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ABSTRACT: 

This paper proposes a simple and efficient Montgomery multiplication algorithm 

such that the low-cost and high-performance Montgomery modular multiplier can 

be implemented accordingly. The proposed multiplier receives and outputs the data 

with binary representation and uses only one-level carry-save adder (CSA) to avoid 

the carry propagation at each addition operation. This CSA is also used to perform 

operand pre computation and format conversion from the carry save format to the 

binary representation, leading to a low hardware cost and short critical path delay 

at the expense of extra clock cycles for completing one modular multiplication. To 

overcome the weakness, a configurable CSA (CCSA), which could be one full-

adder or two serial half-adders, is proposed to reduce the extra clock cycles for 

operand pre computation and format conversion by half. In addition, a mechanism 

that can detect and skip the unnecessary carry-save addition operations in the one-

level CCSA architecture while maintaining the short critical path delay is 

developed. As a result, the extra clock cycles for operand pre computation and 

format conversion can be hidden and high throughput can be obtained. 

Experimental results show that the proposed Montgomery modular multiplier can 

achieve higher performance and significant area–time product improvement when 

compared with previous designs. 

 Index Terms— Carry-save addition, low-cost architecture, Montgomery modular 

multiplier, public-key cryptosystem. 

INTRODUCTION  I N MANY public-key cryptosystems 

[1]–[3], modular multiplication (MM) 

with large integers is the most critical 
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and time-consuming operation. 

Therefore, numerous algorithms and 

hardware implementation have been 

presented to carry out the MM more 

quickly, and Montgomery’s algorithm 

is one of the most well-known MM 

algorithms. Montgomery’s algorithm 

[4] determines the quotient only 

depending on the least significant 

digit of operands and replaces the 

complicated division in conventional 

MM with a series of shifting modular 

additions to produce S = A × B × R−1 

(mod N), where N is the k-bit 

modulus, R−1 is the inverse of R 

modulo N, and R = 2k mod N. As a 

result, it can be easily implemented 

into VLSI circuits to speed up the 

encryption/decryption process. 

However, the three-operand addition 

in the iteration loop of Montgomery’s 

algorithm as shown in step 4 of Fig. 1 

requires long carry propagation for 

large operands in binary 

representation. To solve this problem, 

several approaches  

Carry Save Adders and Redundant 

Representation : 

The core operation of most algorithms 

for modular multiplication is addition. 

There are several different methods 

for addition in hardware: carry ripple 

addition, carry select addition, carry 

look ahead addition and others [8]. 

The disadvantage of these methods is 

the carry propagation, which is 

directly proportional to the length of 

the operands. This is not a big 

problem for operands of size 32 or 64 

bits but the typical operand size in 

cryptographic applications range from 

160 to 2048 bits. The resulting delay 

has a significant influence on the time 

complexity of these adders. The carry 

save adder seems to be the most cost 

effective adder for our application. 

Carry save addition is a method for an 

addition without carry propagation. It 

is simply a parallel ensemble of n full-

adders without any horizontal 

connection. Its function is to add three 

n-bit integers X, Y, and Z to produce 

two integers C and S as results such 

that C + S = X + Y + Z, where C 

represents the carry and S the sum. 

When carry save adders are used in an 

algorithm one uses a notation of the 

form (S, C) = X + Y + Z to indicate 

that two results are produced by the 

addition. The results are now 

represented in two binary words, an n-

bit word S and an (n+1) bit word C. 

Of course, this representation is 

redundant in the sense that we can 

represent one value in several 

different ways. This redundant 

representation has the advantage that 

the arithmetic operations are fast, 

because there is no carry propagation. 

On the other hand, it brings to the fore 
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one basic disadvantage of the carry 

save adder: • It does not solve our 

problem of adding two integers to 

produce a single result. Rather, it adds 

three integers and produces two such 

that the sum of these two is equal to 

that of the three inputs. This method 

may not be suitable for applications 

which only require the normal 

addition. 

