
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1849

Face Recognition via Robust Auxiliary Dictionary Learning

P.VEENA D.RAJA SEKHAR
 Student Assistant Professor

Department of ECE (DECS) Department of ECE (DECS)

G.Pullaiah College Of Engineering & Technology G.Pullaiah College Of Engineering & Technology

 Kurnool, Andhra Pradesh, India Kurnool, Andhra Pradesh, India

Email.Id: palleveena456@gmail.com Guide Email id: raj_darani@yahoo.co.in

ABSTRACT

This paper mainly addresses the building of face recognition system by using Principal Component

Analysis (PCA). PCA is a statistical approach used for reducing the number of variables in face

recognition. In PCA, every image in the training set is represented as a linear combination of weighted

eigenvectors called eigenfaces. These eigenvectors are obtained from covariance matrix of a training

image set. The weights are found out after selecting a set of most relevant Eigenfaces. Recognition is

performed by projecting a test image onto the subspace spanned by the eigenfaces and then

classification is done by measuring minimum Euclidean distance. A number of experiments were done to

evaluate the performance of the face recognition system. In this thesis, we used a training database of

students of Electronics and Telecommunication Engineering department, Batch-2007, Rajshahi

University of Engineering and Technology, Bangladesh.

I. INTRODUCTION

Over the last ten years or so, face recognition

has become a popular area of research in

computer vision and one of the most successful

applications of image analysis and

understanding. Because of the nature of the

problem, not only computer science

researchers are interested in it, but

neuroscientists and psychologists also. It is the

general opinion that advances in computer

vision research will provide useful insights to

neuroscientists and psychologists into how

human brain works, and vice versa [1].The

goal is to implement the system (model) for a

particular face and distinguish it from a large

number of stored faces with some real-time

variations as well. It gives us efficient way to

find the lower dimensional space. Further this

algorithm can be extended to recognize the

gender of a person or to interpret the facial

expression of a person. Recognition could be

carried out under widely varying conditions

like frontal view, a 45° view, scaled frontal

view, subjects with spectacles etc are tried,

while the training data set covers limited

views. The algorithm models the real-time

varying lighting conditions as well. But this is

out of scope of the current implementation.

The aim of this research paper is to study and

develop an efficient MATLAB program for

face recognition using principal component

analysis and to perform test for program

optimization and accuracy. This approach is

preferred due to its simplicity, speed and

learning capability [2].

FACE RECOGNITION

 Face recognition is a biometric which

uses computer software to determine the

identity of the individual. Face recognition

falls into the category of biometrics which is

―the automatic recognition of a person using

distinguishing traits‖ [6]. Other types of

biometrics include fingerprinting, retina scans,

and iris scan.

Eigenface-based Recognition

 2D face recognition using eigenfaces is

one of the oldest types of face recognition.

Turk and Pentland published the

groundbreaking ―Face Recognition Using

Eigenfaces‖ in 1991. The method works by

analyzing face images and computing

eigenfaces which are faces composed of

mailto:palleveena456@gmail.com
mailto:raj_darani@yahoo.co.in

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1850

eigenvectors. The comparison of eigenfaces is

used to identify the presence of a face and its

identity.

 There is a five step process involved with

the system developed by Turk and Pentland.

First, the system needs to be initialized by

feeding it a set of training images of faces. This

is used these to define the face space which is

set of images that are face like. Next, when a

face is encountered it calculates an eigenface

for it. By comparing it with known faces and

using some statistical analysis it can be

determined whether the image presented is a

face at all. Then, if an image is determined to

be a face the system will determine whether it

knows the identity of it or not. The optional

final step is that if an unknown face is seen

repeatedly, the system can learn to recognize it.

 The eigenface technique is simple,

efficient, and yields generally good results in

controlled circumstances [1]. The system was

even tested to track faces on film. There are

also some limitations of eigenfaces. There is

limited robustness to changes in lighting,

angle, and distance [6]. 2D recognition

systems do not capture the actual size of the

face, which is a fundamental problem [4].

These limits affect the technique‘s application

with security cameras because frontal shots and

consistent lighting cannot be relied upon.

3D Face Recognition

 3D face recognition is expected to be

robust to the types of issues that plague 2D

systems [4]. 3D systems generate 3D models

of faces and compare them. These systems are

more accurate because they capture the actual

shape of faces. Skin texture analysis can be

used in conjunction with face recognition to

improve accuracy by 20 to 25 percent [3]. The

acquisition of 3D data is one of the main

problems for 3D systems.

How Humans Perform Face Recognition

 It is important for researchers to know the

results of studies on human face recognition

[8]. Knowing these results may help them

develop ground breaking new methods. After

all, rivaling and surpassing the ability of

humans is the key goal of computer face

recognition research. The key results of a 2006

paper ―Face Recognition by Humans: Nineteen

Results All Computer Vision Researchers

Should Know About‖ are as follows:

1. Humans can recognize familiar faces in

very low-resolution images.

2. The ability to tolerate degradations

increases with familiarity.

3. High-frequency information by itself is

insufficient for good face recognition

performance.

4. Facial features are processed holistically.

5. Of the different facial features, eyebrows

are among the most important for recognition.

6. The important configural relationships

appear to be independent across the width and

height dimensions.

7. Face-shape appears to be encoded in a

slightly caricatured manner.

8. Prolonged face viewing can lead to high

level aftereffects, which suggest prototype-

based encoding.

Staring at the faces in the green circles will

cause one to misidentify the central face with

the faces circled in red. This is an example of

face aftereffects [8].

9. Pigmentation cues are at least as

important as shape cues.

10. Color cues play a significant role,

especially when shape cues are degraded.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1851

11. Contrast polarity inversion dramatically

impairs recognition performance, possibly due

to compromised ability to use pigmentation

cues.

Photograph during the recording of ―We Are

the World.‖ This figure demonstrates how

polarity inversion effects face recognition in

humans. Several famous artists are in the

picture including Ray Charles, Lionel Ritchie,

Stevie Wonder, Michael Jackson, Tina Turner,

Bruce Springstein, and Billy Joel though they

are very difficult to identify.

12. Illumination changes influence

generalization.

13. View-generalization appears to be

mediated by temporal association.

14. Motion of faces appears to facilitate

subsequent recognition.

15. The visual system starts with a

rudimentary preference for face-like patterns.

16. The visual system progresses from a

piecemeal to a holistic strategy over the first

several years of life.

17. The human visual system appears to

devote specialized neural resources for face

perception.

18. Latency of responses to faces in

inferotemporal (IT) cortex is about 120 ms,

suggesting a largely feed forward computation.

19. Facial identity and expression might be

processed by separate systems.

FACE RECOGNITION PROCESS

One of the simplest and most effective PCA

approaches used in face recognition systems is

the so-called eigenface approach. This

approach transforms faces into a small set of

essential characteristics, eigenfaces, which are

the main components of the initial set of

learning images (training set). Recognition is

done by projecting a new image in the

eigenface subspace, after which the person is

classified by comparing its position in

eigenface space with the position of known

individuals [3]. The advantage of this

approach over other face recognition systems

is in its simplicity, speed and insensitivity to

small or gradual changes on the face. The

problem is limited to files that can be used to

recognize the face. Namely, the images must

be vertical frontal views of human faces. The

whole recognition process involves two steps:

A. Initialization

process

B. Recognition

process

The Initialization process involves the

following operations:

i. Acquire the initial set of face images

called as training set.

ii. Calculate the Eigenfaces from the training

set, keeping only the highest eigenvalues.

