

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 03 Issue 18 December 2016

VLSI Architecture of Shared Multiplier Scheduling Scheme for Reconfigurable FFT/IFFT Processor

T. Ganesh Reddy *M. Tech Student (VLSI&Embedded Systems)* Usha rama college of engineering &technology

Abstract: - This paper proposes VLSI Architecture of SMSS (Shared Multiplier Scheduling Scheme) for *Reconfigurable* architecture FFT/IFFT processor. This provides flexibility of selecting various FFT sizes (2, 4, 8, 16, 32, 64, 128 and 256) length, so that the hardware complexity of processor is reduced. The multipliers in SMSS based FFT processor are replaced with Vedic multiplier to improve speed of calculation. The proposed FFT/IFFT processors based on SMSS are designed using XILINX ISE Tool and modeled in Verilog HDL. The synthesis results shows that Area is reduced by 17% and speed is increased by 11%. In addition the proposed processor can be extended to any FFT sizes using additional stages.

Keywords: FFT (Fast Fourier Transform), reconfigurable FFT, Vedic multiplier, MRMDC (mixed radix multipath delay Commutator), OFDM (Orthogonal Frequency Division Multiplexing).

I. Introduction

FFT/IFFT processors play an important role in processing and image processing signal applications. Such a applications require high speed FFT/IFFT processors to meet continuing demands for higher data rates. For example, in OFDM systems the IFFT computation is required in transmitter, while FFT is performed in receiver. There is no need to implement IFFT processors separately because the IFFT processor is derived from FFT processor by taking complex conjugate of input and output data and then dividing the conjugate of the FFT output by FFT size. So the role of FFT processors in dealing with OFDM systems requires low power A.Suneel Kumar, Dept. of ECE Usha rama college of engineering &technology

and high speed processors. For implementing such processors, several architectures are proposed for reducing hardware complexity. The FFT processors are divided mainly into Memory based, Reconfigurable, and Pipelined FFT processors .Memory based architectures [1], [2] are proposed to achieve small area. The Application specific instruction set processors [3], [4] have been proposed to meet flexibility for FFT computation. Reconfigurable FFT processors [5] are proposed to select various FFT sizes on processor so that hardware complexity is reduced. The pipelined processors [6] are used for achieving high throughput rate. Pipelined processors are classified into SDC (single-path delay commutator), SPF (single-path feedback), MDF (multipath delay feedback), and MDC (multipath delay commutator). From the above, MDC architectures provides high throughput rate synchronizing control simple and using multidata paths. In the MDC architectures [7], if the radix size is high then high throughput rate is achieved. For example to achieve higher data rate radix-8, radix-16 and above are used. But in OFDM systems the typical FFT sizes are 128,256 but radix-8 algorithm can't suitable for 128/256 FFT sizes because it is not power of 8. So mixed radix algorithm is used. So mixed radix FFT/IFFT processors are required to meet computational demands of OFDM systems. The MRMDC architecture [8] in pipelined processors employing eight parallel data paths operates at higher clock frequency to satisfy computation demands. SMSS based FFT/IFFT processors [9] in MRMDC architecture provides area efficiency and higher data rate. The SMSS based FFT processors reduces the number of complex multipliers by moving the moving the multipliers

from second stage to first stage for 128/256 point FFT processor.

International Journal of Res

paper proposes flexibility in This selecting FFT sizes i.e. reconfigurable FFT/IFFT processor [5] based on SMSS algorithm [9], so that hardware complexity is further reduced .The multipliers in the existing processor are replaced with Vedic multiplier to improve the speed of computation. The remainder of this paper is organised as follows. Section II describes the MRMDC architecture [8] .Section III provides the details of the existing SMSS based FFT/IFFT processor. Section IV gives the information about the proposed Architecture of SMSS for reconfigurable FFT/IFFT processor (FFT size: 2, 4, 8, 16, 32, 64, 128 and 256). Section V presents the design and implementation of proposed FFT/IFFT processor with Vedic multiplier. Finally conclusion is presented in Section VI.