Montgomery Multiplication 

Algorithm: 

 The Montgomery algorithm [1, 

Algorithm 1a] computes P = (X*Y* 

(2 n ) -1 ) mod M. The idea of 

Montgomery [2] is to keep the lengths 

of the intermediate results 

smaller than n+1 bits. This is achieved 

by interleaving the computations and 

additions of new partial products with 

divisions by 2; each of them reduces 

the bit length of the intermediate 

result by one. For a detailed treatment 

of the Montgomery algorithm, the 

reader is referred to [2] and [1]. The 

key concepts of the Montgomery 

algorithm [1, Algorithm 1b] are the 

following: • Adding a multiple of M 

to the intermediate result does not 

change the value of the final result; 

because the result is computed 

modulo M. M is an odd number. • 

After each addition in the inner loop 

the least significant bit (LSB) of the 

intermediate result is inspected. If it is 

1, i.e., the intermediate result is odd, 

we add M to make it even. This even 

number can be divided by 2 without 

remainder. This division by 2 reduces 

the intermediate result to n+1 bits 

again. • After n steps these divisions 

add up to one division by 2 n . The 

Montgomery algorithm is very easy to 

implement since it operates least 

significant bit first and does not 

require any comparisons. 

 

Fig. 1. MM algorithm. 

Montgomery Multiplication : 
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Fig. 2. SCS-based Montgomery 

multiplication algorithm. 

Fig. 1 shows the radix-2 version of 

the Montgomery MM algorithm 

(denoted as MM algorithm). As 

mentioned earlier, the Montgomery 

modular product S of A and B can be 

obtained as S = A × B × R−1 (mod 

N), where R−1 is the inverse of R 

modulo N. That is, R × R−1 = 1 (mod 

N). Note that, the notation Xi in Fig. 1 

shows the ith bit of X in binary 

representation. In addition, the 

notation Xi: j indicates a segment of 

X from the ith bit to jth bit. Since the 

convergence range of S in MM 

algorithm is 0 ≤ S < 2N, an additional 

operation S = S − N is required 

 

Fig. 3. SCS-MM-1 multiplier. 

to remove the oversize residue if S ≥ 

N. To eliminate the final comparison 

and subtraction in step 6 of Fig. 1, 

Walter [22] changed the number of 

iterations and the value of R to k + 2 

and 2k+2 mod N, respectively. 

Nevertheless, the long carry 

propagation for the very large operand 

addition still restricts the performance 

of MM algorithm. 

SCS-Based Montgomery 

Multiplication : 

To avoid the long carry propagation, 

the intermediate result S of shifting 

modular addition can be kept in the 

carry-save representation (SS, SC), as 

shown in Fig. 2. Note that the number 

of iterations in Fig. 2 has been 

changed from k to k + 2 to remove the 

final comparison and subtraction [22]. 

However, the format conversion from 

the carry-save format of the final 

modular product into its binary format 

is needed, as shown in step 6 of Fig. 

2. Fig. 3 shows the architecture of 

SCS-based MM algorithm proposed 

in [5] (denoted as SCS-MM-1 

multiplier) composed of one two-level 

CSA architecture and one format 

converter, where the dashed line 

denotes a 1-bit signal. In [5], a 32-bit 

CPA with multiplexers and registers 

(denoted as CPA_FC), which adds 

two 32-bit inputs and generates a 32-

bit output at every clock cycle, was 

adopted for the format conversion. 

Therefore, the 32-bit CPA_FC will 

take 32 clock cycles to complete the 

format conversion of a 1024-bit SCS-

based Montgomery multiplication. 
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The extra CPA_FC probably enlarges 

the area and the critical path of the 

SCS-MM-1 multiplier. The works in 

[6] and [7] pre computed D = B + N 

so that the computation of Ai × B + qi 

× N in step 4 of Fig. 2 can be 

simplified into one selection 

operation. One of the 

 

Fig. 4. SCS-MM-2 multiplier. 

operands 0, N, B, and D will be 

chosen if (Ai , qi) = (0, 0), (0, 1), (1, 

0), and (1, 1), respectively. As a 

result, only one-level CSA 

architecture is required in this 

multiplier to perform the carry-save 

addition at the expense of one extra 4-

to-1 multiplexer and one additional 

register to store the operand D. 

