
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1883

Low Cost And High Performance Of Vlsi Architecture For Reconfigurable

Montgomery Modular Multiplication

 Mandalaneni Jaya1, Shaik Masthan Sharif 2

1
PG Scholar, Dept of ECE, EVM College Of Engineering &Technology, Narsaraopet,Guntur

Dist,AP,India.

2Assistant Professor, Dept of ECE, EVM College Of Engineering &Technology, Narsaraopet,

Guntur Dist, AP,India.

ABSTRACT:

This paper proposes a simple and efficient Montgomery multiplication algorithm

such that the low-cost and high-performance Montgomery modular multiplier can

be implemented accordingly. The proposed multiplier receives and outputs the data

with binary representation and uses only one-level carry-save adder (CSA) to avoid

the carry propagation at each addition operation. This CSA is also used to perform

operand pre computation and format conversion from the carry save format to the

binary representation, leading to a low hardware cost and short critical path delay

at the expense of extra clock cycles for completing one modular multiplication. To

overcome the weakness, a configurable CSA (CCSA), which could be one full-

adder or two serial half-adders, is proposed to reduce the extra clock cycles for

operand pre computation and format conversion by half. In addition, a mechanism

that can detect and skip the unnecessary carry-save addition operations in the one-

level CCSA architecture while maintaining the short critical path delay is

developed. As a result, the extra clock cycles for operand pre computation and

format conversion can be hidden and high throughput can be obtained.

Experimental results show that the proposed Montgomery modular multiplier can

achieve higher performance and significant area–time product improvement when

compared with previous designs.

 Index Terms— Carry-save addition, low-cost architecture, Montgomery modular

multiplier, public-key cryptosystem.

INTRODUCTION I N MANY public-key cryptosystems

[1]–[3], modular multiplication (MM)

with large integers is the most critical

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1884

and time-consuming operation.

Therefore, numerous algorithms and

hardware implementation have been

presented to carry out the MM more

quickly, and Montgomery’s algorithm

is one of the most well-known MM

algorithms. Montgomery’s algorithm

[4] determines the quotient only

depending on the least significant

digit of operands and replaces the

complicated division in conventional

MM with a series of shifting modular

additions to produce S = A × B × R−1

(mod N), where N is the k-bit

modulus, R−1 is the inverse of R

modulo N, and R = 2k mod N. As a

result, it can be easily implemented

into VLSI circuits to speed up the

encryption/decryption process.

However, the three-operand addition

in the iteration loop of Montgomery’s

algorithm as shown in step 4 of Fig. 1

requires long carry propagation for

large operands in binary

representation. To solve this problem,

several approaches

Carry Save Adders and Redundant

Representation :

The core operation of most algorithms

for modular multiplication is addition.

There are several different methods

for addition in hardware: carry ripple

addition, carry select addition, carry

look ahead addition and others [8].

The disadvantage of these methods is

the carry propagation, which is

directly proportional to the length of

the operands. This is not a big

problem for operands of size 32 or 64

bits but the typical operand size in

cryptographic applications range from

160 to 2048 bits. The resulting delay

has a significant influence on the time

complexity of these adders. The carry

save adder seems to be the most cost

effective adder for our application.

Carry save addition is a method for an

addition without carry propagation. It

is simply a parallel ensemble of n full-

adders without any horizontal

connection. Its function is to add three

n-bit integers X, Y, and Z to produce

two integers C and S as results such

that C + S = X + Y + Z, where C

represents the carry and S the sum.

When carry save adders are used in an

algorithm one uses a notation of the

form (S, C) = X + Y + Z to indicate

that two results are produced by the

addition. The results are now

represented in two binary words, an n-

bit word S and an (n+1) bit word C.

Of course, this representation is

redundant in the sense that we can

represent one value in several

different ways. This redundant

representation has the advantage that

the arithmetic operations are fast,

because there is no carry propagation.

On the other hand, it brings to the fore

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1885

one basic disadvantage of the carry

save adder: • It does not solve our

problem of adding two integers to

produce a single result. Rather, it adds

three integers and produces two such

that the sum of these two is equal to

that of the three inputs. This method

may not be suitable for applications

which only require the normal

addition.

