approaches used in face recognition systems is 

the so-called eigenface approach. This 

approach transforms faces into a small set of 

essential characteristics, eigenfaces, which are 

the main components of the initial set of 

learning images (training set). Recognition is 

done by projecting a new image in the 

eigenface subspace, after which the person is 

classified by comparing its position in 

eigenface space with the position of known 

individuals [3]. The advantage of this 

approach over other face recognition systems 

is in its simplicity, speed and insensitivity to 

small or gradual changes on the face. The 

problem is limited to files that can be used to 

recognize the face. Namely, the images must 

be vertical frontal views of human faces. The 

whole recognition process involves two steps: 

A. Initialization 

process 

B. Recognition 

process 

The Initialization process involves the 

following operations: 

i. Acquire the initial set of face images 

called as training set.  

ii. Calculate the Eigenfaces from the training 

set, keeping only the highest eigenvalues. 

These M images define the face space. As new 

faces are experienced, the eigenfaces can be 

updated or recalculated.  

iii. Calculate distribution in this M-

dimensional space for each known person by 

projecting his or her face images onto this face-

space.  

These operations can be performed from time 

to time whenever there is a free excess 

operational capacity. This data can be cached 

which can be used in the further steps 

eliminating the overhead of re-initializing, 

decreasing execution time thereby increasing 

the performance of the entire system [4]. 

 Having initialized the system, the next process 

involves the steps:  

i. Calculate a set of weights based on the 

input image and the M eigenfaces by projecting 

the input  image onto each of the 

Eigenfaces.  
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ii. Determine if the image is a face at all 

(known or unknown) by checking to see if the 

image is  sufficiently close to a ―free 

space‖.  

iii. If it is a face, then classify the weight 

pattern as either a known person or as 

unknown.  

iv. Update the eigenfaces or weights as either 

a known or unknown, if the same unknown 

person face  is seen several times then 

calculate the characteristic weight pattern and 

incorporate into known   faces. The 

last step is not usually a requirement of every 

system and hence the steps are left  optional 

and can be implemented as when the there is a 

requirement.  

III. EIGENFACE ALGORITHM 

Let a face image Γ(x, y) be a two dimensional 

M by N array of intensity values. In this thesis, 

I used a set of image by 200 × 149 pixels. An 

image may also be considered as a vector of 

dimension M × N, so that a typical image of 

size 200 × 149 becomes a vector of dimension 

29,800 or equivalently a point in a 29,800 

dimensional space. 

 

Fig-1:Conversion of M 

× N image into MN ×1 vector 

 

Step1: prepare the training faces 

Obtain face images I1, I2, I3, I4 , . . . . . . IM 

(training faces). The face images must be 

centered and of the same size. 

Step 2: Prepare the data set 

Each face image Ii in the database is 

transformed into a vector and placed into a 

training set S. 

 

In My example M = 34. Each image is 

transformed into a vector of size MN × 1 and 

placed into the set. For simplicity, the face 

images are assumed to be of size N × N 

resulting in a point in  dimensional space. 

An ensemble of images, then, maps to a 

collection of points in this huge space. 

Step 3: compute the average face vector  

The average face vector (Ψ) has to be 

calculated by using the following formula: 

 

Step 4: Subtract the average face vector  

The average face vector Ψ is subtracted from 

the original faces  and the result stored in the 

variable , 

 

Step 5: Calculate the covariance matrix  

We obtain the covariance matrix C in the 

following manner, 

 

 

Step 6: Calculate the eigenvectors and 

eigenvalues of the covariance matrix 

The covariance matrix C in step 5 has a 

dimensionality of  , so one would have 

 eigenface and eigenvalues. For a 256 × 256 

image that means that on must compute a 65, 

536 × 65, 536 matrix and calculate 65,536 
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eigenfaces. Computationally, this is not very 

efficient as most of those eigenfaces are not 

useful for our task. In general, PCA is used to 

describe a large dimensional space with a 

relative small set of vectors [3]. 

Compute the 

eigenvectors  of   
AA

T 

The matrix AA
T 

is 

very large - -   not 

practical!!! 

Step 6.1: consider the matrix 

 

 

Step 6.2: compute eigenvectors vi of L= A
T 

A
 

 

What is the relationship between ui and vi ? 

 

 

where,  Thus, C = AA
T
 and L 

= A
T
A have the same eigenvalues and their 

eigenvectors are related as follows:  

Note 1: C = AA
T
 can have upto N

2
 eigenvalues 

and eigenvectors.  

Note 2: L = A
T
A can have upto M eigenvalues 

and eigenvectors.  

Note 3: The M eigenvalues of C = AA
T
 (along 

with their corresponding eigenvectors) 

correspond to the M largest eigenvalues of L = 

A
T
A (along with their corresponding 

eigenvectors).  

Where vi is an eigenvector of L = A
T
A From 

this simple proof we can see that A vi is an 

eigenvector of C = AA
T
. The M eigenvectors 

of L = A
T
A are used to find the M eigenvectors 

ui of C that form our eigenface basis:  

 

Where, ui are the Eigenvectors i.e. Eigenfaces.  

Step 7: keep only K eigenvectors 

(corresponding to the K largest eigenvalues)  

Eigenfaces with low eigenvalues can be 

omitted, as they explain only a small part of 

Characteristic features of the faces.  

 P R I N C I P A L  C O M P O N E N T  A N A L Y S I S  

 In principal components analysis (PCA) 

and factor analysis (FA) one wishes to extract 

from a set of p variables a reduced set of m 

components or factors that accounts for most of 

the variance in the p variables.  In other words, 

we wish to reduce a set of p variables to a set 

of m underlying superordinate dimensions. 

  These underlying factors are 

inferred from the correlations among the p 

variables.  Each factor is estimated as a 

weighted sum of the p variables.  The i
th

  factor 

is thus  

pipiii XWXWXWF  2211
 

 One may also express each of the p 

variables as a linear combination of the m factors, 

 

jmmjjjj UFAFAFAX  2211
 

where Uj  is the variance that is unique to 

variable j, variance that cannot be explained by 

any of the common factors. 

Goals of PCA and FA 

  One may do a PCA or FA simply 

to reduce a set of p variables to m 

components or factors prior to further 

analyses on those m factors.  For example, 

Ossenkopp and Mazmanian (Physiology and 

Behavior, 34:  935-941) had 19 behavioral and 

physiological variables from which they 

wished to predict a single criterion variable, 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 1854 

physiological response to four hours of cold-

restraint. They first subjected the 19 predictor 

variables to a FA.  They extracted five factors, 

which were labeled Exploration, General 

Activity, Metabolic Rate, Behavioral 

Reactivity, and Autonomic Reactivity.  They 

then computed for each subject scores on each 

of the five factors.  That is, each subject‘s set 

of scores on 19 variables was reduced to a set 

of scores on 5 factors.  These five factors were 

then used as predictors (of the single criterion) 

in a stepwise multiple regression. 