These M images define the face space. As new

faces are experienced, the eigenfaces can be

updated or recalculated.

iii. Calculate distribution in this M-

dimensional space for each known person by

projecting his or her face images onto this face-

space.

These operations can be performed from time

to time whenever there is a free excess

operational capacity. This data can be cached

which can be used in the further steps

eliminating the overhead of re-initializing,

decreasing execution time thereby increasing

the performance of the entire system [4].

 Having initialized the system, the next process

involves the steps:

i. Calculate a set of weights based on the

input image and the M eigenfaces by projecting

the input image onto each of the

Eigenfaces.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1852

ii. Determine if the image is a face at all

(known or unknown) by checking to see if the

image is sufficiently close to a ―free

space‖.

iii. If it is a face, then classify the weight

pattern as either a known person or as

unknown.

iv. Update the eigenfaces or weights as either

a known or unknown, if the same unknown

person face is seen several times then

calculate the characteristic weight pattern and

incorporate into known faces. The

last step is not usually a requirement of every

system and hence the steps are left optional

and can be implemented as when the there is a

requirement.

III. EIGENFACE ALGORITHM

Let a face image Γ(x, y) be a two dimensional

M by N array of intensity values. In this thesis,

I used a set of image by 200 × 149 pixels. An

image may also be considered as a vector of

dimension M × N, so that a typical image of

size 200 × 149 becomes a vector of dimension

29,800 or equivalently a point in a 29,800

dimensional space.

Fig-1:Conversion of M

× N image into MN ×1 vector

Step1: prepare the training faces

Obtain face images I1, I2, I3, I4 , IM

(training faces). The face images must be

centered and of the same size.

Step 2: Prepare the data set

Each face image Ii in the database is

transformed into a vector and placed into a

training set S.

In My example M = 34. Each image is

transformed into a vector of size MN × 1 and

placed into the set. For simplicity, the face

images are assumed to be of size N × N

resulting in a point in dimensional space.

An ensemble of images, then, maps to a

collection of points in this huge space.

Step 3: compute the average face vector

The average face vector (Ψ) has to be

calculated by using the following formula:

Step 4: Subtract the average face vector

The average face vector Ψ is subtracted from

the original faces and the result stored in the

variable ,

Step 5: Calculate the covariance matrix

We obtain the covariance matrix C in the

following manner,

Step 6: Calculate the eigenvectors and

eigenvalues of the covariance matrix

The covariance matrix C in step 5 has a

dimensionality of , so one would have

 eigenface and eigenvalues. For a 256 × 256

image that means that on must compute a 65,

536 × 65, 536 matrix and calculate 65,536

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1853

eigenfaces. Computationally, this is not very

efficient as most of those eigenfaces are not

useful for our task. In general, PCA is used to

describe a large dimensional space with a

relative small set of vectors [3].

Compute the

eigenvectors of
AA

T

The matrix AA
T

is

very large - -  not

practical!!!

Step 6.1: consider the matrix

Step 6.2: compute eigenvectors vi of L= A
T

A

What is the relationship between ui and vi ?

where, Thus, C = AA
T
 and L

= A
T
A have the same eigenvalues and their

eigenvectors are related as follows:

Note 1: C = AA
T
 can have upto N

2
 eigenvalues

and eigenvectors.

Note 2: L = A
T
A can have upto M eigenvalues

and eigenvectors.

Note 3: The M eigenvalues of C = AA
T
 (along

with their corresponding eigenvectors)

correspond to the M largest eigenvalues of L =

A
T
A (along with their corresponding

eigenvectors).

Where vi is an eigenvector of L = A
T
A From

this simple proof we can see that A vi is an

eigenvector of C = AA
T
. The M eigenvectors

of L = A
T
A are used to find the M eigenvectors

ui of C that form our eigenface basis:

Where, ui are the Eigenvectors i.e. Eigenfaces.

Step 7: keep only K eigenvectors

(corresponding to the K largest eigenvalues)

Eigenfaces with low eigenvalues can be

omitted, as they explain only a small part of

Characteristic features of the faces.

 P R I N C I P A L C O M P O N E N T A N A L Y S I S

 In principal components analysis (PCA)

and factor analysis (FA) one wishes to extract

from a set of p variables a reduced set of m

components or factors that accounts for most of

the variance in the p variables. In other words,

we wish to reduce a set of p variables to a set

of m underlying superordinate dimensions.

 These underlying factors are

inferred from the correlations among the p

variables. Each factor is estimated as a

weighted sum of the p variables. The i
th

 factor

is thus

pipiii XWXWXWF  2211

 One may also express each of the p

variables as a linear combination of the m factors,

jmmjjjj UFAFAFAX  2211

where Uj is the variance that is unique to

variable j, variance that cannot be explained by

any of the common factors.

Goals of PCA and FA

 One may do a PCA or FA simply

to reduce a set of p variables to m

components or factors prior to further

analyses on those m factors. For example,

Ossenkopp and Mazmanian (Physiology and

Behavior, 34: 935-941) had 19 behavioral and

physiological variables from which they

wished to predict a single criterion variable,

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1854

physiological response to four hours of cold-

restraint. They first subjected the 19 predictor

variables to a FA. They extracted five factors,

which were labeled Exploration, General

Activity, Metabolic Rate, Behavioral

Reactivity, and Autonomic Reactivity. They

then computed for each subject scores on each

of the five factors. That is, each subject‘s set

of scores on 19 variables was reduced to a set

of scores on 5 factors. These five factors were

then used as predictors (of the single criterion)

in a stepwise multiple regression.

 One may use FA to discover and

summarize the pattern of intercorrelations

among variables. This is often called

Exploratory FA. One simply wishes to group

together (into factors) variables that are highly

correlated with one another, presumably

because they all are influenced by the same

underlying dimension (factor). One may also

then operationalize (invent a way to measure)

the underlying dimension by a linear

combination of the variables that contributed

most heavily to the factor.

 If one has a theory regarding what basic

dimensions underlie an observed event, e may

engage in Confirmatory Factor Analysis.

For example, if I believe that performance on

standardized tests of academic aptitude

represents the joint operation of several

basically independent faculties, such as

Thurstone‘s Verbal Comprehension, Word

Fluency, Simple Arithmetic, Spatial Ability,

Associative Memory, Perceptual Speed, and

General Reasoning, rather than one global

intelligence factor, then I may use FA as a tool

to analyze test results to see whether or not the

various items on the test do fall into distinct

factors that seem to represent those specific

faculties.

 Psychometricians often employ FA in test

construction. If you wish to develop a test

that measures several different dimensions,

each important for some reason, you first

devise questions (variables) which you think

will measure these dimensions. For example,

you may wish to develop a test to predict how

well an individual will do as a school teacher.

You decide that the important dimensions are

Love of Children, Love of Knowledge,

Tolerance to Fiscal Poverty, Acting Ability,

and Cognitive Flexibility. For each of these

dimensions you write several items intended to

measure the dimension. You administer the

test to many people and FA the results.

Hopefully many items cluster into factors

representing the dimensions you intended to

measure. Those items that do not so cluster are

rewritten or discarded and new items are

written. The new test is administered and the

results factor analyzed, etc. etc. until you are

pleased with the instrument. Then you go out

and collect data testing which (if any) of the

factors is indeed related to actual teaching

performance (if you can find a valid measure

thereof) or some other criterion (such as

teacher‘s morale).

 There are numerous other uses of FA that

you may run across in the literature. For

example, some researchers may investigate the

differences in factor structure between groups.

For example, is the factor structure of an

instrument that measures socio-politico-

economic dimensions the same for citizens of

the U.S.A. as it is for citizens of Mainland

China? Note such various applications of FA

when you encounter them.