Montgomery Multiplication

Algorithm:

 The Montgomery algorithm [1,

Algorithm 1a] computes P = (X*Y*

(2 n) -1) mod M. The idea of

Montgomery [2] is to keep the lengths

of the intermediate results

smaller than n+1 bits. This is achieved

by interleaving the computations and

additions of new partial products with

divisions by 2; each of them reduces

the bit length of the intermediate

result by one. For a detailed treatment

of the Montgomery algorithm, the

reader is referred to [2] and [1]. The

key concepts of the Montgomery

algorithm [1, Algorithm 1b] are the

following: • Adding a multiple of M

to the intermediate result does not

change the value of the final result;

because the result is computed

modulo M. M is an odd number. •

After each addition in the inner loop

the least significant bit (LSB) of the

intermediate result is inspected. If it is

1, i.e., the intermediate result is odd,

we add M to make it even. This even

number can be divided by 2 without

remainder. This division by 2 reduces

the intermediate result to n+1 bits

again. • After n steps these divisions

add up to one division by 2 n . The

Montgomery algorithm is very easy to

implement since it operates least

significant bit first and does not

require any comparisons.

Fig. 1. MM algorithm.

Montgomery Multiplication :

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1886

Fig. 2. SCS-based Montgomery

multiplication algorithm.

Fig. 1 shows the radix-2 version of

the Montgomery MM algorithm

(denoted as MM algorithm). As

mentioned earlier, the Montgomery

modular product S of A and B can be

obtained as S = A × B × R−1 (mod

N), where R−1 is the inverse of R

modulo N. That is, R × R−1 = 1 (mod

N). Note that, the notation Xi in Fig. 1

shows the ith bit of X in binary

representation. In addition, the

notation Xi: j indicates a segment of

X from the ith bit to jth bit. Since the

convergence range of S in MM

algorithm is 0 ≤ S < 2N, an additional

operation S = S − N is required

Fig. 3. SCS-MM-1 multiplier.

to remove the oversize residue if S ≥

N. To eliminate the final comparison

and subtraction in step 6 of Fig. 1,

Walter [22] changed the number of

iterations and the value of R to k + 2

and 2k+2 mod N, respectively.

Nevertheless, the long carry

propagation for the very large operand

addition still restricts the performance

of MM algorithm.

SCS-Based Montgomery

Multiplication :

To avoid the long carry propagation,

the intermediate result S of shifting

modular addition can be kept in the

carry-save representation (SS, SC), as

shown in Fig. 2. Note that the number

of iterations in Fig. 2 has been

changed from k to k + 2 to remove the

final comparison and subtraction [22].

However, the format conversion from

the carry-save format of the final

modular product into its binary format

is needed, as shown in step 6 of Fig.

2. Fig. 3 shows the architecture of

SCS-based MM algorithm proposed

in [5] (denoted as SCS-MM-1

multiplier) composed of one two-level

CSA architecture and one format

converter, where the dashed line

denotes a 1-bit signal. In [5], a 32-bit

CPA with multiplexers and registers

(denoted as CPA_FC), which adds

two 32-bit inputs and generates a 32-

bit output at every clock cycle, was

adopted for the format conversion.

Therefore, the 32-bit CPA_FC will

take 32 clock cycles to complete the

format conversion of a 1024-bit SCS-

based Montgomery multiplication.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1887

The extra CPA_FC probably enlarges

the area and the critical path of the

SCS-MM-1 multiplier. The works in

[6] and [7] pre computed D = B + N

so that the computation of Ai × B + qi

× N in step 4 of Fig. 2 can be

simplified into one selection

operation. One of the

Fig. 4. SCS-MM-2 multiplier.

operands 0, N, B, and D will be

chosen if (Ai , qi) = (0, 0), (0, 1), (1,

0), and (1, 1), respectively. As a

result, only one-level CSA

architecture is required in this

multiplier to perform the carry-save

addition at the expense of one extra 4-

to-1 multiplexer and one additional

register to store the operand D.

However, they did not present an

effective approach to remove the

CPA_FC for format conversion and

thus this kind of multiplier still suffers

from the critical path of CPA_FC. On

the other hand, Zhang et al. [8] reused

the two-level CSA architecture to

perform the format conversion so that

the CPA_FC can be removed. That is,

S[k + 2] = SS[k + 2] + SC[k + 2] in

step 6 of Fig. 2 is replaced with the

repeated carry-save addition operation

(SS[k + 2], SC[k + 2]) = SS[k + 2] +

SC[k + 2] until SC[k + 2] = 0. Fig. 4

shows the architecture of the

Montgomery multiplier proposed in

[8] (denoted as SCS-MM-2

multiplier). Note that the select

signals of multiplexers M1 and M2 in

Fig. 4 generated by the control part

are not shown in Fig. 4 for the sake of

simplicity. However, the extra clock

cycles for format conversion are

dependent on the longest carry

propagation chain in

SS[k+2]+SC[k+2] and about k/2

clock cycles are required in the worst

case because two-level CSA

architecture is adopted in [8]