 One may use FA to discover and 

summarize the pattern of intercorrelations 

among variables.  This is often called 

Exploratory FA.  One simply wishes to group 

together (into factors) variables that are highly 

correlated with one another, presumably 

because they all are influenced by the same 

underlying dimension (factor).  One may also 

then operationalize (invent a way to measure) 

the underlying dimension by a linear 

combination of the variables that contributed 

most heavily to the factor. 

 If one has a theory regarding what basic 

dimensions underlie an observed event, e may 

engage in Confirmatory Factor Analysis.  

For example, if I believe that performance on 

standardized tests of academic aptitude 

represents the joint operation of several 

basically independent faculties, such as 

Thurstone‘s Verbal Comprehension, Word 

Fluency, Simple Arithmetic, Spatial Ability, 

Associative Memory, Perceptual Speed, and 

General Reasoning, rather than one global 

intelligence factor, then I may use FA as a tool 

to analyze test results to see whether or not the 

various items on the test do fall into distinct 

factors that seem to represent those specific 

faculties. 

 Psychometricians often employ FA in test 

construction.  If you wish to develop a test 

that measures several different dimensions, 

each important for some reason, you first 

devise questions (variables) which you think 

will measure these dimensions.  For example, 

you may wish to develop a test to predict how 

well an individual will do as a school teacher.  

You decide that the important dimensions are 

Love of Children, Love of Knowledge, 

Tolerance to Fiscal Poverty, Acting Ability, 

and Cognitive Flexibility.  For each of these 

dimensions you write several items intended to 

measure the dimension.  You administer the 

test to many people and FA the results.  

Hopefully many items cluster into factors 

representing the dimensions you intended to 

measure.  Those items that do not so cluster are 

rewritten or discarded and new items are 

written.  The new test is administered and the 

results factor analyzed, etc. etc. until you are 

pleased with the instrument.  Then you go out 

and collect data testing which (if any) of the 

factors is indeed related to actual teaching 

performance (if you can find a valid measure 

thereof) or some other criterion (such as 

teacher‘s morale). 

 There are numerous other uses of FA that 

you may run across in the literature.  For 

example, some researchers may investigate the 

differences in factor structure between groups.  

For example, is the factor structure of an 

instrument that measures socio-politico-

economic dimensions the same for citizens of 

the U.S.A. as it is for citizens of Mainland 

China?  Note such various applications of FA 

when you encounter them. 

A Simple, Contrived Example 

 Suppose I am interested in what 

influences a consumer‘s choice behavior when 

e is shopping for beer.  I ask each of 20 

subjects to rate on a scale of 0-100 how 

important e considers each of these qualities 

when deciding whether or not to buy the six 

pack:  low COST of the six pack, high SIZE of 

the bottle (volume), high percentage of 

ALCOHOL in the beer, the REPUTATion of 

the brand, the COLOR of the beer, nice 

AROMA of the beer, and good TASTE of the 

beer.  Here are the contrived data, within a 

short SAS program that does a PCA on them: 

DATA BEER; 

INPUT COST SIZE ALCOHOL REPUTAT COLOR AROMA TASTE; 

CARDS; 

 ------- see the data in the file 

―factbeer.sas‖ 



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 1855 

 PROC FACTOR; 

Checking For Unique Variables 

Aside from the raw data matrix, the first matrix 

you are likely to encounter in a FA is the 

correlation matrix.  Here is the correlation 

matrix for our data: 

 COST SIZE ALCOHOLREPUTATCOLOR AROMA TASTE 

COST 1.00 .83 .77 -.41 .02 -.05 -.06 

SIZE .83 1.00 .90 -.39 .18 .10 .03 

ALCOHOL .77 .90 1.00 -.46 .07 .04 .01 

REPUTAT -.41 -.39 -.46 1.00 -.37 -.44 -.44 

COLOR .02 .18 .07 -.37 1.00 .91 .90 

AROMA -.05 .10 .04 -.44 .91 1.00 .87 

TASTE -.06 .03 .01 -.44 .90 .87 1.00 

Unless it is just too large to grasp, you should 

give the correlation matrix a good look.  You 

are planning to use PCA to capture the essence 

of the correlations in this matrix.  Notice that 

there are many medium to large correlations in 

this matrix, and that every variable, except 

reputation, has some large correlations, and 

reputation is moderately correlated with 

everything else (negatively).  There is a 

statistic, Bartlett‘s test of sphericity, that can be 

used to test the null hypothesis that our sample 

was randomly drawn from a population in 

which the correlation matrix was an identity 

matrix, a matrix full of zeros, except, of course, 

for ones on the main diagonal.  I think a good 

ole Eyeball Test is generally more advisable, 

unless you just don‘t want to do the PCA, 

someone else is trying to get you to, and you 

need some ―official‖ sounding ―justification‖ 

not to do it. 

 If there are any variables that are not 

correlated with the other variables, you might 

as well delete them prior to the PCA. If you are 

using PCA to reduce the set of variables to a 

smaller set of components to be used in 

additional analyses, you can always 

reintroduce the unique (not correlated with 

other variables) variables at that time.  

Alternatively, you may wish to collect more 

data, adding variables that you think will 

indeed correlate with the now unique variable, 

and then run the PCA on the new data set. 

 One may also wish to inspect the Squared 

Multiple Correlation coefficient (SMC or R
2
 ) 

of each variable with all other variables. 

Variables with small R
2
 s are unique variables, 

not well correlated with a linear combination of 

the other variables. 

 Partial correlation coefficients may also 

be used to identify unique variables.  Recall 

that the partial correlation coefficient between 

variables Xi and Xj is the correlation between 

two residuals, 

 pjiii XX )..)..(..(12.
ˆ  and  pjijj XX )..)..(..(12.

ˆ  

A large partial correlation indicates that the 

variables involved share variance that is not 

shared by the other variables in the data set.  

Kaiser‘s Measure of Sampling Adequacy 

(MSA) for a variable Xi is the ratio of the sum 

of the squared simple r‘s between Xi and each 

other X to (that same sum plus the sum of the 

squared partial r‘s between Xi and each other 

X).  Recall that squared r‘s can be thought of 

as variances. 

 




22

2

ijij

ij

prr

r
MSA

 

 Small values of MSA indicate that the 

correlations between Xi and the other variables 

are unique, that is, not related to the remaining 

variables outside each simple correlation.  

Kaiser has described MSAs above .9 as 
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marvelous, above .8 as meritorious, above .7 as 

middling, above .6 as mediocre, above .5 as 

miserable, and below .5 as unacceptable. 

The MSA option in SAS‘ PROC FACTOR 

[Enter PROC FACTOR MSA;] gives you a 

matrix of the partial correlations, the MSA for 

each variable, and an overall MSA computed 

across all variables. Variables with small MSAs 

should be deleted prior to FA or the data set 

supplemented with additional relevant variables 

which one hopes will be correlated with the 

offending variables. 

