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Abstract—Numerous recent approaches 

attempt to remove image blur due to camera 

shake, either with one or multiple input 

images, by explicitly solving an inverse and 

inherently ill-posed deconvolution problem. 

If the photographer takes a burst of images, 

a modality available in virtually all modern 

digital cameras, we show that it is possible 

to combine them to get a clean sharp 

version. This is done without explicitly 

solving any blur estimation and subsequent 

inverse problem. The proposed algorithm is 

strikingly simple: it performs a weighted 

average in the Fourier domain, with weights 

depending on the Fourier spectrum 

magnitude. The method can be seen as a 

generalization of the align and average 

procedure, with a weighted average, 

motivated by hand-shake physiology and 

theoretically supported, taking place in the 

Fourier domain. The method’s rationale is 

that camera shake has a random nature, and 

therefore, each image in the burst is 

generally blurred differently. Experiments 

with real camera data, and extensive 

comparisons, show that the proposed Fourier 

burst accumulation algorithm achieves 

stateof- the-art results an order of magnitude 

faster, with simplicity for on-board 

implementation on camera phones. Finally, 

we also present experiments in real high 

dynamic range (HDR) scenes, showing how 

the method can be straightforwardly 

extended to HDR photography. 

I. INTRODUCTION 

ONE of the most challenging experiences in 

photography is taking images in low-light 

environments. The basic principle of 

photography is the accumulation of photons 

in the sensor during a given exposure time. 

In general, the more photons reach the 

surface the better the quality of the final 
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image, as the photonic noise is reduced. 

However, this basic principle requires the 

photographed scene to be static and that 

there is no relative motion between the 

camera and the scene. Otherwise, the 

photons will be accumulated in neighboring 

pixels, generating a loss of sharpness (blur). 

This problem is significant when shooting 

with hand-held cameras, the most popular 

photography device today, in dim light 

conditions. Under reasonable hypotheses, 

the camera shake can be modeled 

mathematically as a convolution, v = u _ k + 

n, (1) where v is the noisy blurred 

observation, u is the latent sharp image, k is 

an unknown blurring kernel and n is additive 

white noise. For this model to be accurate, 

the camera movement has to be essentially a 

rotation in its optical axis with negligible in-

plane rotation, see . The kernel k results 

from several blur sources: light diffraction 

due to the finite aperture, out-offocus, light 

integration in the photo-sensor, and relative 

motion between the camera and the scene 

during the exposure.  

II. RELATED WORK 

Removing camera shake blur is one of the 

most challenging problems in image 

processing. Although in the last decade 

several image restoration algorithms have 

emerged giving outstanding performance, 

their success is still very dependent on the 

scene. Most image deblurring algorithms 

cast the problem as a deconvolution with 

either a known (non-blind) or an unknown 

blurring kernel (blind). See e.g., the review 

by Kundur and Hatzinakos where a 

discussion of the most classical methods is 

presented. 

A. Single Image Blind Deconvolution 

Most blind deconvolution algorithms try to 

estimate the latent image without any other 

input than the noisy blurred image itself. A 

representative work is the one by Fergus et 

al.This variational method sparked many 

competitors seeking to combine natural 

image priors, assumptions on the blurring 

operator, and complex optimization 

frameworks, to simultaneously estimate both 

the blurring kernel and the sharp image. 

Fergus et al approximated the heavy-tailed 

distribution of the gradient of natural images 

using a Gaussian mixture. In the authors 

exploited the use of sparse priors for both 

the sharp image and the blurring kernel. Cai 

et proposed a joint optimization framework, 

that simultaneously maximizes the sparsity 

of the blur kernel and the sharp image in a 

curvelet and a framelet systems respectively. 

Krishnan et al. introduced as a prior the ratio 

between the _1 and the _2 norms on the high 

frequencies of an image. This normalized 
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sparsity measure gives low cost for the sharp 

image. In the authors discussed unnatural 

sparse representations of the image that 

mainly retain edge information. This 

representation is used to estimate the motion 

kernel. Michaeli and Irani  recently 

proposed to use as an image prior the 

recurrence of small natural image patches 

across different scales. The idea is that the 

cross-scale patch occurrence should be 

maximal for sharp images. Several attempt 

to first estimate the degradation operator and 

then applying a non-blind deconvolution 

algorithm. 