II. MRMDC Architecture

MRMDC (mixed radix multipath delay commutator) architecture [8] uses mixed radix algorithm and multipath data bits. The mixed radix algorithm with assumptions is described as follows. The N-point DFT (Discrete Fourier Transform) is defined as

$$X(k) = \sum_{n=0}^{N-1} x(n) \cdot W_N^{nk}, k=0,1,...,N-1$$
(1)

Where x (n) = input sequence, X (k) = output sequence, N=transform length

 $W_N^{nk} = N^{th}$ primitive root of unity (twiddle factor)

$$W_N^{nk} = e^{-jnk(\frac{2\pi}{N})}$$

= cos(2\pi nk/N)-jsin(2\pi nk/N) (2)

When the FFT size is not a power of radix r, then mixed radix algorithm should be used.

For example if N=256 n = 64n1+n2, $0 \le n1 \le 4$, $0 \le n2 \le 64$ k = k1+4k2, $0 \le k1 \le 4$, $0 \le k2 \le 64$ (3) Substituting (3) in (1) X (k) = X (k1+4k2) $= \sum_{n2=0}^{63} \sum_{n1=0}^{3} x(64n1+2) . W_{256}^{(64N1+N2)(K1+4K2)}$

 $= \sum_{n_{2}=0}^{63} \{BF4(n_{2},k_{1})\} W_{64}^{n_{2}k_{2}}$ (4) The 256 point mixed radix FFT algorithm can be derived from (4) by decomposing the remaining 64-point DFT into 8-point DFT twice.

The MRMDC architecture is explained 128/256-point MRMDC FFT/IFFT using processor [8]. The architecture consists of BU's, delay commutators, and twiddle factor multipliers. In the first stage, the radix-2/4 BU can perform one radix-4 or two radix-2 operations to compute the 128 and 256-point FFTs. There are three stages based on radix-2, radix-4, and radix-8 algorithms. The input sequence of single path is divided into eight data paths.

III.SMSS based FFT/IFFT processor

SMSS based FFT/IFFT processor with eight parallel MRMDC architecture gives high throughput and low hardware complexity. In the existing processor the first stage uses shared multipliers and second stage uses the modified radix-8 butterfly units. The architecture of existing SMSS based 128/256-point FFT/IFFT processor [9] is shown in below Fig .1.

Fig.1. SMSS based 128/256 point FFT processor

In the first stage in fig.1, the radix-2/4 BU can perform two radix-2 butterfly computations. The structure performs complex multiplications for second stage before the delay commutator using shared multipliers. In the first stage, the input sequence of each data-path is

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 03 Issue 18 December 2016

divided into four data streams. Based on the SMSS based algorithm [9], the processor achieved area efficiency when compared with previous architectures. For a single FFT size processor it is suitable, but there is a case where variable size FFT processor is required. So we need a processor that supports reconfigurability feature in order to select multiple FFT sizes on single processor. Section IV presents architecture of reconfigurable FFT processor for the existing processor.

IV. VLSI Architecture of SMSS for Reconfigurable FFT/IFFT Processor

The existing SMSS based FFT/IFFT processor [9] can support 128/256 point FFT size at a time only. Variable size FFT processor is required to support multiple FFT sizes. Reconfigurable FFT/IFFT processor provides such a flexibility of selecting any FFT sizes on single processor design without going to each FFT size processor. The existing work can be extended to support various FFT sizes (2, 4, 8, 16, 32, 64, 128 and 256) lengths using reconfigurable FFT processor. The reconfigurable feature is added to the existing specific size FFT processor using multiplexer as shown in fig.2.