However, they did not present an 

effective approach to remove the 

CPA_FC for format conversion and 

thus this kind of multiplier still suffers 

from the critical path of CPA_FC. On 

the other hand, Zhang et al. [8] reused 

the two-level CSA architecture to 

perform the format conversion so that 

the CPA_FC can be removed. That is, 

S[k + 2] = SS[k + 2] + SC[k + 2] in 

step 6 of Fig. 2 is replaced with the 

repeated carry-save addition operation 

(SS[k + 2], SC[k + 2]) = SS[k + 2] + 

SC[k + 2] until SC[k + 2] = 0. Fig. 4 

shows the architecture of the 

Montgomery multiplier proposed in 

[8] (denoted as SCS-MM-2 

multiplier). Note that the select 

signals of multiplexers M1 and M2 in 

Fig. 4 generated by the control part 

are not shown in Fig. 4 for the sake of 

simplicity. However, the extra clock 

cycles for format conversion are 

dependent on the longest carry 

propagation chain in 

SS[k+2]+SC[k+2] and about k/2 

clock cycles are required in the worst 

case because two-level CSA 

architecture is adopted in [8] 

FCS-Based Montgomery 

Multiplication: 

 To avoid the format conversion, 

FCS-based Montgomery 

multiplication maintains A, B, and S 

in the carry save representations (AS, 

AC), (BS, BC), and (SS, SC), 

respectively. McIvor et al. [9] 

proposed two FCS based 

Montgomery multipliers, denoted as 

FCS-MM-1 and FCS-MM-2 

multipliers, composed of one five-

totwo (three-level) and one four-to-



   International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 

Volume 03 Issue 17 
November 2016 

 

Available online: http://internationaljournalofresearch.org/  P a g e  | 1888 

two (two-level) CSA architecture, 

respectively. The algorithm and 

architecture of the FCS-MM-1 

multiplier are shown in Figs. 5 and 6, 

respectively. The barrel register full 

adder (BRFA) 

 

Fig. 5. FCS-MM-1 Montgomery 

multiplication algorithm. 

 

Fig. 6. FCS-MM-1 multiplier. 

in Fig. 6 consists of two shift registers 

for storing AS and AC, a full adder 

(FA), and a flip-flop (FF). For more 

details about BRFA, please refer to 

[9] and [10]. On the other hand, the 

FCS-MM-2 multiplier proposed in [9] 

adds up BS, BC, and N into DS and 

DC at the beginning of each MM. 

Therefore, the depth of the CSA tree 

can be reduced from three to two 

levels. Nevertheless, the FCS-MM-2 

multiplier needs two extra 4-to-1 

multiplexers addressed by Ai and qi 

and two more registers to store DS 

and DC to reduce one level of CSA 

tree. Therefore, the critical path of the 

FCS-MM-2 multiplier may be slightly 

reduced with a significant increase in 

hardware area when compared with 

the FCS-MM-1 multiplier. Table I 

summarizes and roughly compares the 

area complexity and critical path 

delay of the above-mentioned radix-2 

Montgomery multipliers according to 

the normalized area and delay listed 

in Table II with respect to the TSMC 

90-nm cell library information. In 

Table I, the 
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TABLE I ANALYSIS OF AREA 

AND DELAY OF DIFFERENT 

DESIGNS 

notations AG and TG denote the area 

and delay of a cell G, respectively, 

and τ () denotes the critical path delay 

of circuit . Note that ASR in Table I 

denotes the area of a shift register, 

and we assume that ASR is 

approximate to the sum of AREG and 

AMUX2. In addition, the area and 

delay ratios of the SCS-MM-1 

multiplier in Table I do not take that 

of CPA_FC into consideration 

because they are signifi- cantly 

dependent on the design of CPA_FC. 