B. Multi- Image Blind Deconvolution 

Two or more input images can improve the 

estimation of both the underlying image and 

the blurring kernels. Rav-Acha and Peleg 

claimed that “Two motion-blurred images 

are better than one,” if the direction of the 

blurs are different. In the authors proposed 

to capture two photographs: one having a 

short exposure time, noisy but sharp, and 

one with a long exposure, blurred but with 

low noise. The two acquisitions are 

complementary, and the sharp one is used to 

estimate the motion kernel of the blurred 

one. Close to our work are papers on multi-

image blindrecovered image. Having 

multiple input images improves the accuracy 

of identifying the motion blur kernels, 

reducing the illposedness of the problem. 

Most of these multi-image algorithms 

introduce cross-blur penalty functions 

between image pairs. However this has the 

problem of growing combinatorially with 

the number of images in the burst. This idea 

is extended in [3] using a Bayesian 

framework for coupling all the unknown 

blurring kernels and the latent image in a 

unique prior. Although this prior has 

numerous good mathematical properties, its 

optimization is very slow. The algorithm 

produces very good results but it may take 

several minutes or even hours for a typical 

burst of 8-10 images of several megapixels. 

The very recent work by Park and Levoy  

relies on an attached gyroscope, now present 

in many phones and tablets, to align all the 

input images and to get an estimation of the 

blurring kernels. Then, a multi-image non-

blind deconvolution algorithm is applied. By 

taking a burst of images, the multi-image 

deconvolution problem becomes less ill-

posed allowing the use of simpler priors. 

This is explored in where the authors 

adopted a total variation prior on the 

underlying sharp image. All these papers 

propose kernel estimation and to solve an 

inverse problem of image deconvolution. 

The main inconvenience of tackling this 

problem as a deconvolution, on top of the 
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computational burden, is that if the 

convolution model is not accurate or the 

kernel is not accurately estimated, the 

restored image will contain strong artifacts 

(such as ringing). 

C. Lucky Imaging 

A popular technique in astronomical 

photography, known as lucky imaging or 

lucky exposures, is to take a series of 

thousands of short-exposure images and 

then select and fuse only the sharper ones . 

Fried showed that the probability of getting 

a sharp lucky short-exposure image 

through turbulence follows a negative 

exponential. Thus, when the captured series 

or video is sufficiently long, there will exist 

such a frame with high probability. 

III. FOURIER BURST ACCUMULATION  

A. Rationale 

Camera shake originated from hand tremor 

vibrations has undoubtedly a random nature 

The independent movement of the 

photographer hand causes the camera to be 

pushed randomly and unpredictably, 

generating blurriness in the captured image. 

Figure 1 shows several photographs taken 

with a digital single-lens reflex (DSLR) 

handheld camera. The photographed scene 

consists of a laptop displaying a black image 

with white dots. The captured picture of the 

white dots illustrates the trace of the camera 

movement in the image plane. If the dots are 

very small—mimicking Dirac masses—their 

photographs represent the blurring kernels 

themselves. As one can see, the kernels 

mostly consist of unidimensional regular 

random trajectories. This stochastic behavior 

will be the key ingredient in our proposed 

approach. Let F denote the Fourier 

Transform and ˆ k the Fourier Transform of 

the kernel k. Images are defined in a regular 

grid indexed by the 2D position x and the 

Fourier domain is indexed by the 2D 

frequency ζ . Let us assume, without loss of 

generality, that the kernel k due to camera 

shake is normalized such that _ k(x)dx = 1. 