A Simple, Contrived Example

 Suppose I am interested in what

influences a consumer‘s choice behavior when

e is shopping for beer. I ask each of 20

subjects to rate on a scale of 0-100 how

important e considers each of these qualities

when deciding whether or not to buy the six

pack: low COST of the six pack, high SIZE of

the bottle (volume), high percentage of

ALCOHOL in the beer, the REPUTATion of

the brand, the COLOR of the beer, nice

AROMA of the beer, and good TASTE of the

beer. Here are the contrived data, within a

short SAS program that does a PCA on them:

DATA BEER;

INPUT COST SIZE ALCOHOL REPUTAT COLOR AROMA TASTE;

CARDS;

 ------- see the data in the file

―factbeer.sas‖

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1855

 PROC FACTOR;

Checking For Unique Variables

Aside from the raw data matrix, the first matrix

you are likely to encounter in a FA is the

correlation matrix. Here is the correlation

matrix for our data:

 COST SIZE ALCOHOLREPUTATCOLOR AROMA TASTE

COST 1.00 .83 .77 -.41 .02 -.05 -.06

SIZE .83 1.00 .90 -.39 .18 .10 .03

ALCOHOL .77 .90 1.00 -.46 .07 .04 .01

REPUTAT -.41 -.39 -.46 1.00 -.37 -.44 -.44

COLOR .02 .18 .07 -.37 1.00 .91 .90

AROMA -.05 .10 .04 -.44 .91 1.00 .87

TASTE -.06 .03 .01 -.44 .90 .87 1.00

Unless it is just too large to grasp, you should

give the correlation matrix a good look. You

are planning to use PCA to capture the essence

of the correlations in this matrix. Notice that

there are many medium to large correlations in

this matrix, and that every variable, except

reputation, has some large correlations, and

reputation is moderately correlated with

everything else (negatively). There is a

statistic, Bartlett‘s test of sphericity, that can be

used to test the null hypothesis that our sample

was randomly drawn from a population in

which the correlation matrix was an identity

matrix, a matrix full of zeros, except, of course,

for ones on the main diagonal. I think a good

ole Eyeball Test is generally more advisable,

unless you just don‘t want to do the PCA,

someone else is trying to get you to, and you

need some ―official‖ sounding ―justification‖

not to do it.

 If there are any variables that are not

correlated with the other variables, you might

as well delete them prior to the PCA. If you are

using PCA to reduce the set of variables to a

smaller set of components to be used in

additional analyses, you can always

reintroduce the unique (not correlated with

other variables) variables at that time.

Alternatively, you may wish to collect more

data, adding variables that you think will

indeed correlate with the now unique variable,

and then run the PCA on the new data set.

 One may also wish to inspect the Squared

Multiple Correlation coefficient (SMC or R
2
)

of each variable with all other variables.

Variables with small R
2
 s are unique variables,

not well correlated with a linear combination of

the other variables.

 Partial correlation coefficients may also

be used to identify unique variables. Recall

that the partial correlation coefficient between

variables Xi and Xj is the correlation between

two residuals,

 pjiii XX)..)..(..(12.
ˆ and  pjijj XX)..)..(..(12.

ˆ

A large partial correlation indicates that the

variables involved share variance that is not

shared by the other variables in the data set.

Kaiser‘s Measure of Sampling Adequacy

(MSA) for a variable Xi is the ratio of the sum

of the squared simple r‘s between Xi and each

other X to (that same sum plus the sum of the

squared partial r‘s between Xi and each other

X). Recall that squared r‘s can be thought of

as variances.

 




22

2

ijij

ij

prr

r
MSA

 Small values of MSA indicate that the

correlations between Xi and the other variables

are unique, that is, not related to the remaining

variables outside each simple correlation.

Kaiser has described MSAs above .9 as

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1856

marvelous, above .8 as meritorious, above .7 as

middling, above .6 as mediocre, above .5 as

miserable, and below .5 as unacceptable.

The MSA option in SAS‘ PROC FACTOR

[Enter PROC FACTOR MSA;] gives you a

matrix of the partial correlations, the MSA for

each variable, and an overall MSA computed

across all variables. Variables with small MSAs

should be deleted prior to FA or the data set

supplemented with additional relevant variables

which one hopes will be correlated with the

offending variables.

For our sample data the partial correlation matrix looks like this:

 COST SIZE ALCOHOL REPUTAT COLOR AROMA TASTE

COST 1.00 .54 -.11 -.26 -.10 -.14 .11

SIZE .54 1.00 .81 .11 .50 .06 -.44

ALCOHOL -.11 .81 1.00 -.23 -.38 .06 .31

REPUTAT -.26 .11 -.23 1.00 .23 -.29 -.26

COLOR -.10 .50 -.38 .23 1.00 .57 .69

AROMA -.14 .06 .06 -.29 .57 1.00 .09

TASTE .11 -.44 .31 -.26 .69 .09 1.00

MSA .78 .55 .63 .76 .59 .80 .68

O

VERALL MSA = .67

 These MSA‘s may not be marvelous, but

they aren‘t low enough to make me drop any

variables (especially since I have only seven

variables, already an unrealistically low

number).

Extracting Principal Components

 We are now ready to extract principal

components. We shall let the computer do

most of the work, which is considerable. From

p variables we can extract p components. This

will involve solving p equations with p

unknowns. The variance in the correlation

matrix is ―repackaged‖ into p eigenvalues.

This is accomplished by finding a matrix V of

eigenvectors. When the correlation matrix R is

premultiplied by the transpose of V and

postmultiplied by V, the resulting matrix L

contains eigenvalues in its main diagonal.

Each eigenvalue represents the amount of

variance that has been captured by one

component.

 Each component is a linear combination

of the p variables. The first component

accounts for the largest possible amount of

variance. The second component, formed from

the variance remaining after that associated

with the first component has been extracted,

accounts for the second largest amount of

variance, etc. The principal components are

extracted with the restriction that they are

orthogonal. Geometrically they may be viewed

as dimensions in p-dimensional space where

each dimension is perpendicular to each other

dimension.

 Each of the p variable‘s variance is

standardized to one. Each factor‘s eigenvalue

may be compared to 1 to see how much more

(or less) variance it represents than does a

single variable. With p variables there is p x 1

= p variance to distribute. The principal

components extraction will produce p

components which in the aggregate account for

all of the variance in the p variables. That is,

the sum of the p eigenvalues will be equal to p,

the number of variables. The proportion of

variance accounted for by one component

equals its eigenvalue divided by p.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1857

 For our beer data, here are the eigenvalues and proportions of variance for the seven components:

COMPONENT 1 2 3 4 5 6 7

EIGENVALUE 3.31 2.62 .57 .24 .13 .09 .04

PROPORTION .47 .37 .08 .03 .02 .01 .01

CUMULATIVE .47 .85 .93 .96 .98 .99 1.00

Deciding How Many Components to Retain

 So far, all we have done is to repackage

the variance from p correlated variables into p

uncorrelated components. We probably want

to have fewer than p components. If our p

variables do share considerable variance,

several of the p components should have large

eigenvalues and many should have small

eigenvalues. One needs to decide how many

components to retain. One handy rule of

thumb is to retain only components with

eigenvalues of one or more. That is, drop any

component that accounts for less variance than

does a single variable. Another device for

deciding on the number of components to

retain is the scree test. This is a plot with

eigenvalues on the ordinate and component

number on the abscissa. Scree is the rubble at

the base of a sloping cliff. In a scree plot, scree

is those components that are at the bottom of

the sloping plot of eigenvalues versus

component number. The plot provides a visual

aid for deciding at what point including

additional components no longer increases the

amount of variance accounted for by a

nontrivial amount.