For our sample data the partial correlation matrix looks like this: 

 COST SIZE ALCOHOL           REPUTAT COLOR AROMA TASTE 

COST 1.00 .54 -.11  -.26 -.10 -.14  .11 

SIZE .54 1.00 .81  .11 .50 .06  -.44 

ALCOHOL -.11 .81 1.00  -.23 -.38 .06  .31 

REPUTAT -.26 .11 -.23  1.00 .23 -.29  -.26 

COLOR -.10 .50 -.38  .23 1.00 .57  .69 

AROMA -.14 .06 .06  -.29 .57 1.00  .09 

TASTE .11 -.44 .31  -.26 .69 .09  1.00 

MSA .78 .55 .63  .76 .59 .80  .68 

O

VERALL MSA = .67 

 These MSA‘s may not be marvelous, but 

they aren‘t low enough to make me drop any 

variables (especially since I have only seven 

variables, already an unrealistically low 

number). 

Extracting Principal Components 

 We are now ready to extract principal 

components.  We shall let the computer do 

most of the work, which is considerable.  From 

p variables we can extract p components.  This 

will involve solving p equations with p 

unknowns.  The variance in the correlation 

matrix is ―repackaged‖ into p eigenvalues.  

This is accomplished by finding a matrix V of 

eigenvectors.  When the correlation matrix R is 

premultiplied by the transpose of V and 

postmultiplied by V, the resulting matrix L 

contains eigenvalues in its main diagonal.  

Each eigenvalue represents the amount of 

variance that has been captured by one 

component. 

 Each component is a linear combination 

of the p variables. The first component 

accounts for the largest possible amount of 

variance.  The second component, formed from 

the variance remaining after that associated 

with the first component has been extracted, 

accounts for the second largest amount of 

variance, etc.  The principal components are 

extracted with the restriction that they are 

orthogonal.  Geometrically they may be viewed 

as dimensions in p-dimensional space where 

each dimension is perpendicular to each other 

dimension. 

 Each of the p variable‘s variance is 

standardized to one. Each factor‘s eigenvalue 

may be compared to 1 to see how much more 

(or less) variance it represents than does a 

single variable. With p variables there is p x 1 

= p variance to distribute.  The principal 

components extraction will produce p 

components which in the aggregate account for 

all of the variance in the p variables.  That is, 

the sum of the p eigenvalues will be equal to p, 

the number of variables.  The proportion of 

variance accounted for by one component 

equals its eigenvalue divided by p. 
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 For our beer data, here are the eigenvalues and proportions of variance for the seven components: 

COMPONENT 1 2 3 4 5 6 7 

EIGENVALUE 3.31 2.62 .57 .24 .13 .09 .04 

PROPORTION .47 .37 .08 .03 .02 .01 .01 

CUMULATIVE .47 .85 .93 .96 .98 .99 1.00 

Deciding How Many Components to Retain 

 So far, all we have done is to repackage 

the variance from p correlated variables into p 

uncorrelated components.  We probably want 

to have fewer than p components.  If our p 

variables do share considerable variance, 

several of the p components should have large 

eigenvalues and many should have small 

eigenvalues.  One needs to decide how many 

components to retain.  One handy rule of 

thumb is to retain only components with 

eigenvalues of one or more.  That is, drop any 

component that accounts for less variance than 

does a single variable.  Another device for 

deciding on the number of components to 

retain is the scree test.  This is a plot with 

eigenvalues on the ordinate and component 

number on the abscissa.  Scree is the rubble at 

the base of a sloping cliff.  In a scree plot, scree 

is those components that are at the bottom of 

the sloping plot of eigenvalues versus 

component number.  The plot provides a visual 

aid for deciding at what point including 

additional components no longer increases the 

amount of variance accounted for by a 

nontrivial amount. 

 For our beer data, only the first two 

components have eigenvalues greater than 1.  

There is a big drop in eigenvalue between 

component 2 and component 3.  On a scree 

plot, components 3 through 7 would appear as 

scree at the base of the cliff composed of 

components 1 and 2.  Together components 1 

and 2 account for 85% of the total variance.  

We shall retain only the first two components. 

 With SAS one can specify the number of 

components to be retained by adding  

NFACT = n, where n is the desired number, to 

the PROC FACTOR command.  One may 

specify the total amount of variance to be 

accounted for by the retained components by 

adding P = p, where p = the proportion or 

percentage desired.  One can specify the 

minimum eigenvalue for a retained component 

with MIN = m.  I used MIN = 1 for the beer 

data. 

Loadings, Unrotated and Rotated 

 Another matrix of interest is the loading 

matrix, also known as the factor pattern 

matrix.  This matrix is produced by 

postmultiplying the matrix of eigenvectors by a 

matrix of square roots of the eigenvalues.  We 

are retaining only two components, so we shall 

get a 7 x 2, variables x components, matrix. 

 Here is the loading matrix for our beer 

data:  

COMPONENT 1 2 

COST .55  .73 

SIZE .67  .68 

ALCOHOL .63  .70 

REPUTAT -.74  -.07 

COLOR .76  -.57 

AROMA .74  -.61 

TASTE .71  -.61 

 The entries in this matrix, loadings, are 

correlations between the components and the 

variables.  Since the two components are 

orthogonal, they are also beta weights, that is, 

jjjj UFAFAX  2211 , thus A1  equals the 

number of standard deviations that Xj  changes 

for each one standard deviation change in 

Factor 1.  As you can see, almost all of the 
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variables load well on the first component, all 

positively except reputation.  The second 

component is more interesting, with 3 large 

positive loadings and three large negative 

loadings.  Component 1 seems to reflect 

concern for economy and quality versus 

reputation.  Component 2 seems to reflect 

economy versus quality. 

  

 Remember that each component 

represents an orthogonal (perpendicular) 

dimension.  Fortunately, we retained only two 

dimensions, so I can plot them on paper.  If we 

had retained more than two components, we 

could look at several pairwise plots (two 

components at a time). 

 

        

 

 

For each variable I have plotted on the vertical 

dimension its loading on component 1, on the 

horizontal dimension its loading on component 

2.  Wouldn‘t it be nice if I could rotate these 

axes so that the two dimensions passed more 

nearly through the two major clusters (COST, 

SIZE, ALCH and COLOR, AROMA, TASTE). 

Imagine that the two axes are perpendicular 

wires joined at the origin (0,0) with a pin.  I 

rotate them, preserving their perpendicularity, 

so that the one axis passes through or near the 

one cluster, the other through or near the other 

cluster.  The number of degrees by which I 

rotate the axes is the angle PSI. For these data, 

rotating the axes -40.63 degrees has the desired 

effect. 

 

 After rotating the axes I need recompute 

the loading matrix. This is done by 

postmultiplying the unrotated loading matrix 

by a orthogonal transformation matrix.  The 

orthogonal transformation matrix for this two 

dimensional transformation is 

 

  COS PSI -SIN PSI  .76 .65  

    =    

  SIN PSI  COS PSI  -.65 .76  

The rotated loading matrix, with the variables 

reordered so that first come variables loading 

most heavily on component 1, then those 

loading most heavily on component two, is: 

COMPONENT 1 2 

TASTE .96 -.03 

AROMA .96 .01 

COLOR .95 .06 

SIZE .07 .95 

ALCOHOL .02 .94 

COST -.06 .92 

REPUTAT -.51 -.53 

The rotated loadings plot is shown to the left. 
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All of the statistics and plots we have discussed 

so far can be produced by SAS with this 

command:  

 

PROC FACTOR CORR MSA SCREE 

REORDER MIN=1 ROTATE=VARIMAX 

PREPLOT PLOT; 

Number of Components in the Rotated 

Solution 

 I generally will look at the initial, 

unrotated, extraction and make an initial 

judgment regarding how many components to 

retain.  Then I will obtain and inspect rotated 

solutions with that many, one less than that 

many, and one more than that many 

components.  I may use a "meaningfulness" 

criterion to help me decide which solution to 

retain – if a solution leads to a component 

which is not well defined (has none or very few 

variables loading on it) or which just does not 

make sense, I may decide not to accept that 

solution. 