Fig.2. Block Diagram

The re-configurability for the SMSS based FFT/IFFT processor reduces the hardware complexity. The multipliers used in the SMSS based FFT/IFFT processors are replaced with Vedic multipliers, so as to improve performance .Vedic multipliers follows ancient set of rules, so that the multiplication operations are efficient in

Available online: <u>http://internationaljournalofresearch.org/</u>

time. Vedic multipliers [10] are based on sixteen sutras. Of these URDHVA TRIYAKBHYAM (vertically and crosswise) is sutra that supports all types of multiplications. So that the speed of calculation is further improved using Vedic multipliers.The implementation and synthesis report gives the performance details of proposed processor in section -V.

V. Results and Comparison

The proposed SMSS based reconfigurable FFT/IFFT processor using Vedic multiplier is designed using Xilinx ISE13.2 Tool and modeled in Verilog HDL. The proposed FFT processors use Vedic multiplier [10] (URDHVA TRIYAKBHYAM sutra) to improve computation speed. The synthesis result shows the area efficiency of propose computation processor and speed improvement. The proposed processor is simulated using Modelsim10.1 simulator. The functional verification of design is done using MATLAB tool. The RTL schematic and simulation results are shown below as Fig.3, Fig.4.

in251_re(70)	out251_re(7:0)				
in252_im(<u>7:0)</u>	out252_im(7:0)				
in252_re(7:0)	out252_re(7:0)				
in253_im(740)	out253_im(7:0)				
in253_re(7:0)	out253_re(7:0)				
in254_im(7:0)	out254_im(7:0)				
in254_re(7/0)	out254_re(7:0)				
in255_im(7:0)	out255_im(7:0)				
in255_re(7:0)	out255_re(7:0)				
in256_im(7/0)	out256_im(7:0)				
in258_re(740)	out256_re(7:0)				
dk					
rst					
<u>s5</u>					
<u></u>					
_=8					
top					

The RTL schematic of proposed processor contains four selection lines $(S_5S_6S_7S_8)$ and clock rate 126MHz with 256 complex inputs and complex outputs. The simulation results of proposed processor with selection lines $S_5 S_6 S_7 S_8$ =0000and inputs (in_re1, in re2, in re3, in re4=1 others=0) as shown in fig.4.