 For our beer data, only the first two

components have eigenvalues greater than 1.

There is a big drop in eigenvalue between

component 2 and component 3. On a scree

plot, components 3 through 7 would appear as

scree at the base of the cliff composed of

components 1 and 2. Together components 1

and 2 account for 85% of the total variance.

We shall retain only the first two components.

 With SAS one can specify the number of

components to be retained by adding

NFACT = n, where n is the desired number, to

the PROC FACTOR command. One may

specify the total amount of variance to be

accounted for by the retained components by

adding P = p, where p = the proportion or

percentage desired. One can specify the

minimum eigenvalue for a retained component

with MIN = m. I used MIN = 1 for the beer

data.

Loadings, Unrotated and Rotated

 Another matrix of interest is the loading

matrix, also known as the factor pattern

matrix. This matrix is produced by

postmultiplying the matrix of eigenvectors by a

matrix of square roots of the eigenvalues. We

are retaining only two components, so we shall

get a 7 x 2, variables x components, matrix.

 Here is the loading matrix for our beer

data:

COMPONENT 1 2

COST .55 .73

SIZE .67 .68

ALCOHOL .63 .70

REPUTAT -.74 -.07

COLOR .76 -.57

AROMA .74 -.61

TASTE .71 -.61

 The entries in this matrix, loadings, are

correlations between the components and the

variables. Since the two components are

orthogonal, they are also beta weights, that is,

jjjj UFAFAX  2211 , thus A1 equals the

number of standard deviations that Xj changes

for each one standard deviation change in

Factor 1. As you can see, almost all of the

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1858

variables load well on the first component, all

positively except reputation. The second

component is more interesting, with 3 large

positive loadings and three large negative

loadings. Component 1 seems to reflect

concern for economy and quality versus

reputation. Component 2 seems to reflect

economy versus quality.

 Remember that each component

represents an orthogonal (perpendicular)

dimension. Fortunately, we retained only two

dimensions, so I can plot them on paper. If we

had retained more than two components, we

could look at several pairwise plots (two

components at a time).

For each variable I have plotted on the vertical

dimension its loading on component 1, on the

horizontal dimension its loading on component

2. Wouldn‘t it be nice if I could rotate these

axes so that the two dimensions passed more

nearly through the two major clusters (COST,

SIZE, ALCH and COLOR, AROMA, TASTE).

Imagine that the two axes are perpendicular

wires joined at the origin (0,0) with a pin. I

rotate them, preserving their perpendicularity,

so that the one axis passes through or near the

one cluster, the other through or near the other

cluster. The number of degrees by which I

rotate the axes is the angle PSI. For these data,

rotating the axes -40.63 degrees has the desired

effect.

 After rotating the axes I need recompute

the loading matrix. This is done by

postmultiplying the unrotated loading matrix

by a orthogonal transformation matrix. The

orthogonal transformation matrix for this two

dimensional transformation is

  COS PSI -SIN PSI  .76 .65 

   =  

  SIN PSI COS PSI  -.65 .76 

The rotated loading matrix, with the variables

reordered so that first come variables loading

most heavily on component 1, then those

loading most heavily on component two, is:

COMPONENT 1 2

TASTE .96 -.03

AROMA .96 .01

COLOR .95 .06

SIZE .07 .95

ALCOHOL .02 .94

COST -.06 .92

REPUTAT -.51 -.53

The rotated loadings plot is shown to the left.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1859

All of the statistics and plots we have discussed

so far can be produced by SAS with this

command:

PROC FACTOR CORR MSA SCREE

REORDER MIN=1 ROTATE=VARIMAX

PREPLOT PLOT;

Number of Components in the Rotated

Solution

 I generally will look at the initial,

unrotated, extraction and make an initial

judgment regarding how many components to

retain. Then I will obtain and inspect rotated

solutions with that many, one less than that

many, and one more than that many

components. I may use a "meaningfulness"

criterion to help me decide which solution to

retain – if a solution leads to a component

which is not well defined (has none or very few

variables loading on it) or which just does not

make sense, I may decide not to accept that

solution.

 One can err in the direction of extracting

too many components (overextraction) or too

few components (underextraction). Wood,

Tataryn, and Gorsuch (1996, Psychological

Methods, 1, 354-365) have studied the effects

of under- and over-extraction in principal

factor analysis with varimax rotation. They

used simulation methods, sampling from

populations where the true factor structure was

known. They found that overextraction

generally led to less error (differences between

the structure of the obtained factors and that of

the true factors) than did underextraction. Of

course, extracting the correct number of factors

is the best solution, but it might be a good

strategy to lean towards overextraction to avoid

the greater error found with underextraction.

 Wood et al. did find one case in which

overextraction was especially problematic – the

case where the true factor structure is that there

is only a single factor, there are no unique

variables (variables which do not share

variance with others in the data set), and where

the statistician extracts two factors and

employs a varimax rotation (the type I used

with our example data). In this case, they

found that the first unrotated factor had

loadings close to those of the true factor, with

only low loadings on the second factor.

However, after rotation, factor splitting took

place – for some of the variables the obtained

solution grossly underestimated their loadings

on the first factor and overestimated them on

the second factor. That is, the second factor

was imaginary and the first factor was

corrupted. Interestingly, if there were unique

variables in the data set, such factor splitting

was not a problem. The authors suggested that

one include unique variables in the data set to

avoid this potential problem. I suppose one

could do this by including "filler" items on a

questionnaire. The authors recommend using a

random number generator to create the unique

variables or manually inserting into the

correlation matrix variables that have a zero

correlation with all others. These unique

variables can be removed for the final analysis,

after determining how many factors to retain.

Explained Variance

 The SAS output also gives the variance

explained by each component and each

variable‘s communality estimates, both before

and after the rotation. The variance explained

is equal to the sum of squared loadings (SSL)

across variables. For component 1 that is

(.76
2
 + .74

2
 +...+ .67

2
) = 3.31 = its eigenvalue

before rotation and (.96
2
 + .96

2
 +...+ -.51

2
) =

3.02 after rotation. For component 2 the SSL‘s

are 2.62 and 2.91. After rotation component 1

accounted for 3.02/7 = 43% of the total

variance and 3.02 / (3.02 + 2.91) = 51% of the

variance distributed between the two

components. After rotation the two

components together account for (3.02 +

2.91)/7 = 85% of the total variance.

Naming Components

 Now let us look at the rotated loadings

again and try to name the two components.

Component 1 has heavy loadings (>.4) on

TASTE, AROMA, and COLOR and a

moderate negative loading on REPUTATION.

I‘d call this component AESTHETIC

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1860

QUALITY. Component 2 has heavy loadings

on large SIZE, high ALCOHOL content, and

low COST and a moderate negative loading on

REPUTATION. I‘d call this component

CHEAP DRUNK.

Communalities

 Let us also look at the SSL for each

variable across factors. Such a SSL is called a

communality. This is the amount of the

variable‘s variance that is accounted for by the

components (since the loadings are correlations

between variables and components and the

components are orthogonal, a variable‘s

communality represents the R
2
 of the variable

predicted from the components). For our beer

data the communalities are COST, .84; SIZE,

.90; ALCOHOL, .89; REPUTAT, .55;

COLOR, .91; AROMA, .92; and TASTE, .92.

 The SSL‘s for components can be used to

help decide how many components to retain.