 One can err in the direction of extracting 

too many components (overextraction) or too 

few components (underextraction).  Wood, 

Tataryn, and Gorsuch (1996, Psychological 

Methods, 1, 354-365) have studied the effects 

of under- and over-extraction in principal 

factor analysis with varimax rotation.  They 

used simulation methods, sampling from 

populations where the true factor structure was 

known.  They found that overextraction 

generally led to less error (differences between 

the structure of the obtained factors and that of 

the true factors) than did underextraction.  Of 

course, extracting the correct number of factors 

is the best solution, but it might be a good 

strategy to lean towards overextraction to avoid 

the greater error found with underextraction. 

 Wood et al. did find one case in which 

overextraction was especially problematic – the 

case where the true factor structure is that there 

is only a single factor, there are no unique 

variables (variables which do not share 

variance with others in the data set), and where 

the statistician extracts two factors and 

employs a varimax rotation (the type I used 

with our example data).  In this case, they 

found that the first unrotated factor had 

loadings close to those of the true factor, with 

only low loadings on the second factor.  

However, after rotation, factor splitting took 

place – for some of the variables the obtained 

solution grossly underestimated their loadings 

on the first factor and overestimated them on 

the second factor.  That is, the second factor 

was imaginary and the first factor was 

corrupted.  Interestingly, if there were unique 

variables in the data set, such factor splitting 

was not a problem.  The authors suggested that 

one include unique variables in the data set to 

avoid this potential problem.  I suppose one 

could do this by including "filler" items on a 

questionnaire.  The authors recommend using a 

random number generator to create the unique 

variables or manually inserting into the 

correlation matrix variables that have a zero 

correlation with all others.  These unique 

variables can be removed for the final analysis, 

after determining how many factors to retain. 

Explained Variance 

 The SAS output also gives the variance 

explained by each component and each 

variable‘s communality estimates, both before 

and after the rotation.  The variance explained 

is equal to the sum of squared loadings (SSL) 

across variables.  For component 1 that is 

(.76
2
 + .74

2
 +...+ .67

2
) = 3.31 = its eigenvalue 

before rotation and (.96
2
 + .96

2
 +...+ -.51

2
) = 

3.02 after rotation.  For component 2 the SSL‘s 

are 2.62 and 2.91.  After rotation component 1 

accounted for 3.02/7 = 43% of the total 

variance and 3.02 / (3.02 + 2.91) = 51% of the 

variance distributed between the two 

components.  After rotation the two 

components together account for (3.02 + 

2.91)/7 = 85% of the total variance. 

Naming Components 

 Now let us look at the rotated loadings 

again and try to name the two components.  

Component 1 has heavy loadings (>.4) on 

TASTE, AROMA, and COLOR and a 

moderate negative loading on REPUTATION.  

I‘d call this component AESTHETIC 
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QUALITY.  Component 2 has heavy loadings 

on large SIZE, high ALCOHOL content, and 

low COST and a moderate negative loading on 

REPUTATION.  I‘d call this component 

CHEAP DRUNK. 

Communalities 

 Let us also look at the SSL for each 

variable across factors. Such a SSL is called a 

communality.  This is the amount of the 

variable‘s variance that is accounted for by the 

components (since the loadings are correlations 

between variables and components and the 

components are orthogonal, a variable‘s 

communality represents the R
2
  of the variable 

predicted from the components).  For our beer 

data the communalities are COST, .84; SIZE, 

.90; ALCOHOL, .89; REPUTAT, .55; 

COLOR, .91; AROMA, .92; and TASTE, .92. 

 The SSL‘s for components can be used to 

help decide how many components to retain.  

An after rotation SSL is much like an 

eigenvalue.  A rotated component with an SSL 

of 1 accounts for as much of the total variance 

as does a single variable.  One may want to 

retain and rotate a few more components than 

indicated by the MIN = 1 criterion.  Inspection 

of the retained components‘ SSL‘s after 

rotation should tell you whether or not they 

should be retained.  Sometimes a component 

with an eigenvalue > 1 will have a postrotation 

SSL < 1, in  which case you may wish to drop 

it and ask for a smaller number of retained 

components. 

 You also should look at the postrotation 

loadings to decide how well each retained 

component is defined.  If only one variable 

loads heavily on a component, that component 

is not well defined. If only two variables load 

heavily on a component, the component may 

be reliable if those two variables are highly 

correlated with one another but not with the 

other variables. 

Orthogonal Versus Oblique Rotations 

 The rotation I used on these data is the 

VARIMAX rotation. It is the most commonly 

used rotation.  Its goal is to minimize the 

complexity of the components by making the 

large loadings larger and the small loadings 

smaller within each component. There are 

other rotational methods.  QUARTIMAX 

rotation makes large loadings larger and small 

loadings smaller within each variable.  

EQUAMAX rotation is a compromise that 

attempts to simplify both components and 

variables.  These are all orthogonal rotations, 

that is, the axes remain perpendicular, so the 

components are not correlated with one 

another. 

It is also possible to employ oblique rotational 

methods. These methods do not produce 

orthogonal components.  Suppose you have 

done an orthogonal rotation and you obtain a 

rotated loadings plot that looks like this: 

 The cluster of points midway between 

axes in the upper left quadrant indicates that a 

third component is present.  The two clusters in 

the upper right quadrant indicate that the data 

would be better fit with axes that are not 

orthogonal.  Axes drawn through those two 

clusters would not be perpendicular to one 

another.  We shall return to the topic of oblique 

rotation later. 

 

 

 

 

 

 

EIGEN FACE RECOGNIZITION                  

                 The face plays a major role in our 

social intercourse in conveying identity and 

emotion. The human ability to recognize faces 

is remarkable. We can recognize thousands of 

faces learned throughout our lifetime and 

identify familiar faces at a glance even after 

years of separation. The skill is quite robust, 

despite large changes in the visual stimulus due 

to viewing conditions, expression, aging, and 
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distractions such as glasses or changes in 

hairstyle.  

Computational models of faces have been an 

active area of research since late 1980s, for 

they can contribute not only to theoretical 

insights but also to practical applications, such 

as criminal identification, security systems, 

image and film processing, and human-

computer interaction, etc. However, developing 

a computational model of face recognition is 

quite difficult, because faces are complex, 

multidimensional, and subject to change over 

time.  Generally, there are three phases for face 

recognition, mainly face representation, face 

detection, and face identification. 