FCS-Based Montgomery

Multiplication:

 To avoid the format conversion,

FCS-based Montgomery

multiplication maintains A, B, and S

in the carry save representations (AS,

AC), (BS, BC), and (SS, SC),

respectively. McIvor et al. [9]

proposed two FCS based

Montgomery multipliers, denoted as

FCS-MM-1 and FCS-MM-2

multipliers, composed of one five-

totwo (three-level) and one four-to-

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1888

two (two-level) CSA architecture,

respectively. The algorithm and

architecture of the FCS-MM-1

multiplier are shown in Figs. 5 and 6,

respectively. The barrel register full

adder (BRFA)

Fig. 5. FCS-MM-1 Montgomery

multiplication algorithm.

Fig. 6. FCS-MM-1 multiplier.

in Fig. 6 consists of two shift registers

for storing AS and AC, a full adder

(FA), and a flip-flop (FF). For more

details about BRFA, please refer to

[9] and [10]. On the other hand, the

FCS-MM-2 multiplier proposed in [9]

adds up BS, BC, and N into DS and

DC at the beginning of each MM.

Therefore, the depth of the CSA tree

can be reduced from three to two

levels. Nevertheless, the FCS-MM-2

multiplier needs two extra 4-to-1

multiplexers addressed by Ai and qi

and two more registers to store DS

and DC to reduce one level of CSA

tree. Therefore, the critical path of the

FCS-MM-2 multiplier may be slightly

reduced with a significant increase in

hardware area when compared with

the FCS-MM-1 multiplier. Table I

summarizes and roughly compares the

area complexity and critical path

delay of the above-mentioned radix-2

Montgomery multipliers according to

the normalized area and delay listed

in Table II with respect to the TSMC

90-nm cell library information. In

Table I, the

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1889

TABLE I ANALYSIS OF AREA

AND DELAY OF DIFFERENT

DESIGNS

notations AG and TG denote the area

and delay of a cell G, respectively,

and τ () denotes the critical path delay

of circuit . Note that ASR in Table I

denotes the area of a shift register,

and we assume that ASR is

approximate to the sum of AREG and

AMUX2. In addition, the area and

delay ratios of the SCS-MM-1

multiplier in Table I do not take that

of CPA_FC into consideration

because they are signifi- cantly

dependent on the design of CPA_FC.

Generally speaking, SCS-based

multipliers have lower area

complexity than FCS-based

Montgomery multipliers. However,

extra clock cycles for format

conversion possibly lower the

performance of SCS-based

multipliers. To further enhance the

performance of the SCS-based

multiplier, both the critical path delay

and clock cycles for completing one

multiplication must be reduced while

maintaining the low hardware

complexity.

PROPOSED MONTGOMERY

MULTIPLICATION :

In this section, we propose a new

SCS-based Montgomery MM

algorithm to reduce the critical path

delay of Montgomery multiplier. In

addition, the drawback of more clock

cycles for completing one

multiplication is also improved while

maintaining the advantages of short

critical path delay and low hardware

complexity.

Critical Path Delay Reduction :

The critical path delay of SCS-based

multiplier can be reduced by

combining the advantages of FCS-

MM-2 and SCS-MM-2. That is, we

can precompute D = B + N and reuse

the one-level CSA architecture to

perform B+N and the format

conversion. Fig. 7(a) and (b) shows

the modified SCS-based Montgomery

multiplication (MSCS-MM)

algorithm and one possible hardware

architecture, respectively. The

Zero_D circuit in Fig. 7(b) is used to

detect whether SC is equal to zero,

which can be accomplished using one

NOR operation. The Q_L circuit

decides the qi value according to step

7 of Fig. 7(a). The carry propagation

addition operations of B + N and the

format conversion are performed by

the one-level CSA architecture of the

MSCS-MM multiplier through

repeatedly executing the carry-save

addition (SS, SC) = SS + SC + 0 until

SC = 0. In addition, we also

precompute Ai and qi in iteration i−1

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1890

(this will be explained more clearly in

Section III-C) so that they can be used

to immediately select the desired

input operand from 0, N, B, and D

through the multiplexer M3 in

iteration i. Therefore, the critical path

delay of the MSCS-MM multiplier

can be reduced into TMUX4 + TFA.