An after rotation SSL is much like an

eigenvalue. A rotated component with an SSL

of 1 accounts for as much of the total variance

as does a single variable. One may want to

retain and rotate a few more components than

indicated by the MIN = 1 criterion. Inspection

of the retained components‘ SSL‘s after

rotation should tell you whether or not they

should be retained. Sometimes a component

with an eigenvalue > 1 will have a postrotation

SSL < 1, in which case you may wish to drop

it and ask for a smaller number of retained

components.

 You also should look at the postrotation

loadings to decide how well each retained

component is defined. If only one variable

loads heavily on a component, that component

is not well defined. If only two variables load

heavily on a component, the component may

be reliable if those two variables are highly

correlated with one another but not with the

other variables.

Orthogonal Versus Oblique Rotations

 The rotation I used on these data is the

VARIMAX rotation. It is the most commonly

used rotation. Its goal is to minimize the

complexity of the components by making the

large loadings larger and the small loadings

smaller within each component. There are

other rotational methods. QUARTIMAX

rotation makes large loadings larger and small

loadings smaller within each variable.

EQUAMAX rotation is a compromise that

attempts to simplify both components and

variables. These are all orthogonal rotations,

that is, the axes remain perpendicular, so the

components are not correlated with one

another.

It is also possible to employ oblique rotational

methods. These methods do not produce

orthogonal components. Suppose you have

done an orthogonal rotation and you obtain a

rotated loadings plot that looks like this:

 The cluster of points midway between

axes in the upper left quadrant indicates that a

third component is present. The two clusters in

the upper right quadrant indicate that the data

would be better fit with axes that are not

orthogonal. Axes drawn through those two

clusters would not be perpendicular to one

another. We shall return to the topic of oblique

rotation later.

EIGEN FACE RECOGNIZITION

 The face plays a major role in our

social intercourse in conveying identity and

emotion. The human ability to recognize faces

is remarkable. We can recognize thousands of

faces learned throughout our lifetime and

identify familiar faces at a glance even after

years of separation. The skill is quite robust,

despite large changes in the visual stimulus due

to viewing conditions, expression, aging, and

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1861

distractions such as glasses or changes in

hairstyle.

Computational models of faces have been an

active area of research since late 1980s, for

they can contribute not only to theoretical

insights but also to practical applications, such

as criminal identification, security systems,

image and film processing, and human-

computer interaction, etc. However, developing

a computational model of face recognition is

quite difficult, because faces are complex,

multidimensional, and subject to change over

time. Generally, there are three phases for face

recognition, mainly face representation, face

detection, and face identification.

Face representation is the first task, that is, how

to model a face. The way to represent a face

determines the successive algorithms of

detection and identification. For the entry-level

recognition (that is, to determine whether or

not the given image represents a face), a face

category should be characterized by generic

properties of all faces; and for the subordinate-

level recognition (in other words, which face

class the new face belongs to), detailed features

of eyes, nose, and mouth have to be assigned to

each individual face. There are a variety of

approaches for face representation, which can

be roughly classified into three categories:

template-based, feature-based, and appearance-

based.

The simplest template-matching approaches

represent a whole face using a single template,

i.e., a 2-D array of intensity, which is usually

an edge map of the original face image. In a

more complex way of template-matching,

multiple templates may be used for each face

to account for recognition from different

viewpoints. Another important variation is to

employ a set of smaller facial feature templates

that correspond to eyes, nose, and mouth, for a

single viewpoint. The most attractive

advantage of template-matching is the

simplicity, however, it suffers from large

memory requirement and inefficient matching.

In feature-based approaches, geometric

features, such as position and width of eyes,

nose, and mouth, eyebrow's thickness and

arches, face breadth, or invariant moments, are

extracted to represent a face. Feature-based

approaches have smaller memory requirement

and a higher recognition speed than template-

based ones do. They are particularly useful for

face scale normalization and 3D head model-

based pose estimation. However, perfect

extraction of features is shown to be difficult in

implementation [5]. The idea of appearance-

based approaches is to project face images onto

a linear subspace of low dimensions. Such a

subspace is first constructed by principal

component analysis on a set of training images,

with eigenfaces as its eigenvectors. Later, the

concept of eigenfaces were extended to

eigenfeatures, such as eigeneyes, eigenmouth,

etc. for the detection of facial features [6].

More recently, fisherface space [7] and

illumination subspace [8] have been proposed

for dealing with recognition under varying

illumination.

Face detection is to locate a face in a given

image and to separate it from the remaining

scene. Several approaches have been proposed

to fulfil the task. One of them is to utilize the

elliptical structure of human head [9]. This

method locates the head outline by the Canny's

edge finder and then fits an ellipse to mark the

boundary between the head region and the

background. However, this method is

applicable only to frontal views, the detection

of non-frontal views needs to be investigated.

A second approach for face detection

manipulates the images in ―face space‖ [1].

Images of faces do not change radically when

projected into the face space, while projections

of nonface images appear quite different. This

basic idea is uded to detect the presence of

faces in a scene: at every location in the image,

calculate the distance between the local

subimage and face space. This distance from

face space is used as a measure of ―faceness‖,

so the result of calculating the distance from

face space at every point in the image is a ―face

map‖. Low values, in other words, short

distances from face space, in the face map

indicate the presence of a face.

Face identification is performed at the

subordinate-level. At this stage, a new face is

compared to face models stored in a database

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1862

and then classified to a known individual if a

correspondence is found. The performance of

face identification is affected by several

factors: scale, pose, illumination, facial

expression, and disguise.

The scale of a face can be handled by a

rescaling process. In eigenface approach, the

scaling factor can be determined by multiple

trials. The idea is to use multiscale eigenfaces,

in which a test face image is compared with

eigenfaces at a number of scales. In this case,

the image will appear to be near face space of

only the closest scaled eigenfaces.

Equivalently, we can scale the test image to

multiple sizes and use the scaling factor that

results in the smallest distance to face space.

Varying poses result from the change of

viewpoint or head orientation. Different

identification algorithms illustrate different

sensitivities to pose variation.

To identify faces in different illuminance

conditions is a challenging problem for face

recognition. The same person, with the same

facial expression, and seen from the same

viewpoint, can appear dramatically different as

lighting condition changes. In recent years, two

approaches, the fisherface space approach [7]

and the illumination subspace approach [8],

have been proposed to handle different lighting

conditions. The fisherface method projects face

images onto a three-dimensional linear

subspace based on Fisher's Linear Discriminant

in an effort to maximize between-class scatter

while minimize within-class scatter. The

illumination subspace method constructs an

illumination cone of a face from a set of

images taken under unknown lighting

conditions. This latter approach is reported to

perform significantly better especially for

extreme illumination.

Different from the effect of scale, pose, and

illumination, facial expression can greatly

change the geometry of a face. Attempts have

been made in computer graphics to model the

facial expressions from a muscular point of

view [10].

Disguise is another problem encountered by

face recognition in practice. Glasses, hairstyle,

and makeup all change the appearance of a

face. Most research work so far has only

addressed the problem of glasses [7][1].

Eigen faces for Recognition

Before the publication of [1], much of the work

on automated face recognition has ignored the

issue of what aspects of the face stimulus are

important for identification, assuming that

predefined measurements were relevant and

sufficient. In early 1990s, M. Turk and A.

Pentland have realized that an information

theory approach of coding and decoding face

images may give insight into the information

content of face images, emphasizing the

significant local and global ―features‖. Such

features may or may not be directly related to

our intuitive notion of face features such as the

eyes, nose, lips, and hair.

In the language of information theory, the

objective is to extract the relevant information

in a face image, encode it as efficiently as

possible, and compare one face encoding with

a database of models encoded in the same way.