International Journal of Research

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 03 Issue 18 December 2016

Name	Value	10 ns		200 ns	400 ns	600 ns	800 ns
▶ 😽 out1_re[7:0]	4		2	X		4	
▶ 😽 out1_im[7:0]	2	X			2		
▶ 😽 out2_re[7:0]	-14	<u> </u>	-76	XXX8X-98XX		-14	
• out2_im(7:0)	0		-2	X		0	
out3_re[7:0]	-6		-76	NXXX22XX		-6	
out5_im(7:0)	14	X	56	YYYY a YY	2	14	
out4_im[7:0]	82	x	76			82	
▶ 😽 out5_re[7:0]	2	x	2	<u>x 4 x</u>		2	
▶ 😽 out5_im[7:0]	2	X X		2 X		2	
out6_re[7:0]	0	x (-2			0	
out6_im[7:0]	0		-2			0	
out7_im[7:0]	2	F	~	7e/e/	2		
▶ 😽 out8_re[7:0]	48	x	-86	XXXX@XX		48	
🕨 😽 out8_im[7:0]	-2		2	XXX • X		-2	
Name	Value	0 ns	2	00 ns	00 ns 6	00 ns	800 ns
out10_re[7:0]			-2			52	
▶ 💕 out11_re[7:0]		x (104			-36	
▶ 😽 out11_im[7:0]					2		
out12_re[7:0]			-100			16	
out12_im[/:0]		× C	2			2	
▶ 📑 out13_im[7:0]		x		2 Ŷ		2	
out14_re[7:0]			-86			110	
out14_im[7:0]			-2			-18	
▶ 📑 out15_im[7:0]		x			2		
out16_re[7:0]			-110	000000		-100	
out16_im[7:0]			86	9X X X86 X X		n	
out17_re[7:0]		x	-		2		
		X1. 5 000 000					
		X1: 1,000.000 n					[1,000.000 hs]
Name	Value	0 ns	20	0 ns , 40	10 ns (6	00 ns j8	00 ns
out35_re[7:0]	90		40 X	XXXXXXX		-98	
out35_im(7:0) 2	126		100	XXXXXXX	2	-126	
out36_im[7:0] 1	.02		-40 🗙			102	
out37_re[7:0] 2 0 out37_im[7:0] 2			2 X	4 X 2 X		2 2	
out38_re(7:0)			-2 X			0	
out39_re[7:0]		× C	-2 X			0	
out39_mi[7:0] 2 out40_re[7:0] 3	6		-122 X	XXXXXXX	2	36	
<pre>> ~ out40_im[7:0] - > ~ out41_re[7:0] 4</pre>	2		2 X 2 X	X2XX	4	-2	
e di out41_im(7:0) 2	64		-52	xxxxxxx	2	-64	
							1
		0.00		0.00	0.00	20.00	1,000.000 hs
ame 2	/alue		20	0 ms	2	18	
out78_re[7:0] 1 () out78_im[7:0] 0	6		-86 X	• X		16 0	
out79_re[7:0] 4	0		-86 X	XXX:19XX	2	40	
out80_re[7:0] =	0 2 0		110 X			-82 68	
out81_re[7:0] 2			2 X			2	
out82_re[7:0] 6	6		-84 X	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		66	
out83_re[7:0] 9	9	<u> </u>	-84 X	xxxxxxx		98	
out84_re[7:0] 8	4		• X	xxxxxx	2	84	
out84_im[7:0] = out85_re[7:0] 2	12		2 X			-12 2	
'							Etanaraaa m
Name	Value	10 ms	-12- ²		00 ns	500 ns	800 ns
out107_re[7:0]	2		104		2	-18	
out108_re[7:0]	-14		-104			-14	
out109_re[7:0]	2		-84	2 X		2	
out110_re[7:0]	0		-2			104	
out111_re[7:0]	2		- 110		2	(8	
out112_im[7:0]	-10		86			-10	
out113_im(7:0)	-126		-30			2	
		×				A	
							(1,000.000 ns
Name	Value	0 ns		200 ns	400 ns 6	00 ns 8	00 ns
a) out140_im[74]	48	X	-104			48	
 out141_re[7:0 out141_im[7:0 	2		2	2 X		2	
► 26 out142_re(7:0	110	x	-86	xxxx		110	
aut142_im[7.0	0	X	-2			0	
 out143_re(7.0 out143_im(7.0 	-18		-85		2	-18	
► 26 out144_re(7:0	-100	x	-110			-100	
a) out144_im[74]	72	X	86	00000000		72	
Control out145_re[7:0 Control out145_re[7:0	2		2	X	2		
► 76 out146_re(7.0	-16	x	-30	00005500		-15	
out146_im[7.0	0	X	-2	X	þ		
 out147_re(7.0) out147_im(7.0) 	2		-30		2	-129	
• d out148_re(7.0	-52		122			-52	