However, in addition to performing

the

Fig. 7. (a) Modified SCS-based

Montgomery multiplication

algorithm. (b) MSCS-MM multiplier.

three-input carry-save additions [i.e.,

step 12 of Fig. 7(a)] k + 2 times, many

extra clock cycles are required to

perform B + N and the format

conversion via the one-level CSA

architecture because they must be

performed once in every MM.

Furthermore, the extra clock cycles

for performing B+N and the format

conversion through repeatedly

executing the carry-save addition (SS,

SC) = SS +SC +0 are dependent on

the longest carry propagation chain in

SS + SC. If SS = 111…1112 and SC

= 000…0012, the one-level CSA

architecture needs k clock cycles to

complete SS + SC.

Fig. 8. (a) Conventional FA circuit.

(b) Proposed CFA circuit. (c) Two

serial HAs. (d) Simplified multiplexer

SM3.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1891

That is, ∼3k clock cycles in the worst

case are required for completing one

MM. Thus, it is critical to reduce the

required clock cycles of the MSCS-

MM multiplier.

Clock Cycle Number Reduction:

 To decrease the clock cycle number,

a CCSA architecture which can

perform one three-input carry-save

addition or two serial two-input carry-

save additions is proposed to

substitute for the one-level CSA

architecture in Fig. 7(b). Fig. 8(a)

shows two cells of the one-level CSA

architecture in Fig. 7(b), each cell is

one conventional FA which can

perform the three-input carry-save

addition. Fig. 8(b) shows two cells of

the proposed configurable FA (CFA)

circuit. If α = 1, CFA is one FA and

can perform one three-input carry-

save addition (denoted as 1F_CSA).

Otherwise, it is two half-adders (HAs)

and can perform two serial two-input

carry-save additions (denoted as

2H_CSA), as shown in Fig. 8(c). In

this case, G1 of CFAj and G2 of

CFAj+1 in Fig. 8(b) will act as HA1 j

in Fig. 8(c), and G3, G4, and G5 of

CFAj in Fig. 8(b) will behave as HA2

j in Fig. 8(c). Moreover, we modify

the 4-to-1 multiplexer M3 in Fig. 7(b)

into a simplified multiplier SM3 as

shown in Fig. 8(d) because one of its

inputs is zero, where ∼ denotes the

INVERT operation. Note that M3 has

been replaced

Fig. 9. Three-to-two carry-save

addition at the ith iteration of Fig. 7.

by SM3 in the proposed one-level

CCSA architecture shown in Fig.

8(b). According to the delay ratio

shown in Table II, TS M3 (i.e., 0.68 ×

TFA) is approximate to TMUX3 (i.e.,

0.63 × TFA) and TMUXI2 (i.e., 0.23

× TFA) is smaller than TXOR2 (i.e.,

0.34×TFA). Therefore, the critical

path delay of the proposed one-level

CCSA architecture in Fig. 8(b) is

approximate to that of the one-level

CSA architecture in Fig. 8(a). As a

result, steps 3 and 15 of Fig. 7(a) can

be replaced with (SS, SC) =

2H_CSA(SS, SC) and (SS[k + 2],

SC[k + 2]) = 2H_CSA (SS[k + 2],

SC[k + 2]) to reduce the required

clock cycles by approximately a

factor of two while maintaining a

short critical path delay. In addition,

we also skip the unnecessary

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1892

operations in the for loop (steps 6 to

13) of Fig. 7(a) to further decrease the

clock cycles for completing one

Montgomery MM. The crucial

computation in the for loop of Fig.

7(a) is performing the following

three-to-two carry-save addition:

(SS[i + 1], SC[i + 1]) = (SS[i] + SC[i]

+ x)/2 (1) where the variable x may be

0, N, B, or D depending on the values

of Ai and qi . The computation

process of (1) is shown in Fig. 9.