A simple approach to extract the information

contained in a face image is to somehow

capture the variation in a collection of face

images, independent of any judgement of

features, and use this information to encode

and compare individual face images.

In mathematical terms, the objective is to find

the principal components of the distribution of

faces, or the eigenvectors of the covariance

matrix of the set of face iamges. These

eigenvectors can be thought of as a set of

features which together characterize the

variation between face images. Each image

location contributes more or less to each

eigenvector, so that we can display the

eigenvector as a sort of ghostly face called an

eigenface. Some of these faces are shown in

Figure 4.

Each face image in the training set can be

represented exactly in terms of a linear

combination of the eigenfaces. The number of

possible eigenfaces is equal to the number of

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1863

face images in the training set. However, the

faces can also be approximated using only the

―best‖ eigenfaces—those that have the largest

eigenvalues, and which therefore account for

the most variance within the set of face images.

The primary reason for using fewer eigenfaces

is computational efficiency. The most

meaningful M eigenfaces span an M-

dimensional subspace—―face space‖—of all

possible images. The eigenfaces are essentially

the basis vectors of the eigenface

decomposition.

The idea of using eigenfaces was motivated by

a technique for efficiently representing pictures

of faces using principal component analysis. It

is argued that a collection of face images can

be approximately reconstructed by storing a

small collection of weights for each face and a

small set of standard pictures. Therefore, if a

multitude of face images can be reconstructed

by weighted sum of a small collection of

characteristic images, then an efficient way to

learn and recognize faces might be to build the

characteristic features from known face images

and to recognize particular faces by comparing

the feature weights needed to (approximately)

reconstruct them with the weights associated

with the known individuals.

The eigenfaces approach for face recognition

involves the following initialization operations:

1. Acquire a set of training images.

2. Calculate the eigenfaces from the training

set, keeping only the best M images with the

highest eigenvalues. These M images define

the ―face space‖. As new faces are

experienced, the eigenfaces can be updated.

3. Calculate the corresponding distribution

in M-dimensional weight space for each known

individual (training image), by projecting their

face images onto the face space.

Having initialized the system, the following

steps are used to recognize new face images:

1. Given an image to be recognized,

calculate a set of weights of the M eigenfaces

by projecting the it onto each of the eigenfaces.

2. Determine if the image is a face at all by

checking to see if the image is sufficiently

close to the face space.

3. If it is a face, classify the weight pattern

as eigher a known person or as unknown.

4. (Optional) Update the eigenfaces and/or

weight patterns.

5. (Optional) Calculate the characteristic

weight pattern of the new face image, and

incorporate into the known faces.

Calculating Eigenfaces

Let a face image (x,y) be a two-dimensional

N by N array of intensity values. An image

may also be considered as a vector of

dimension 2N , so that a typical image of size

256 by 256 becomes a vector of dimension

65,536, or equivalently, a point in 65,536-

dimensional space. An ensemble of images,

then, maps to a collection of points in this huge

space.

Images of faces, being similar in overall

configuration, will not be randomly distributed

in this huge image space and thus can be

described by a relatively low dimensional

subspace. The main idea of the principal

component analysis is to find the vector that

best account for the distribution of face images

within the entire image space. These vectors

define the subspace of face images, which we

call ―face space‖. Each vector is of length 2N ,

describes an N by N image, and is a linear

combination of the original face images.

Because these vectors are the eigenvectors of

the covariance matrix corresponding to the

original face images, and because they are

face-like in appearance, they are referred to as

―eigenfaces‖.

Let the training set of face images be 1 , 2 ,

3 , …, M . The average face of the set if

defined by 



M

n

n
M 1

1
. Each face differs

from the average by the vector  nn .

An example training set is shown in Figure 1a,

with the average face  shown in Figure 1b.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1864

This set of very large vectors is then subject to

principal component analysis, which seeks a

set of M orthonormal vectors, n , which best

describes the distribution of the data. The kth

vector, k is chosen such that





M

n

n

T

kk
M 1

2)(
1

 (1)

is a maximum, subject to



 


otherwise

kl
k

T

l
,0

,1
 (2)

The vectors k and scalars k are the

eigenvectors and eigenvalues, respectively, of

the covariance matrix





M

n

TT

nn AA
M

C
1

1
 (3)

where the matrix]...[21 MA  . The

matrix C, however, is 2N by 2N , and

determining the 2N eigenvectors and

eigenvalues is an intractable task for typical

image sizes. A computationally feasible

method is needed to find these eigenvectors.

If the number of data points in the image space

is less than the dimension of the space (
2NM ), there will be only 1M , rather than

2N , meaningful eigenvectors (the remaining

eigenvectors will have associated eigenvalues

of zero). Fortunately, we can solve for the 2N -

dimensional eigenvectors in this case by first

solving for the eigenvectors of and M by M

matrix—e.g., solving a 16 x 16 matrix rather

than a 16,384 x 16,384 matrix—and then

taking appropriate linear combinations of the

face images n . Consider the eigenvectors n

of AAT such that

nnn

T AA   (4)

Premultiplying both sides by A, we have

nnn

T AAAA   (5)

from which we see that nA are the

eigenvectors of TAAC  .

Following this analysis, we construct the M by

M matrix AAL T , where n

T

mmnL  , and

find the M eigenvectors n of L. These vectors

determine linear combinations of the M

training set face images to form the eigenfaces

n :

MnA n

M

k

knkn ,......,1,
1




 (6)

With this analysis the calculations are greatly

reduced, from the order of the number of pixels

in the images (2N) to the order of the number

of images in the training set (M). In practice,

the training set of face images will be relatively

small (2NM ), and the calculations become

quite manageable. The associated eigenvalues

allow us to rank the eigenvectors according to

their usefulness in characterizeing the variation

among the images.

Using Eigenfaces to Classify a Face Image

The eigenface images calculated from the

eigenvectors of L span a basis set with which to

describe face images. As mentioned before, the

usefulness of eigenvectors varies according

their associated eigenvalues. This suggests we

pick up only the most meaningful eigenvectors

and ignore the rest, in other words, the number

of basis functions is further reduced from M to

M’ (M’<M) and the computation is reduced as

a consequence. Experiments have shown that

the RMS pixel-by-pixel errors in representing

cropped versions of face images are about 2%

with M=115 and M’=40 [11].

In practice, a smaller M’ is sufficient for

identification, since accurate reconstruction of

the image is not a requirement. In this

framework, identification becomes a pattern

recognition task. The eigenfaces span an M’

dimensional subspace of the original 2N

image space. The M’ most significant

eigenvectors of the L matrix are chosen as

those with the largest associated eigenvalues.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1865

A new face image  is transformed into its

eigenface components (projected onto ―face

space‖) by a simple operation

)( nn  (7)

for n=1,……,M’. This describes a set of point-

by-point image maltiplications and

summations.

The weights form a vector

],...,,['21 M

T  that describes the

contribution of each eigenface in representing

the input face image, treating the eigenfaces as

a basis set for face images. The vector may

then be used in a standard pattern recognition

algorithm to find which of a number of

predefined face classes, if any, best describes

the face. The simplest method for determining

which face class provides the best description

of an input face image is to find the face class k

that minimizes the Euclidian distance

22)(kk  (8)

where k is a vector describing the kth face

class. The face classes k are calculated by

averaging the results of the eigenface

representation over a small number of face

images (as few as one) of each individual. A

face is classified as ―unknown‖, and optionally

used to created a new face class.

Because creating the vector of weights is

equivalent to projecting the original face image

onto to low-dimensional face space, many

images (most of them looking nothing like a

face) will project onto a given pattern vector.