Generally speaking, SCS-based 

multipliers have lower area 

complexity than FCS-based 

Montgomery multipliers. However, 

extra clock cycles for format 

conversion possibly lower the 

performance of SCS-based 

multipliers. To further enhance the 

performance of the SCS-based 

multiplier, both the critical path delay 

and clock cycles for completing one 

multiplication must be reduced while 

maintaining the low hardware 

complexity. 

PROPOSED MONTGOMERY 

MULTIPLICATION : 

In this section, we propose a new 

SCS-based Montgomery MM 

algorithm to reduce the critical path 

delay of Montgomery multiplier. In 

addition, the drawback of more clock 

cycles for completing one 

multiplication is also improved while 

maintaining the advantages of short 

critical path delay and low hardware 

complexity.  

Critical Path Delay Reduction : 

The critical path delay of SCS-based 

multiplier can be reduced by 

combining the advantages of FCS-

MM-2 and SCS-MM-2. That is, we 

can precompute D = B + N and reuse 

the one-level CSA architecture to 

perform B+N and the format 

conversion. Fig. 7(a) and (b) shows 

the modified SCS-based Montgomery 

multiplication (MSCS-MM) 

algorithm and one possible hardware 

architecture, respectively. The 

Zero_D circuit in Fig. 7(b) is used to 

detect whether SC is equal to zero, 

which can be accomplished using one 

NOR operation. The Q_L circuit 

decides the qi value according to step 

7 of Fig. 7(a). The carry propagation 

addition operations of B + N and the 

format conversion are performed by 

the one-level CSA architecture of the 

MSCS-MM multiplier through 

repeatedly executing the carry-save 

addition (SS, SC) = SS + SC + 0 until 

SC = 0. In addition, we also 

precompute Ai and qi in iteration i−1 
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(this will be explained more clearly in 

Section III-C) so that they can be used 

to immediately select the desired 

input operand from 0, N, B, and D 

through the multiplexer M3 in 

iteration i. Therefore, the critical path 

delay of the MSCS-MM multiplier 

can be reduced into TMUX4 + TFA. 

However, in addition to performing 

the 

 

 

Fig. 7. (a) Modified SCS-based 

Montgomery multiplication 

algorithm. (b) MSCS-MM multiplier. 

three-input carry-save additions [i.e., 

step 12 of Fig. 7(a)] k + 2 times, many 

extra clock cycles are required to 

perform B + N and the format 

conversion via the one-level CSA 

architecture because they must be 

performed once in every MM. 

Furthermore, the extra clock cycles 

for performing B+N and the format 

conversion through repeatedly 

executing the carry-save addition (SS, 

SC) = SS +SC +0 are dependent on 

the longest carry propagation chain in 

SS + SC. If SS = 111…1112 and SC 

= 000…0012, the one-level CSA 

architecture needs k clock cycles to 

complete SS + SC. 

 

Fig. 8. (a) Conventional FA circuit. 

(b) Proposed CFA circuit. (c) Two 

serial HAs. (d) Simplified multiplexer 

SM3. 
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That is, ∼3k clock cycles in the worst 

case are required for completing one 

MM. Thus, it is critical to reduce the 

required clock cycles of the MSCS-

MM multiplier. 

Clock Cycle Number Reduction: 

 To decrease the clock cycle number, 

a CCSA architecture which can 

perform one three-input carry-save 

addition or two serial two-input carry-

save additions is proposed to 

substitute for the one-level CSA 

architecture in Fig. 7(b). Fig. 8(a) 

shows two cells of the one-level CSA 

architecture in Fig. 7(b), each cell is 

one conventional FA which can 

perform the three-input carry-save 

addition. Fig. 8(b) shows two cells of 

the proposed configurable FA (CFA) 

circuit. If α = 1, CFA is one FA and 

can perform one three-input carry-

save addition (denoted as 1F_CSA). 