When Ai = 0 and qi = 0, x is equal to

0 and SS[i]0 must be equal to SC[i]0

because the sum of SS[i]0 + SC[i]0 +

x0 is equal to 0. That is, if Ai = 0 and

qi = 0, then SS[i]0 = SC[i]0. Based on

this observation, we can conclude that

the sum of the carry propagation

addition SS[i +1]k+1:0 + SC[i +

1]k+1:0 is equal to the sum of the

carry propagation addition SS[i]k+1:1

+ SC[i]k+1:1 when Ai = qi = 0 and

SS[i]0 = SC[i]0 = 0. As a result, the

computation of (1) in iteration i can

be skipped if we directly right shift

the outputs of one-level CSA

architecture in the (i − 1)th iteration

by two bit positions (i.e., divided by

4) instead of one bit position (i.e.,

divided by 2) when Ai = qi = 0 and

SS[i]0 = SC[i]0 = 0. Accordingly, the

signal skipi+1 used in the ith iteration

to indicate whether the carry-save

addition in the (i + 1)th iteration will

be skipped can be expressed as

skipi+1 = ∼(Ai+1 ∨ qi+1 ∨ SS[i +

1]0) (2) where ∨ represents the OR

operation. If skipi+1 generated in the

ith iteration is 0, the carry-save

addition of the (i + 1)th iteration will

not be skipped. In this case, qi+1 and

Ai+1 produced in the ith iteration can

be stored in FFs and then used to fast

select the value of x in the (i +1)th

iteration. Otherwise (i.e., skipi+1 = 1),

SS[i + 1] and SC[i + 1] produced in

the ith iteration must be right shifted

by two bit positions and the next

clock cycle will go to iteration i + 2 to

skip the carry-save addition of the (i +

1)th iteration. In this situation, not

only qi+1 and Ai+1 but also qi+2 and

Ai+2 must be produced and stored to

FFs in the ith iteration to immediately

select the value of x in the (i + 2)th

iteration without lengthening the

critical path. Therefore, the selection

signals (denoted as qˆ and Aˆ) for

choosing the proper value of x in the

next clock cycle must be picked from

(qi+1, Ai+1) or (qi+2, Ai+2)

according to the skipi+1 signal

produced in the ith iteration. That is,

(qˆ, Aˆ) = (qi+2, Ai+2) if skipi+1 = 1.

Otherwise, (qˆ, Aˆ) = (qi+1, Ai+1)

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1893

Fig. 11. SCS-MM-New multiplier.

multiplier SM3, one skip detector

Skip_D, one zero detector Zero_D,

and six registers. Skip_D is developed

to generate skipi+1, qˆ, and Aˆ in the

ith iteration. Both M4 and M5 in Fig.

11 are 3-bit 2-to-1 multiplexers and

they are much smaller than k-bit

multiplexers M1, M2, and SM3. In

addition, the area of Skip_D is

negligible when compared with that

of the k-bit one-level CCSA

architecture. Similar to Fig. 4, the

select signals of multiplexers M1 and

M2 in Fig. 11 are generated by the

control part, which are not depicted

for the sake of simplicity.

Fig. 12. Skip detector Skip_D.

At the beginning of Montgomery

multiplication, the FFs stored skipi+1,

qˆ, Aˆ are first reset to 0 as shown in

step 1 of SCS-MM-New algorithm so

that Dˆ = Bˆ +Nˆ can be computed via

the one-level CCSA architecture.

When performing the while loop, the

skip detector Skip_D shown in Fig. 12

is used to produce skipi+1, qˆ, and Aˆ.

The Skip_D is composed of four

XOR gates, three AND gates, one

NOR gate, and two 2-to-1

multiplexers. It first generates the

qi+1, qi+2, and skipi+1 signal in the

ith iteration according to (5), (7), and

(8), respectively, and then selects the

correct qˆ and Aˆ according to

skipi+1. At the end of the ith iteration,

qˆ, Aˆ, and skipi+1 must be stored to

FFs. In the next clock cycle of the ith

iteration, SM3 outputs a proper x

according to qˆ and Aˆ generated in

the ith iteration as shown in steps 8–

11, and M1 and M2 output the correct

SC and SS according to skipi+1

generated in the ith iteration. If

skipi+1 = 0, SC 1 and SS 1 are

selected. Otherwise, SC 2 and SS 2

are selected. That is, the right-shift 1-

bit operations in steps 12 and 15 of

SCS-MM-New algorithm are

performed together in the next clock

cycle of iteration i. In addition, M4

and M5 also select and output the

correct SC[i]2:0 and SS[i]2:0

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1894

according to skipi+1 generated in the

ith iteration.

Applications:

1. Digital Signal Processing

2. CSA architectures…etc..

Advantages:

 1. Speed

 2. Cost, delay

CONCLUSION :

FCS-based multipliers maintain the

input and output operands of the

Montgomery MM in the carry-save

format to escape from the format

conversion, leading to fewer clock

cycles but larger area than SCS-based

multiplier. To enhance the

performance of Montgomery MM

while maintaining the low hardware

complexity, this paper has modified

the SCS-based Montgomery

multiplication algorithm and proposed

a low-cost and high-performance

Montgomery modular multiplier. The

proposed multiplier used one-level

CCSA architecture and skipped the

unnecessary carry-save addition

operations to largely reduce the

critical path delay and required clock

cycles for completing one MM

operation. Experimental results

showed that the proposed approaches

are indeed capable of enhancing the

performance of radix-2 CSA-based

Montgomery multiplier while

maintaining low hardware

complexity.