Face representation is the first task, that is, how 

to model a face. The way to represent a face 

determines the successive algorithms of 

detection and identification. For the entry-level 

recognition (that is, to determine whether or 

not the given image represents a face), a face 

category should be characterized by generic 

properties of all faces; and for the subordinate-

level recognition (in other words, which face 

class the new face belongs to), detailed features 

of eyes, nose, and mouth have to be assigned to 

each individual face. There are a variety of 

approaches for face representation, which can 

be roughly classified into three categories: 

template-based, feature-based, and appearance-

based.  

The simplest template-matching approaches 

represent a whole face using a single template, 

i.e., a 2-D array of intensity, which is usually 

an edge map of the original face image. In a 

more complex way of template-matching, 

multiple templates may be used for each face 

to account for recognition from different 

viewpoints. Another important variation is to 

employ a set of smaller facial feature templates 

that correspond to eyes, nose, and mouth, for a 

single viewpoint. The most attractive 

advantage of template-matching is the 

simplicity, however, it suffers from large 

memory requirement and inefficient matching. 

In feature-based approaches, geometric 

features, such as position and width of eyes, 

nose, and mouth, eyebrow's thickness and 

arches, face breadth, or invariant moments, are 

extracted to represent a face. Feature-based 

approaches have smaller memory requirement 

and a higher recognition speed than template-

based ones do. They are particularly useful for 

face scale normalization and 3D head model-

based pose estimation. However, perfect 

extraction of features is shown to be difficult in 

implementation [5]. The idea of appearance-

based approaches is to project face images onto 

a linear subspace of low dimensions. Such a 

subspace is first constructed by principal 

component analysis on a set of training images, 

with eigenfaces as its eigenvectors. Later, the 

concept of eigenfaces were extended to 

eigenfeatures, such as eigeneyes, eigenmouth, 

etc. for the detection of facial features [6]. 

More recently, fisherface space [7] and 

illumination subspace [8] have been proposed 

for dealing with recognition under varying 

illumination. 

Face detection is to locate a face in a given 

image and to separate it from the remaining 

scene. Several approaches have been proposed 

to fulfil the task. One of them is to utilize the 

elliptical structure of human head [9]. This 

method locates the head outline by the Canny's 

edge finder and then fits an ellipse to mark the 

boundary between the head region and the 

background. However, this method is 

applicable only to frontal views, the detection 

of non-frontal views needs to be investigated. 

A second approach for face detection 

manipulates the images in ―face space‖ [1]. 

Images of faces do not change radically when 

projected into the face space, while projections 

of nonface images appear quite different. This 

basic idea is uded to detect the presence of 

faces in a scene: at every location in the image, 

calculate the distance between the local 

subimage and face space. This distance from 

face space is used as a measure of ―faceness‖, 

so the result of calculating the distance from 

face space at every point in the image is a ―face 

map‖. Low values, in other words, short 

distances from face space, in the face map 

indicate the presence of a face. 

Face identification is performed at the 

subordinate-level. At this stage, a new face is 

compared to face models stored in a database 
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and then classified to a known individual if a 

correspondence is found. The performance of 

face identification is affected by several 

factors: scale, pose, illumination, facial 

expression, and disguise.  

The scale of a face can be handled by a 

rescaling process. In eigenface approach, the 

scaling factor can be determined by multiple 

trials. The idea is to use multiscale eigenfaces, 

in which a test face image is compared with 

eigenfaces at a number of scales. In this case, 

the image will appear to be near face space of 

only the closest scaled eigenfaces. 

Equivalently, we can scale the test image to 

multiple sizes and use the scaling factor that 

results in the smallest distance to face space.  

Varying poses result from the change of 

viewpoint or head orientation. Different 

identification algorithms illustrate different 

sensitivities to pose variation.  

To identify faces in different illuminance 

conditions is a challenging problem for face 

recognition. The same person, with the same 

facial expression, and seen from the same 

viewpoint, can appear dramatically different as 

lighting condition changes. In recent years, two 

approaches, the fisherface space approach [7] 

and the illumination subspace approach [8], 

have been proposed to handle different lighting 

conditions. The fisherface method projects face 

images onto a three-dimensional linear 

subspace based on Fisher's Linear Discriminant 

in an effort to maximize between-class scatter 

while minimize within-class scatter. The 

illumination subspace method constructs an 

illumination cone of a face from a set of 

images taken under unknown lighting 

conditions. This latter approach is reported to 

perform significantly better especially for 

extreme illumination.  

Different from the effect of scale, pose, and 

illumination, facial expression can greatly 

change the geometry of a face. Attempts have 

been made in computer graphics to model the 

facial expressions from a muscular point of 

view [10].  

Disguise is another problem encountered by 

face recognition in practice. Glasses, hairstyle, 

and makeup all change the appearance of a 

face. Most research work so far has only 

addressed the problem of glasses [7][1].  

Eigen faces for Recognition 

Before the publication of [1], much of the work 

on automated face recognition has ignored the 

issue of what aspects of the face stimulus are 

important for identification, assuming that 

predefined measurements were relevant and 

sufficient. In early 1990s, M. Turk and A. 

Pentland have realized that an information 

theory approach of coding and decoding face 

images may give insight into the  information 

content of face images, emphasizing the 

significant local and global ―features‖. Such 

features may or may not be directly related to 

our intuitive notion of face features such as the 

eyes, nose, lips, and hair. 

In the language of information theory, the 

objective is to extract the relevant information 

in a face image, encode it as efficiently as 

possible, and compare one face encoding with 

a database of models encoded in the same way. 

A simple approach to extract the information 

contained in a face image is to somehow 

capture the variation in a collection of face 

images, independent of any judgement of 

features, and use this information to encode 

and compare individual face images. 

In mathematical terms, the objective is to find 

the principal components of the distribution of 

faces, or the eigenvectors of the covariance 

matrix of the set of face iamges. These 

eigenvectors can be thought of as a set of 

features which together characterize the 

variation between face images. Each image 

location contributes more or less to each 

eigenvector, so that we can display the 

eigenvector as a sort of ghostly face called an 

eigenface. Some of these faces are shown in 

Figure 4. 

Each face image in the training set can be 

represented exactly in terms of a linear 

combination of the eigenfaces. The number of 

possible eigenfaces is equal to the number of 
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face images in the training set. However, the 

faces can also be approximated using only the 

―best‖ eigenfaces—those that have the largest 

eigenvalues, and which therefore account for 

the most variance within the set of face images. 

The primary reason for using fewer eigenfaces 

is computational efficiency. The most 

meaningful M eigenfaces span an M-

dimensional subspace—―face space‖—of all 

possible images. The eigenfaces are essentially 

the basis vectors of the eigenface 

decomposition. 

The idea of using eigenfaces was motivated by 

a technique for efficiently representing pictures 

of faces using principal component analysis. It 

is argued that a collection of face images can 

be approximately reconstructed by storing a 

small collection of weights for each face and a 

small set of standard pictures. Therefore, if a 

multitude of face images can be reconstructed 

by weighted sum of a small collection of 

characteristic images, then an efficient way to 

learn and recognize faces might be to build the 

characteristic features from known face images 

and to recognize particular faces by comparing 

the feature weights needed to (approximately) 

reconstruct them with the weights associated 

with the known individuals. 