This is not a problem for the system, however,

since the distance  between the image and the

face space is simply the squared distance

between the mean-adjusted input image

 and 



'

1

M

i

iif  , its projection

onto face space:

2
2

f (9)

Thus there are four possibilities for an input

image and its pattern vector: (1) near face

space and near a face class; (2) near face space

but not near a known face class; (3) distant

from face space and near a face class; (4)

distant from face space and not near a known

face class.

In the first case, an individual is recognized

and identified. In the second case, an unknown

individual is present. The last two cases

indicate that the image is not a face image.

Case three typically shows up as a false

positive in most recognition systems; in this

framework, however, the false recognition may

be detected because of the significant distance

between the image and the subspace of

expected face images.

Summary of Eigenface Recognition Procedure

The eigenfaces approach for face recognition is

summarized as follows:

1. Collect a set of characteristic face images

of the known individuals. This set should

include a number of images for each person,

with some variation in expression and in the

lighting (say four images of ten people, so

M=40).

2. Calculate the (40 x 40) matrix L, find its

eigenvectors and eigenvalues, and choose the

M’ eigenvectors with the highest associated

eigenvalues (let M’=10 in this example).

3. Combine the normalized training set of

images according to Eq. (6) to produce the

(M’=10) eigenfaces ',......,1, Mkk  .

4. For each known individual, calculate the

class vector k by averaging the eigenface

pattern vectors  [from Eq. (8)] calculated

from the original (four) images of the

individual. Choose a threshold  that defines

the maximum allowable distance from any face

class, and a threshold  that defines the

maximum allowable distance from face space

[according to Eq. (9)].

5. For each new face image to be identified,

calculate its pattern vector  , the distance k

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1866

to each known class, and the distance  to face

space. If the minimum distance  k and

the distance   , classify the input face as

the individual associated with class vector k .

If the minimum distance  k but   ,

then the image may be classified as

―unknown‖, and optionally used to begin a new

face class.

6. If the new image is classified as a known

individual, this image may be added to the

original set of familiar face images, and the

eigenfaces may be recalculated (steps 1-4).

This gives the opportunity to modify the face

space as the system encounters more instances

of known faces.

Implementation Issues

The entire program consists of four functional

blocks, namely ‗LoadImages‘,

‗ConstructEigenfaces‘, ‗ClassifyNewface‘, and

‗undoUpdateEigenfaces‘. There is also a

‗main‘ function, which calls

‗ConstructEigenfaces‘ and ‗ClassifyNewface‘

functions to complete the face recognition task.

System Structure

The structure of the system is shown in Figure

1. In the figure, the square shape indicates

functions, and the parallogram represents files.

An arrow pointing out from a file to a function

means the function loads the file; an arrow

pointing in the other direction indicates that the

function creates or updates the file; a

bidirectional arrow means the file is first read

by the function, and later modified or updated

by it. These files help the

‗ConstructEigenfaces‘ and ‗ClassifyNewface‘

functions communicate with each other in a

well organized way.

ConstructEigenfaces

ClassifyNewface

eigenfaces.mat

faceclasses.mat

note_eigenfaces.mat

undoUpdateEigenfaces

LoadImages
trainingimages.mat

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1867

Figure 1. System Flowchart. The squares and

parallograms represent functions and files

respectively. An arrow pointing out from a file

to a function means the function reads/loads

the file; an arrow pointing in the other direction

indicates that the function creates/updates the

file; a bidirectional arrow means the file is first

read by the function, and later

modified/updated by it. These files help the

‗ConstructEigenfaces‘ and ‗ClassifyNewface‘

functions communicate with each other in a

well organized way.

Functional Blocks

Each functional block has a corresponding .m

file (refer to the source code). Detailed

description of the functional blocks is as

follows.

LoadImages(imagefilename):

 Functionality: load all training images

and return their contents (intensity values)

 Input parameters: imagefilename—a

string that states an image file name.

 Output parameters: I—a 3D matrix whose

components are the intensity values of the

training images.

 Use: I=LoadImages(imagefilename)

 Pseudo-code:

if imagefilename is an empty string

 do

 (1) read all default training images into

3D matrix I

 (2) save I to file

‗trainingimages.mat‘ in ‗.\TrainingSet‘

directory (note: relative path is used throughout

the document, ‗relative‘ in the sense that

relative to the location of the .m source files)

 (3) write the file names of the

default training images to text file

‗note_eigenfaces.txt‘ in ‗.\Eigenfaces‘

directory

 else (assuming the file path and name

are correct, i.e. the image file can be opened

and read properly)

 do

(1) copy the image named

imagefilename into ‗.\TrainingSet‘ directory

(2) load I from file

‗trainingimages.mat‘ in ‗.\TrainingSet‘

directory

(3) read the image file named

imagefilename (the input parameter) and

extract its illuminant component (i.e. intensity)

into 2D matrix Inew

(4) concatenate Inew to I and save the

modified I to ‗trainingimages.mat‘, thus file

‗trainingimages.mat‘ gets updated

(5) append imagefilename (i.e., name

of the new training image) to the end of text

file ‗note_eigenfaces.txt‘ in ‗.\Eigenfaces‘

directory

(6) copy the test image from

‗.\TestImage‘ directory to ‗.\TrainingSet‘

direcotry

 Note: ‗LoadImages‘ function is always

called in the ‗ConstructEigenfaces‘ function.

The input parameter of the latter is passed to

the former as its iput. The 3D matrix I returned

by ‗LoadImages‘ will be used for further

computation in ‗ConstructEigenfaces‘.

ConstructEigenfaces(imagefilename):

 Functionality: (1) construct or update

eigenfaces;

 (2) construct or update face

classes.

 Input parameters: imagefilename—a

string that states an image file name

 Output parameters: sf—indicator of

success/failure of the execution of the function.

If sf equals to 1, execution successfully; if sf

equals to 0, execution failure

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1868

 Use:

sf=ConstructEigenfaces(imagefilename)

 Pseudo-code:

 * call function ‗LoadImages‘ and get

the illuminant components I of current training

images

 * construct eigenfaces V and face

classes OMEGA based on I

 save V to file ‗eigenfaces.mat‘ in

‗.\Eigenfaces‘ directory

 save OMEGA to file ‗faceclasses.mat‘

in ‗.\Eigenfaces‘ directory

 Note: the input parameter of function

‗ConstructEigenfaces‘ is passed to function

‗LoadImages‘ as its input when the former

calls the latter. Therefore, the two statements

marked with * in above pseudo-code can be

restated as following:

 if imagefilename is an empty string

 do

(1) construct the eigenfaces V based

on the default training images

(2) construct the face classes

OMEGA based on the default training images

 else (assuming file path and name are

correct, i.e. the image file can be opened and

read properly)

 do

(1) update current V according to the newly

added training image

 (2) update current OMEGA according to the

latest added training image

When the input parameter is an empty string,

‗ConstructEigenfaces‘ function constructs the

very first version of eigenfaces, and face

classes based on the default training image set.

Calling this function with an empty string as

the input parameter is a good thing to do only

if it is the first time we run the face recognition

program; otherwise, we may lose useful

information. Assuming we have already run the

face recognition program several times,

encountered a number of new faces, and added

the new faces to our training set, if

‗ConstructEigenfaces‘ function is called with

an empty input string, files such as

‗trainingimages.mat‘, ‗note_eigenfaces.txt‘,

‗eigenfaces.mat‘ and ‗faceclasses.mat‘ will all

go back to their initial version, in other words,

updated eigenfaces and face classes based on

the new training images will be missing and

what we have are those containing only the

default training images‘ information.