							-	
								1,000.000 n
Name	Value	0 ns		200 ns	400 ns	1	600 ns	800 ns
Image: Second	2	X				2		
Id out168_re[7:0]	68	X	12	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			68	
36 out168 im7:01	-2	X	2	XXX X			-2	
74 out169 re7-01	4	Y		V				
	1	Ê	╧	^				
- 0 ontroa im(\.o)	2	<u> </u>		00000000		2		
<pre>0 out1/0_re[/:0]</pre>	4	X	102	<u>unen</u>			4	
out170_im[7:0]	0	X	-2	Х			D	
🛯 🏹 out171_re[7:0]	-92	Х	102	$\infty $			-92	
📲 🕍 out171_im(7:0)	2	X				2		
5 out172_re[7:0]	-92	X	2	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			-92	
74 out172 im7:01	108	X	-102	YYYYTYY			108	
24 out173 re7701	2	Y					2	
	-	÷	÷	$ \longrightarrow $			2	
- Ontrys_im():01	2		\sim				2	
• out174_re[/:0]	-10	X	12				-10	
out174_im[7:0]	0	X X	-2	<u>x x</u>			0	
out175_re[7:0]	14	X	12	XXXXXXXXXX			14	
		ſ						1,000.000
ame	Value	Ons		200 ns	400 ns		600 ns	800 ns
7.6 out253 re/7:01	4	X	2	Y			4	
7.6 out253 im7/0	;	Y	1	<u>γ</u> γ			,	
	·	÷	╞══	÷			2	
© onroalieluni	-34			<u> </u>			- 294	
out254_im[7:0]	°	X	-2	×			0	
out255_re[7:0]	66	<u> </u>	<u> </u>	• <u> </u>			66	
out255_im[7:0]	2	X				2		
🍯 out256_re[7:0]	18	X		• XX			18	
74 out256_im(7:0)	-4	X		• XX			-4	
15 clk	0	nnnr	10000	nnnnnn	nnnnnn		innnnnnnn	nnnnnnn
18 rst								
15 - 15								
10	.							
1.0 20	. I							
5/ 10								
19 S	0							
🍯 in1_re[7:0]	1					1		
🍯 in1_im(7:0)	0					0		
		_						
lame	Value	j0 ns		200 ns .	H00 ns	. 1	600 ns	800 ns
lame	Value 0	0 ns		200 ns	400 ns		600 ns	800 ns
ame	Value 0	0 ns		200 ns	400 ns	1	600 ns	800 ns
lame 10 rst 10 r5 10 r6	Value 0 0	0 ns		200 ns	400 ns	1	600 ns	800 ns
ame 6 rst 6 s5 16 s6 16 s7	Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ns		200 ns	400 ns		600 ns	800 ns
ame 5 rt 5 5 5 4 5 7 5 8	Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ns		200 ns	400 ns	1	600 ns	800 ns
ame 5 15 5 16 5 16 5 17 5 18 10 18 10 11 10	Value 0 0 0 0 0 1	0 ns		200 ns	400 ns	1	600 ns	800 ns
ame 5 15 5 15 5 16 5 17 5 18 10 11 10 11 10 10 11 10 1	Value 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ns		200 ns	400 ns	1	600 ns	800 ns
lame 3 rst 3 55 3 rst 3 rs	Value 0 0 0 1 0 1	0 ns		200 ns	400 ns	1	600 ns	800 ns
iame 10 st 10 s5 10 s5 10 s7 10 st 10	Value 0 0 0 0 1 0 1 0 1			200 ns			660 ns	800 ns
Lame 3. rd 3. 5 3. 6 3. 7 3. 8 1. 1 1. 1	Value 0 0 0 1 1 0 1 0			200 ns	400 ns		500 ns	800 ns
ame 3 rt 3 r5 3 r5 3 r6 3	Value 0 0 0 1 1 0 1 0 1			200 ns	400 ns		600 re.	800 ns
Lane 5 ml 5 S 6 d 7 ml 10	Value 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0			200 ns	400 ns		600 ns.	800 ns
Name 5 rt 5 r5 5 d 6 d 7 id, i/740 7 id, i/740	Value 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0			200 ns	400 ns		600 ns	
Anne 2 m 3 s 5 s 6 s 6 s 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m	Value 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0			200 ns	H00 ns		600 ns	800 ns.
Anne 5 ml 5 ml 5 d 9 d 9 dl 9	Value 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0			200 ns	H00 ns		600 ns	

Fig.4. 256-point SMSS based reconfigurable FFT processor using Vedic multiplier.

Assuming that the processor have same throughput rate i.e. (64*clock rate) =8.036GS/s at 126 MHz clock rate. The hardware complexity and computation speed are compared in the performance table. The hardware complexity is compared with the existing SMSS based 256- point FFT processor in terms of ASIC design metric gate count. The equivalent gate count for the proposed processor is derived from the synthesis report of XILINX XST tool.