The eigenfaces approach for face recognition 

involves the following initialization operations: 

1. Acquire a set of training images. 

2. Calculate the eigenfaces from the training 

set, keeping only the best M images with the 

highest eigenvalues. These M images define 

the ―face space‖. As new faces are 

experienced, the eigenfaces can be updated. 

3. Calculate the corresponding distribution 

in M-dimensional weight space for each known 

individual (training image), by projecting their 

face images onto the face space. 

Having initialized the system, the following 

steps are used to recognize new face images: 

1. Given an image to be recognized, 

calculate a set of weights of the M eigenfaces 

by projecting the it onto each of the eigenfaces. 

2. Determine if the image is a face at all by 

checking to see if the image is sufficiently 

close to the face space. 

3. If it is a face, classify the weight pattern 

as eigher a known person or as unknown. 

4. (Optional) Update the eigenfaces and/or 

weight patterns.  

5. (Optional) Calculate the characteristic 

weight pattern of the new face image, and 

incorporate into the known faces. 

Calculating Eigenfaces 

Let a face image (x,y) be a two-dimensional 

N by N array of intensity values. An image 

may also be considered as a vector of 

dimension 2N , so that a typical image of size 

256 by 256 becomes a vector of dimension 

65,536, or equivalently, a point in 65,536-

dimensional space. An ensemble of images, 

then, maps to a collection of points in this huge 

space.  

Images of faces, being similar in overall 

configuration, will not be randomly distributed 

in this huge image space and thus can be 

described by a relatively low dimensional 

subspace. The main idea of the principal 

component analysis is to find the vector that 

best account for the distribution of face images 

within the entire image space. These vectors 

define the subspace of face images, which we 

call ―face space‖. Each vector is of length 2N , 

describes an N by N image, and is a linear 

combination of the original face images. 

Because these vectors are the eigenvectors of 

the covariance matrix corresponding to the 

original face images, and because they are 

face-like in appearance, they are referred to as 

―eigenfaces‖.  

Let the training set of face images be 1 , 2 , 

3 , …, M . The average face of the set if 

defined by 



M

n

n
M 1

1
. Each face differs 

from the average by the vector  nn . 

An example training set is shown in Figure 1a, 

with the average face  shown in Figure 1b. 
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This set of very large vectors is then subject to 

principal component analysis, which seeks a 

set of M orthonormal vectors, n , which best 

describes the distribution of the data. The kth 

vector, k is chosen such that 





M

n

n

T

kk
M 1

2)(
1

       (1) 

is a maximum, subject to 



 


otherwise

kl
k

T

l
,0

,1
       (2) 

The vectors k and scalars k are the 

eigenvectors and eigenvalues, respectively, of 

the covariance matrix  





M

n

TT

nn AA
M

C
1

1
      (3) 

where the matrix ]...[ 21 MA  . The 

matrix C, however, is 2N  by 2N , and 

determining the 2N  eigenvectors and 

eigenvalues is an intractable task for typical 

image sizes. A computationally feasible 

method  is needed to find these eigenvectors. 

If the number of data points in the image space 

is less than the dimension of the space (
2NM  ), there will be only 1M , rather than 

2N , meaningful eigenvectors (the remaining 

eigenvectors will have associated eigenvalues 

of zero). Fortunately, we can solve for the 2N -

dimensional eigenvectors in this case by first 

solving for the eigenvectors of and M by M 

matrix—e.g., solving a 16 x 16 matrix rather 

than a 16,384 x 16,384 matrix—and then 

taking appropriate linear combinations of the 

face images n . Consider the eigenvectors n

of AAT such that 

nnn

T AA         (4) 

Premultiplying both sides by A, we have 

nnn

T AAAA         (5) 

from which we see that nA are the 

eigenvectors of TAAC  . 

Following this analysis, we construct the M by 

M matrix AAL T , where n

T

mmnL  , and 

find the M eigenvectors n of L. These vectors 

determine linear combinations of the M 

training set face images to form the eigenfaces 

n : 

MnA n

M

k

knkn ,......,1,
1




       (6) 

With this analysis the calculations are greatly 

reduced, from the order of the number of pixels 

in the images ( 2N ) to the order of the number 

of images in the training set (M). In practice, 

the training set of face images will be relatively 

small ( 2NM  ), and the calculations become 

quite manageable. The associated eigenvalues 

allow us to rank the eigenvectors according to 

their usefulness in characterizeing the variation 

among the images. 

Using Eigenfaces to Classify a Face Image 

The eigenface images calculated from the 

eigenvectors of L span a basis set with which to 

describe face images. As mentioned before, the 

usefulness of eigenvectors varies according 

their associated eigenvalues. This suggests we 

pick up only the most meaningful eigenvectors 

and ignore the rest, in other words, the number 

of basis functions is further reduced from M to 

M’ (M’<M) and the computation is reduced as 

a consequence. Experiments have shown that 

the RMS pixel-by-pixel errors in representing 

cropped versions of face images are about 2% 

with M=115 and M’=40 [11].  

In practice, a smaller M’ is sufficient for 

identification, since accurate reconstruction of 

the image is not a requirement. In this 

framework, identification becomes a pattern 

recognition task. The eigenfaces span an M’ 

dimensional subspace of the original 2N  

image space. The M’ most significant 

eigenvectors of the L matrix are chosen as 

those with the largest associated eigenvalues. 
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A new face image  is transformed into its 

eigenface components (projected onto ―face 

space‖) by a simple operation 

)(  nn        (7) 

for n=1,……,M’. This describes a set of point-

by-point image maltiplications and 

summations.  

The weights form a vector 

],...,,[ '21 M

T   that describes the 

contribution of each eigenface in representing 

the input face image, treating the eigenfaces as 

a basis set for face images. The vector may 

then be used in a standard pattern recognition 

algorithm to find which of a number of 

predefined face classes, if any, best describes 

the face. The simplest method for determining 

which face class provides the best description 

of an input face image is to find the face class k 

that minimizes the Euclidian distance 

22 )( kk        (8) 

where k  is a vector describing the kth face 

class. The face classes k  are calculated by 

averaging the results of the eigenface 

representation over a small number of face 

images (as few as one) of each individual. A 

face is classified as ―unknown‖, and optionally 

used to created a new face class. 

Because creating the vector of weights is 

equivalent to projecting the original face image 

onto to low-dimensional face space, many 

images (most of them looking nothing like a 

face) will project onto a given pattern vector. 

This is not a problem for the system, however, 

since the distance   between the image and the 

face space is simply the squared distance 

between the mean-adjusted input image 

  and 



'

1

M

i

iif  , its projection 

onto face space: 

2
2

f       (9) 

Thus there are four possibilities for an input 

image and its pattern vector: (1) near face 

space and near a face class; (2) near face space 

but not near a known face class; (3) distant 

from face space and near a face class; (4) 

distant from face space and not near a known 

face class. 

In the first case, an individual is recognized 

and identified. In the second case, an unknown 

individual is present. The last two cases 

indicate that the image is not a face image. 

Case three typically shows up as a false 

positive in most recognition systems; in this 

framework, however, the false recognition may 

be detected because of the significant distance 

between the image and the subspace of 

expected face images.  