Therefore, be cautious when calling

‗ConstructEigenfaces‘ function with an empty

string as the input parameter.

ClassifyNewface(imagefilename):

 Functionality: given a test image, this

function is able to determine

(1) Whether it is a face

image

(2) If it is a face image, does it belong to any of

the existing face classes?

a. If so, which face

class does it correspond to?

b. If not, (optionally) update the eigenfaces

according to the test image

 Input parameter: imagefilename—a string

that states the name of the test image

 Output parameter: result—indicator of the

test image‘s status

a. result=0, bad file

(cannot open the file)

b. result=-2, test

image is not a face image

c. result=1, test image

is a face image, and belongs to one of the

existing face classes

d. result=-1, test

image is a face image, but does not belong to

any of the existing face classes

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1869

 Use:

result=ClassifyNewface(imagefilename)

 Pseudo-code:

if the test image file cannot be opened

 do

(1) result=0

(2) return

 (end if)

predefine two thresholding values  and 

project the test image  onto face space

compute the distance  between the test image

and its projection onto the face space

if  > ( is not a face image)

 do

(1) result=-2

(2) return

 (end if)

 compute the distance , 1,......,k k M 

between  and each face class

 find 'min{ , 1,......, }k kk M  

 if 'k <  ( belongs to k’th face class)

 do

(1) display the test image and its

corresponding training image

(2) result=1

 else ( does not belong to any of the

existing face classes)

 do

(1) (optionally) call function

ConstructEigenfaces with the file name of the

test image as the input parameter

(2) result=-1

undoUpdateEigenfaces:

 Functionality: (1) remove the latest added

training image from the training set, followed

by computation of eigenfaces and face classes

 (2) overwrite all the four

files shown in Figure 1, mainly

‗trainingimages.mat‘ in ‗.\TrainingSet‘

directory, ‗eigenfaces.mat‘, ‗faceclasses.mat‘,

‗note_eigenfaces.txt‘ in ‗.\Eigenfaces‘

directory

 Note: function ‗undoUpdateEigenfaces‘ is

necessary for undo an update of eigenfaces and

face classes, which should not have been done

 Use: undoUpdateEigenfaces

 Pseudo-code

1. load ‗trainingimages.mat‘ from

‗TrainingSet‘ directory and get 3D matrix I

2. remove the last slice from I (by

statement I=I(:,:,1:(size(I,3)-1)) if

programming with MatLab)

3. save modified I to

‗trainingimages.mat‘ in ‗TrainingSet‘ directory

4. remove the last line (i.e. the name of

the image file to be removed from the training

set) from ‗note_eigenfaces.txt‘

5. delete the lastest added training image

from ‗TrainingSet‘ directory

6. construct face space, eigenfaces and

face classes based on modified I

7. overwrite following files:

‗eigenfaces.mat‘, and ‗faceclasses.mat‘

main:

 Functionality: group functions such as

‗ConstructEigenfaces‘ and ‗ClassifyNewface‘

together and form the face recognition system

 Flow: the system flow is illustrated in Figure 2.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1870

Figure 2. System Flow

PROJECTION OF TRAINING

SAMPLES INTO THE EIGENFACE

SPACE

Next we have to project the training sample

into the Eigenface space. The feature weight

for the training images can be calculated by

the following formula:

Where, ui is the ith Eigenfaces and i=1, 2, 3 . .

. . . .K. The weight is obtained as above form a

vector as follows

 TESTING SAMPLE CLASSIFICATIONS

a) Read the test image and

separate face from it.

b) Calculate the feature vector of

the test face.

The test image is transformed into

its eigenface components. First we

compare line of our input image

with our mean image and multiply

their difference with each

eigenvectors [2]. Each value would

represent a weight and would be

saved on a vector

Where, ui is the ith Eigenfaces and i=1,

2, 3K.

c) Compute the average distance (Euclidean

distance) between test feature vector and all

the training feature vectors. Mathematically,

recognition is finding the minimum Euclidean

distance , between a testing point and a

training point given in the following equation

Where, i = 1, 2, 3. K. The Euclidean

distance between two weight vectors thus

provides a measurement of similarity between

the corresponding images.

Construct/update

eigenfaces prior to face

identification?

Construct/update

eigenfaces

Y

Test image name

Classify the test image

N

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1871

d) The face class with minimum Euclidian distance shows similarity to test image [5].

VI. SCHEMATIC

DIAGRAM & FLOWCHART

Fig-2:

Schematic diagram of a face

recognizer

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1872

VII. EXPERIMENTAL RESULT

This article represents some computational

results of our program. In Experimental result-

1 and Experimental result-2, both test image

and equivalent image which is stored in

database have same pose. But test image

and equivalent image have different in pose

which are shown in Experimental result-3 and

Experimental result-4.

Experimental Result-1(having same pose)

Experimental Result-2(having same pose)

Fig-3: The Recognition of Individual Images having Same Pose

Experimental Result-3 (having pose variation)

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1873

 Experimental Result-4 (having pose variation)

 Figure-4: The Recognition of Individual Images having Pose variation

OUTPUT

Proposed methods Results

Test image

CONCLUSION

In this thesis we implemented the face

recognition system using Principal Component

Analysis and Eigenface approach. The system

successfully recognized the human faces and

worked better in different conditions of face

orientation. In this research, Principal

component analysis approach to the face

recognition problem was studied and a face

recognition system based on the eigenfaces

approach was proposed. The algorithm has

been tested for the image database ETE-07

series, RUET and implemented using

MATLAB. The algorithm developed in a

generalized one which works well with any

type of images. The tests conducted on Bitmap

images, PNG images and JPEG images of

various subjects in different poses showed that

this method gave very good classification of

faces though it has limitations over the

variations in size of image. The eigenface

approach thus provides a practical solution that

is well fitted to the problem of face recognition.

It is fast, relatively simple and has been

shown to work well in constrained

environment.

FUTURE PLAN

In this thesis paper, we worked with some still

pictures but we will try to develop a system

using video camera that will work with real

time face recognition. Here we used 36 face

images of 18 persons of ETE-07 series, RUET

but in future we would like to work with huge

database. We want to overcome the problem

of different size face image recognition. We

will compare the performance analysis of

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1874

PCA based method with all others existing

face recognition methods.

REFERENCES

[1].

http://www.fac

e-rec.org

[2]. Shemi P M, Ali M A, A Principal

Component Analysis Method for

Recognition of Human Faces: Eigenfaces

Approach, International Journal of

Electronics Communication and

Computer Technology (IJECCT),Volume

2 Issue 3 (May 2012).

[3]. M. Turk, A. Pentland: Face

Recognition using Eigenfaces,

Conference on Computer Vision and

Pattern Recognition, 3 – 6 June 1991,

Maui, HI , USA, pp. 586 –591.

[4]. Prof. Y. Vijaya Lata , Chandra Kiran

Bharadwaj Tungathurthi , H. Ram Mohan

Rao , Dr. A. Govardhan , Dr. L. P.

Reddy, Facial Recognition using

Eigenfaces by PCA, Department of

Computer Science and Engineering,

Gokaraju Rangaraju Institute of

Engg&Tech, Jawaharlal Nehru Tech.

University.

[5]. Parvinder S. Sandhu, Iqbaldeep Kaur,

Amit Verma, Samriti Jindal, Inderpreet

Kaur, Shilpi Kumari, Face Recognition

Using Eigen face Coefficients and

Principal Component Analysis,

International Journal on Electrical and

Electronics Engineering 3:8 2009

http://www.face-rec.org/
http://www.face-rec.org/