Table-I: Performance comparison

International Journal of Research

Available at https://edupediapublications.org/journals

Technology	SMSS based Reconfigurable FFT(Vedic multiplier)	SMSS based FFT processor	Radix-4 Reconfigurable FFT	
No. of Data path bits	8	8	8	
Architecture	Pipelined	Pipelined	Pipelined	
FFT Size	256	256	256	
Clock Rate(MHz)	126	126	126	
Delay(ns)	13.423	15.531	29.981	
Gate Count	6,23,708	7,60,000	9,35,816	

The gate count is calculated by selecting target device as Virtex-6 FPGA. The performance comparison is shown in above Table I.

VI. Conclusion

This paper proposed high speed and low hardware complexity **SMSS** based FFT/IFFT reconfigurable processor. The reconfigurable FFT processor can reduce the hardware complexity when compared with the existing 256-point SMSS based FFT processor. The proposed Vedic multiplier improves the computation speed. The performance results shows that the proposed reconfigurable FFT processor gives less hardware complexity i.e. area reduced by 17% and speed is increased by 11% with a throughput rate of 8.036GS/s. In addition the proposed architecture can apply any FFT size greater than 256 point using additional stages.

References

- S.-J. Huang and S.-G. Chen, "A green FFT processor with 2.5-GS/s for IEEE 802.15.3c (WPANs)," in *Proc. Int. Conf. Green Circuits Syst.*, Jun. 2010, pp. 9–13.
- [2] P.-Y. Tsai, T.-H. Lee, and T.-D. Chiueh, "Power-efficient continuous flow memorybased FFT processor for WiMax OFDM mode," in *Proc. Int. Symp. Intell. Signal Process. commun. Syst.*, Dec. 2006, pp. 622– 625.
- [3] X. Guan, Y. Fei, and H. Lin, "Hierarchical design of an application specific instruction set processor for high-throughput and

scalable FFT processing," *IEEE Trans. Very Large Scale Integr. (VLSI) Syst.*, vol. 20, no. 3, pp. 551–563, Mar. 2012.

- [4] S. He and M. Torkelson, "Designing pipeline FFT processor for OFDM (de)modulation," in *Proc. Int. Symp. Signals, Syst., Electron.*, Sep. 1998, pp. 257–262.
- [5] C.-H. Yang,T.-H.Yu, and D.Markovic,"Power and area optimization of reconfigurable FFT processors:A 3Gpp-LTE example," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 47, no. 3, pp. 757–768, Mar. 2012.
- [6] T. Cho and H. Lee, "A high-speed lowcomplexity modified radix-2⁵ FFT processor for high rate WPAN applications," *IEEE Trans. Very Large Scale Integr. (VLSI) Syst.*, vol. 21, no. 1, pp. 187–191, Jan. 2013.
- [7] C. Chung, S. Wang, and C. Li, "Areaefficient architectural design of radix-4 pipeline fast Fourier transform processor," in *Proc. Workshop Consum. Electron. Signal Process.*, Nov. 2004, pp. 1–4.
- [8] E. J. Kim and M. H. Sunwoo, "High speed eight-parallel mixed-radix FFT processor for OFDM systems," in *Proc. IEEE Int. Symp. Circuits Syst.*, May 2011, pp. 1684–1687.
- [9] Eun Ji Kum, Jea Hack Lee ,Myuang Hoon Sunwoo , "Novel Shared Multiplier Scheduling Scheme for Area-Efficient FFT/IFFT Processors" IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no.9, pp. 1689–1699, sep. 2015.
- [10] Harpreet Singh Dhillon, AbhijitMitra, "A Digital Multiplier Architecture using Urdhva Tiryakbhyam Sutra of Vedic Mathematics", IIT-G, pp-1-4,2010.

Available online: http://internationaljournalofresearch.org/