Otherwise, it is two half-adders (HAs) 

and can perform two serial two-input 

carry-save additions (denoted as 

2H_CSA), as shown in Fig. 8(c). In 

this case, G1 of CFAj and G2 of 

CFAj+1 in Fig. 8(b) will act as HA1 j 

in Fig. 8(c), and G3, G4, and G5 of 

CFAj in Fig. 8(b) will behave as HA2 

j in Fig. 8(c). Moreover, we modify 

the 4-to-1 multiplexer M3 in Fig. 7(b) 

into a simplified multiplier SM3 as 

shown in Fig. 8(d) because one of its 

inputs is zero, where ∼ denotes the 

INVERT operation. Note that M3 has 

been replaced 

 

Fig. 9. Three-to-two carry-save 

addition at the ith iteration of Fig. 7. 

by SM3 in the proposed one-level 

CCSA architecture shown in Fig. 

8(b). According to the delay ratio 

shown in Table II, TS M3 (i.e., 0.68 × 

TFA) is approximate to TMUX3 (i.e., 

0.63 × TFA) and TMUXI2 (i.e., 0.23 

× TFA) is smaller than TXOR2 (i.e., 

0.34×TFA). Therefore, the critical 

path delay of the proposed one-level 

CCSA architecture in Fig. 8(b) is 

approximate to that of the one-level 

CSA architecture in Fig. 8(a). As a 

result, steps 3 and 15 of Fig. 7(a) can 

be replaced with (SS, SC) = 

2H_CSA(SS, SC) and (SS[k + 2], 

SC[k + 2]) = 2H_CSA (SS[k + 2], 

SC[k + 2]) to reduce the required 

clock cycles by approximately a 

factor of two while maintaining a 

short critical path delay. In addition, 

we also skip the unnecessary 
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operations in the for loop (steps 6 to 

13) of Fig. 7(a) to further decrease the 

clock cycles for completing one 

Montgomery MM. The crucial 

computation in the for loop of Fig. 

7(a) is performing the following 

three-to-two carry-save addition: 

(SS[i + 1], SC[i + 1]) = (SS[i] + SC[i] 

+ x)/2 (1) where the variable x may be 

0, N, B, or D depending on the values 

of Ai and qi . The computation 

process of (1) is shown in Fig. 9. 

When Ai = 0 and qi = 0, x is equal to 

0 and SS[i]0 must be equal to SC[i]0 

because the sum of SS[i]0 + SC[i]0 + 

x0 is equal to 0. That is, if Ai = 0 and 

qi = 0, then SS[i]0 = SC[i]0. Based on 

this observation, we can conclude that 

the sum of the carry propagation 

addition SS[i +1]k+1:0 + SC[i + 

1]k+1:0 is equal to the sum of the 

carry propagation addition SS[i]k+1:1 

+ SC[i]k+1:1 when Ai = qi = 0 and 

SS[i]0 = SC[i]0 = 0. As a result, the 

computation of (1) in iteration i can 

be skipped if we directly right shift 

the outputs of one-level CSA 

architecture in the (i − 1)th iteration 

by two bit positions (i.e., divided by 

4) instead of one bit position (i.e., 

divided by 2) when Ai = qi = 0 and 

SS[i]0 = SC[i]0 = 0. Accordingly, the 

signal skipi+1 used in the ith iteration 

to indicate whether the carry-save 

addition in the (i + 1)th iteration will 

be skipped can be expressed as 

skipi+1 = ∼(Ai+1 ∨ qi+1 ∨ SS[i + 

1]0) (2) where ∨ represents the OR 

operation. If skipi+1 generated in the 

ith iteration is 0, the carry-save 

addition of the (i + 1)th iteration will 

not be skipped. In this case, qi+1 and 

Ai+1 produced in the ith iteration can 

be stored in FFs and then used to fast 

select the value of x in the (i +1)th 

iteration. Otherwise (i.e., skipi+1 = 1), 

SS[i + 1] and SC[i + 1] produced in 

the ith iteration must be right shifted 

by two bit positions and the next 

clock cycle will go to iteration i + 2 to 

skip the carry-save addition of the (i + 

1)th iteration. In this situation, not 

only qi+1 and Ai+1 but also qi+2 and 

Ai+2 must be produced and stored to 

FFs in the ith iteration to immediately 

select the value of x in the (i + 2)th 

iteration without lengthening the 

critical path. Therefore, the selection 

signals (denoted as qˆ and Aˆ) for 

choosing the proper value of x in the 

next clock cycle must be picked from 

(qi+1, Ai+1) or (qi+2, Ai+2) 

according to the skipi+1 signal 

produced in the ith iteration. That is, 

(qˆ, Aˆ) = (qi+2, Ai+2) if skipi+1 = 1. 