 

Summary of Eigenface Recognition Procedure 

The eigenfaces approach for face recognition is 

summarized as follows: 

1. Collect a set of characteristic face images 

of the known individuals. This set should 

include a number of images for each person, 

with some variation in expression and in the 

lighting (say four images of ten people, so 

M=40). 

2. Calculate the (40 x 40) matrix L, find its 

eigenvectors and eigenvalues, and choose the 

M’ eigenvectors with the highest associated 

eigenvalues (let M’=10 in this example). 

3. Combine the normalized training set of 

images according to Eq. (6) to produce the 

(M’=10) eigenfaces ',......,1, Mkk  . 

4. For each known individual, calculate the 

class vector k  by averaging the eigenface 

pattern vectors   [from Eq. (8)] calculated 

from the original (four) images of the 

individual. Choose a threshold  that defines 

the maximum allowable distance from any face 

class, and a threshold   that defines the 

maximum allowable distance from face space 

[according to Eq. (9)]. 

5. For each new face image to be identified, 

calculate its pattern vector  , the distance k  
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to each known class, and the distance   to face 

space. If the minimum distance  k  and 

the distance   , classify the input face as 

the individual associated with class vector k . 

If the minimum distance  k  but   , 

then the image may be classified as 

―unknown‖, and optionally used to begin a new 

face class. 

6. If the new image is classified as a known 

individual, this image may be added to the 

original set of familiar face images, and the 

eigenfaces may be recalculated (steps 1-4). 

This gives the opportunity to modify the face 

space as the system encounters more instances 

of known faces. 

Implementation Issues 

The entire program consists of four functional 

blocks, namely ‗LoadImages‘, 

‗ConstructEigenfaces‘, ‗ClassifyNewface‘, and 

‗undoUpdateEigenfaces‘. There is also a 

‗main‘ function, which calls 

‗ConstructEigenfaces‘ and ‗ClassifyNewface‘ 

functions to complete the face recognition task. 

System Structure  

The structure of the system is shown in Figure 

1. In the figure, the square shape indicates 

functions, and the parallogram represents files. 

An arrow pointing out from a file to a function 

means the function loads the file; an arrow 

pointing in the other direction indicates that the 

function creates or updates the file; a 

bidirectional arrow means the file is first read 

by the function, and later modified or updated 

by it. These files help the 

‗ConstructEigenfaces‘ and ‗ClassifyNewface‘ 

functions communicate with each other in a 

well organized way. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ConstructEigenfaces 

ClassifyNewface 

eigenfaces.mat 

faceclasses.mat 
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Figure 1. System Flowchart. The squares and 

parallograms represent functions and files 

respectively. An arrow pointing out from a file 

to a function means the function reads/loads 

the file; an arrow pointing in the other direction 

indicates that the function creates/updates the 

file; a bidirectional arrow means the file is first 

read by the function, and later 

modified/updated by it. These files help the 

‗ConstructEigenfaces‘ and ‗ClassifyNewface‘ 

functions communicate with each other in a 

well organized way. 

Functional Blocks 

Each functional block has a corresponding .m 

file (refer to the source code). Detailed 

description of the functional blocks is as 

follows. 

LoadImages(imagefilename): 

 Functionality: load all training images 

and return their contents (intensity values) 

 Input parameters: imagefilename—a 

string that states an image file name. 

 Output parameters: I—a 3D matrix whose 

components are the intensity values of the 

training  images. 

 Use: I=LoadImages(imagefilename) 

 Pseudo-code: 

if imagefilename is an empty string  

   do    

        (1) read all default training images into 

3D matrix I 

                    (2) save I to file 

‗trainingimages.mat‘ in ‗.\TrainingSet‘ 

directory (note: relative path is used throughout 

the document, ‗relative‘ in the sense that 

relative to the location of the .m source files) 

                    (3) write the file names of the 

default training images to text file 

‗note_eigenfaces.txt‘ in ‗.\Eigenfaces‘ 

directory   

            else (assuming the file path and name 

are correct, i.e. the image file can be opened 

and read properly) 

                do 

(1) copy the image named 

imagefilename into ‗.\TrainingSet‘ directory 

(2) load I from file 

‗trainingimages.mat‘ in ‗.\TrainingSet‘ 

directory 

(3) read the image file named 

imagefilename (the input parameter) and 

extract its illuminant component (i.e. intensity) 

into 2D matrix Inew 

(4) concatenate Inew to I and save the 

modified I to ‗trainingimages.mat‘, thus file 

‗trainingimages.mat‘ gets updated 

(5) append imagefilename (i.e., name 

of the new training image) to the end of text 

file ‗note_eigenfaces.txt‘ in ‗.\Eigenfaces‘ 

directory 

(6) copy the test image from 

‗.\TestImage‘ directory to ‗.\TrainingSet‘ 

direcotry  

 Note: ‗LoadImages‘ function is always 

called in the ‗ConstructEigenfaces‘ function. 

The input parameter of the latter is passed to 

the former as its iput. The 3D matrix I returned 

by ‗LoadImages‘ will be used for further 

computation in ‗ConstructEigenfaces‘. 

ConstructEigenfaces(imagefilename): 

 Functionality: (1) construct or update 

eigenfaces; 

                             (2) construct or update face 

classes. 

 Input parameters: imagefilename—a 

string that states an image file name 

 Output parameters: sf—indicator of 

success/failure of the execution of the function. 

If sf equals to 1, execution successfully; if sf 

equals to 0, execution failure 
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 Use: 

sf=ConstructEigenfaces(imagefilename) 

 Pseudo-code: 

            * call function ‗LoadImages‘ and get 

the  illuminant components I of current training 

images 

            * construct eigenfaces V and face 

classes OMEGA based on I  

            save V to file ‗eigenfaces.mat‘ in 

‗.\Eigenfaces‘ directory 

            save OMEGA to file ‗faceclasses.mat‘ 

in ‗.\Eigenfaces‘ directory 

 Note: the input parameter of function 

‗ConstructEigenfaces‘ is passed to function 

‗LoadImages‘ as its input when the former 

calls the latter. Therefore, the two statements 

marked with * in above pseudo-code can be 

restated as following: 

            if imagefilename is an empty string 

   do 

(1) construct the eigenfaces V based 

on the default training images 

(2) construct the face classes 

OMEGA based on the default training images 

      else (assuming file path and name are 

correct, i.e. the image file can be opened and 

read properly) 

         do  

(1) update current V according to the newly 

added training image 

 (2) update current OMEGA according to the 

latest added    training image 

When the input parameter is an empty string, 

‗ConstructEigenfaces‘ function constructs the 

very first version of eigenfaces, and face 

classes based on the default training image set. 

Calling this function with an empty string as 

the input parameter is a good thing to do only 

if it is the first time we run the face recognition 

program; otherwise, we may lose useful 

information. Assuming we have already run the 

face recognition program several times, 

encountered a number of new faces, and added 

the new faces to our training set, if 

‗ConstructEigenfaces‘ function is called with 

an empty input string, files such as 

‗trainingimages.mat‘, ‗note_eigenfaces.txt‘, 

‗eigenfaces.mat‘ and ‗faceclasses.mat‘ will all 

go back to their initial version, in other words, 

updated eigenfaces and face classes based on 

the new training images will be missing and 

what we have are those containing only the 

default training images‘ information. 