REFERENCES:

[1] R. L. Rivest, A. Shamir, and L.

Adleman, ―A method for obtaining

digital signatures and public-key

cryptosystems,‖ Commun. ACM, vol.

21, no. 2, pp. 120–126, Feb. 1978.

[2] V. S. Miller, ―Use of elliptic

curves in cryptography,‖ in Advances

in Cryptology. Berlin, Germany:

Springer-Verlag, 1986, pp. 417–426.

 [3] N. Koblitz, ―Elliptic curve

cryptosystems,‖ Math. Comput., vol.

48, no. 177, pp. 203–209, 1987.

[4] P. L. Montgomery, ―Modular

multiplication without trial division,‖

Math. Comput., vol. 44, no. 170, pp.

519–521, Apr. 1985.

 [5] Y. S. Kim, W. S. Kang, and J. R.

Choi, ―Asynchronous implementation

of 1024-bit modular processor for

RSA cryptosystem,‖ in Proc. 2nd

IEEE Asia-Pacific Conf. ASIC, Aug.

2000, pp. 187–190.

[6] V. Bunimov, M. Schimmler, and

B. Tolg, ―A complexity-effective

version of Montgomery’s algorihm,‖

in Proc. Workshop Complex.

Effective Designs, May 2002.

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 17
November 2016

Available online: http://internationaljournalofresearch.org/ P a g e | 1895

 [7] H. Zhengbing, R. M. Al Shboul,

and V. P. Shirochin, ―An efficient

architecture of 1024-bits

cryptoprocessor for RSA

cryptosystem based on modified

Montgomery’s algorithm,‖ in Proc.

4th IEEE Int. Workshop Intell. Data

Acquisition Adv. Comput. Syst., Sep.

2007, pp. 643–646.

 [8] Y.-Y. Zhang, Z. Li, L. Yang, and

S.-W. Zhang, ―An efficient CSA

architecture for Montgomery modular

multiplication,‖ Microprocessors

Microsyst., vol. 31, no. 7, pp. 456–

459, Nov. 2007.

 [9] C. McIvor, M. McLoone, and J.

V. McCanny, ―Modified Montgomery

modular multiplication and RSA

exponentiation techniques,‖ IEE

Proc.- Comput. Digit. Techn., vol.

151, no. 6, pp. 402–408, Nov. 2004.

 [10] S.-R. Kuang, J.-P. Wang, K.-C.

Chang, and H.-W. Hsu, ―Energy-

efficient high-throughput

Montgomery modular multipliers for

RSA cryptosystems,‖ IEEE Trans.

Very Large Scale Integr. (VLSI)

Syst., vol. 21, no. 11, pp. 1999–2009,

Nov. 2013.

 [11] J. C. Neto, A. F. Tenca, and W.

V. Ruggiero, ―A parallel k-partition

method to perform Montgomery

multiplication,‖ in Proc. IEEE Int.

Conf. Appl.-Specific Syst., Archit.,

Processors, Sep. 2011, pp. 251–254.

[12] J. Han, S. Wang, W. Huang, Z.

Yu, and X. Zeng, ―Parallelization of

radix-2 Montgomery multiplication

on multicore platform,‖ IEEE Trans.

Very Large Scale Integr. (VLSI)

Syst., vol. 21, no. 12, pp. 2325–2330,

Dec. 2013.

[13] P. Amberg, N. Pinckney, and D.

M. Harris, ―Parallel high-radix

Montgomery multipliers,‖ in Proc.

42nd Asilomar Conf. Signals, Syst.,

Comput., Oct. 2008, pp. 772–776.

 [14] G. Sassaw, C. J. Jimenez, and

M. Valencia, ―High radix

implementation of Montgomery

multipliers with CSA,‖ in Proc. Int.

Conf. Microelectron., Dec. 2010, pp.

315–318.

 [15] A. Miyamoto, N. Homma, T.

Aoki, and A. Satoh, ―Systematic

design of RSA processors based on

high-radix Montgomery multipliers,‖

IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 19, no. 7,

pp. 1136–1146, Jul. 2011.