Otherwise, (qˆ, Aˆ) = (qi+1, Ai+1) 
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Fig. 11. SCS-MM-New multiplier. 

multiplier SM3, one skip detector 

Skip_D, one zero detector Zero_D, 

and six registers. Skip_D is developed 

to generate skipi+1, qˆ, and Aˆ in the 

ith iteration. Both M4 and M5 in Fig. 

11 are 3-bit 2-to-1 multiplexers and 

they are much smaller than k-bit 

multiplexers M1, M2, and SM3. In 

addition, the area of Skip_D is 

negligible when compared with that 

of the k-bit one-level CCSA 

architecture. Similar to Fig. 4, the 

select signals of multiplexers M1 and 

M2 in Fig. 11 are generated by the 

control part, which are not depicted 

for the sake of simplicity.  

 

Fig. 12. Skip detector Skip_D. 

At the beginning of Montgomery 

multiplication, the FFs stored skipi+1, 

qˆ, Aˆ are first reset to 0 as shown in 

step 1 of SCS-MM-New algorithm so 

that Dˆ = Bˆ +Nˆ can be computed via 

the one-level CCSA architecture. 

When performing the while loop, the 

skip detector Skip_D shown in Fig. 12 

is used to produce skipi+1, qˆ, and Aˆ. 

The Skip_D is composed of four 

XOR gates, three AND gates, one 

NOR gate, and two 2-to-1 

multiplexers. It first generates the 

qi+1, qi+2, and skipi+1 signal in the 

ith iteration according to (5), (7), and 

(8), respectively, and then selects the 

correct qˆ and Aˆ according to 

skipi+1. At the end of the ith iteration, 

qˆ, Aˆ, and skipi+1 must be stored to 

FFs. In the next clock cycle of the ith 

iteration, SM3 outputs a proper x 

according to qˆ and Aˆ generated in 

the ith iteration as shown in steps 8–

11, and M1 and M2 output the correct 

SC and SS according to skipi+1 

generated in the ith iteration. If 

skipi+1 = 0, SC  1 and SS  1 are 

selected. Otherwise, SC  2 and SS  2 

are selected. That is, the right-shift 1-

bit operations in steps 12 and 15 of 

SCS-MM-New algorithm are 

performed together in the next clock 

cycle of iteration i. In addition, M4 

and M5 also select and output the 

correct SC[i]2:0 and SS[i]2:0 
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according to skipi+1 generated in the 

ith iteration.  

Applications: 

1. Digital Signal Processing 

2. CSA architectures…etc.. 

 

Advantages: 

      1. Speed 

      2. Cost, delay 

CONCLUSION : 

FCS-based multipliers maintain the 

input and output operands of the 

Montgomery MM in the carry-save 

format to escape from the format 

conversion, leading to fewer clock 

cycles but larger area than SCS-based 

multiplier. To enhance the 

performance of Montgomery MM 

while maintaining the low hardware 

complexity, this paper has modified 

the SCS-based Montgomery 

multiplication algorithm and proposed 

a low-cost and high-performance 

Montgomery modular multiplier. The 

proposed multiplier used one-level 

CCSA architecture and skipped the 

unnecessary carry-save addition 

operations to largely reduce the 

critical path delay and required clock 

cycles for completing one MM 

operation. Experimental results 

showed that the proposed approaches 

are indeed capable of enhancing the 

performance of radix-2 CSA-based 

Montgomery multiplier while 

maintaining low hardware 

complexity. 
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