Therefore, be cautious when calling 

‗ConstructEigenfaces‘ function with an empty 

string as the input parameter. 

ClassifyNewface(imagefilename): 

 Functionality: given a test image, this 

function is able to determine 

(1) Whether it is a face 

image 

(2) If it is a face image, does it belong to any of 

the existing face classes?  

a. If so, which face 

class does it correspond to? 

b.  If not, (optionally) update the eigenfaces 

according to the test image  

 Input parameter: imagefilename—a string 

that states the name of the test image 

 Output parameter: result—indicator of the 

test image‘s status 

a. result=0, bad file 

(cannot open the file) 

b. result=-2, test 

image is not a face image 

c. result=1, test image 

is a face image, and belongs to one of the 

existing face classes 

d. result=-1, test 

image is a face image, but does not belong to 

any of the existing face classes 
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 Use: 

result=ClassifyNewface(imagefilename) 

 Pseudo-code: 

if the test image file cannot be opened 

   do 

(1) result=0 

(2) return 

            (end if)  

predefine two thresholding values   and   

project the test image   onto face space 

compute the distance   between the test image 

and its projection onto the face space 

if  >  ( is not a face image) 

               do    

(1) result=-2 

(2) return 

            (end if) 

            compute the distance , 1,......,k k M 

between   and each face class 

            find 'min{ , 1,......, }k kk M    

            if 'k <   (  belongs to k’th face class) 

                do 

(1) display the test image and its 

corresponding training image 

(2) result=1 

            else (  does not belong to any of the 

existing face classes) 

                  do 

(1) (optionally) call function 

ConstructEigenfaces with the file name of the 

test image as the input parameter 

(2) result=-1 

undoUpdateEigenfaces: 

 Functionality: (1) remove the latest added 

training image from the training set, followed 

by computation of eigenfaces and face classes 

                              (2) overwrite all the four 

files shown in Figure 1, mainly 

‗trainingimages.mat‘ in ‗.\TrainingSet‘ 

directory, ‗eigenfaces.mat‘, ‗faceclasses.mat‘, 

‗note_eigenfaces.txt‘ in ‗.\Eigenfaces‘ 

directory 

 Note: function ‗undoUpdateEigenfaces‘ is 

necessary for undo an update of eigenfaces and 

face classes, which should not have been done 

 Use: undoUpdateEigenfaces 

 Pseudo-code 

1. load ‗trainingimages.mat‘ from 

‗TrainingSet‘ directory and get 3D matrix I 

2. remove the last slice from I (by 

statement   I=I(:,:,1:(size(I,3)-1)) if 

programming with MatLab) 

3. save modified I to 

‗trainingimages.mat‘ in ‗TrainingSet‘ directory 

4. remove the last line (i.e. the name of 

the image file to be removed from the training 

set) from ‗note_eigenfaces.txt‘ 

5. delete the lastest added training image 

from ‗TrainingSet‘ directory 

6. construct face space, eigenfaces and 

face classes based on modified I 

7. overwrite following files: 

‗eigenfaces.mat‘, and ‗faceclasses.mat‘  

main: 

 Functionality: group functions such as 

‗ConstructEigenfaces‘ and ‗ClassifyNewface‘ 

together and form the face recognition system  

 Flow: the system flow is illustrated in Figure 2. 
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Figure 2. System Flow 

PROJECTION OF TRAINING 

SAMPLES INTO THE EIGENFACE 

SPACE 

Next we have to project the training sample 

into the Eigenface space. The feature weight 

for the training images can be calculated by 

the following formula: 

 

Where, ui is the ith Eigenfaces and i=1, 2, 3 . . 

. . . .K. The weight is obtained as above form a 

vector as follows 

 

 TESTING SAMPLE CLASSIFICATIONS 

a) Read the test image and 

separate face from it. 

b)  Calculate the feature vector of 

the test face. 

 

The test image is transformed into 

its eigenface components. First we 

compare line of our input image 

with our mean image and multiply 

their difference with each 

eigenvectors [2]. Each value would 

represent a weight and would be 

saved on a vector  

 

 

Where, ui is the ith Eigenfaces and i=1, 

2, 3 . . . . . .K. 

 

c)   Compute the average distance (Euclidean 

distance) between test feature vector and all 

the training feature vectors.    Mathematically, 

recognition is finding the minimum Euclidean 

distance   , between a testing point and a 

training point given in the following equation 

 

Where, i = 1, 2, 3. . . . . . K. The Euclidean 

distance between two weight vectors thus 

provides a measurement of similarity between 

the corresponding images. 

Construct/update 

eigenfaces prior to face 

identification? 

Construct/update 

eigenfaces 

Y 

Test image name 

Classify the test image 

N 
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d)  The face class with minimum Euclidian distance shows similarity to test image [5]. 

VI. SCHEMATIC 

DIAGRAM & FLOWCHART 

 

Fig-2: 

Schematic diagram of a face 

recognizer 
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VII. EXPERIMENTAL RESULT 

This article represents some computational 

results of our program. In Experimental result-

1 and Experimental result-2, both test image 

and equivalent image which is stored in 

database have same pose.  But test image  

and  equivalent image have different in pose 

which are shown in Experimental result-3 and 

Experimental result-4. 

Experimental Result-1(having same pose) 

Experimental Result-2(having same pose) 

                                         

Fig-3: The Recognition of Individual Images having Same Pose 

Experimental Result-3 (having pose variation) 
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 Experimental Result-4 (having pose variation) 

 

  Figure-4: The Recognition of Individual Images having Pose variation 

OUTPUT 

Proposed methods Results

Test  image

    

CONCLUSION 

In this thesis we implemented the face 

recognition system using Principal Component 

Analysis and Eigenface approach. The system 

successfully recognized the human faces and 

worked better in different conditions of face 

orientation. In this research, Principal 

component analysis approach to the face 

recognition problem was studied and a face 

recognition system based on the eigenfaces 

approach was proposed. The algorithm has 

been tested for the image database ETE-07 

series, RUET and implemented using 

MATLAB. The algorithm developed in a 

generalized one which works well with any 

type of images. The tests conducted on Bitmap 

images, PNG images and JPEG images of 

various subjects in different poses showed that 

this method gave very good classification of 

faces though it has limitations over the 

variations in size of image. The eigenface 

approach thus provides a practical solution that 

is well fitted to the problem of face recognition. 

It is fast, relatively simple and   has   been   

shown   to   work   well   in   constrained 

environment. 

FUTURE PLAN 

In this thesis paper, we worked with some still 

pictures but we will try to develop a system 

using video camera that will work with real 

time face recognition. Here we used 36 face 

images of 18 persons of ETE-07 series, RUET 

but in future we would like to work with huge 

database. We want to overcome the problem 

of different size face image recognition. We 

will compare the performance analysis of 
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PCA based method with all others existing 

face recognition methods. 
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