The blurring kernel is nonnegative since the 

integration of incoherent light is always 

nonnegative. This implies that the motion 

blur does not amplify the Fourier spectrum: 

B. Fourier Magnitude Weights 

Let p be a non-negative integer, we will call 

Fourier Burst Accumulation (FBA) to the 

Fourier weighted averaged image, where ˆ vi 

is the Fourier Transform of the individual 

burst image vi . The weight wi := wi (ζ ) 

controls the contribution of the frequency ζ 

of image vi to the final reconstruction u p. 

Given ζ, for p > 0, the larger the value of | ˆ 

vi (ζ )|, the more ˆ vi (ζ ) contributes to the 

average, reflecting what we discussed above 

that the strongest frequency values represent 

https://edupediapublications.org/journals/index.php/IJR/


 
 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 542   

the least attenuated u components. The 

integer p controls the aggregation of the 

images in the Fourier domain.  

IV. ALGORITHM IMPLEMENTATION 

The proposed burst restoration algorithm is 

built on three main blocks: Burst 

Registration, Fourier Burst Accumulation, 

and Noise Aware Sharpening as a post-

processing. These are described in what 

follows. 

 

 

A. Burst Registration 

There are several ways of registering images 

(see  for a survey). In this work, we use 

image correspondences to estimate the 

dominant homography relating every image 

of the burst and a reference image (the first 

one in the burst). The homography 

assumption is valid if the scene is planar (or 

far from the camera) or the viewpoint 

location is fixed, e.g., the camera only 

rotates around its optical center. Image 

correspondences are found using SIFT 

features and then filtered out through the 

ORSA algorithm, a variant of the so called 

RANSAC method To mitigate the effect of 

the camera shake blur we only detect SIFT 

features having a larger scale than σmin = 

1.8. Recall that as in prior art, see [25], the 

registration can be done with the gyroscope 

and accelerometer information from the 

camera. 

B. Fourier Burst Accumulation 

Given the registered images {vi }M i=1 we 

directly compute the corresponding Fourier 

transforms { ˆ vi }M i=1. Since camera 

 

C. Noise Aware Sharpening 

While the results of the Fourier burst 

accumulation are already very good, 

considering that the process so far has been 

computationally non-intensive, one can 
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optionally apply a final sharpening step if 

resources are still available. The sharpening 

must contemplate that the reconstructed 

image may have some remaining noise. 

Thus, we first apply a denoising algorithm 

(we used the NLBAYES algorithm [38]2), 

then on the filtered 2A variant of this is 

already available on camera phones, so we 

stay at the level of potential on-board 

implementations. image we apply a 

Gaussian sharpening. To avoid removing 

fine details we finally add back a percentage 

of what has been removed during the 

denoising step. The complete method is 

detailed in Algorithm 1. 

D. Memory and Complexity Analysis 

Once the images are registered, the 

algorithm runs in O(M ・ m ・ logm), 

where m = mh × mw is the number of image 

pixels and M the number of images in the 

burst. The heaviest part of the algorithm is 

the computation of M FFTs, very suitable 

and popular in VLSI implementations. This 

is the reason why the method has a very low 

complexity. Regarding memory 

consumption, the algorithm does not need to 

access all the images simultaneously and can 

proceed in an online fashion. This keeps the 

memory requirements to only three buffers: 

one for the current image, one for the 

current average, and one for the current 

weights sum. 

V. CONCLUSION 

We presented an algorithm to remove the 

camera shake blur in an image burst. The 

algorithm is built on the idea that each 

image in the burst is generally differently 

blurred; this being a consequence of the 

random nature of hand tremor. By doing a 

weighted average in the Fourier domain, we 

reconstruct an image combining the least 

attenuated frequencies in each frame. 

Experimental results showed that the 

reconstructed image is sharper and less 

noisy than the original ones. This algorithm 

has several advantages. First, it does not 

introduce typical ringing or overshooting 

artifacts present inmost deconvolution 

algorithms. This is avoided by not 

formulating the deblurring problem as an 

inverse problem of deconvolution. The 

algorithm produces similar or better results 

than the state-of-the-art multi-image 

deconvolution while being 

significantly faster and with lower memory 

footprint. We also presented a direct 

application of the Fourier Burst 

Accumulation algorithm to HDR imaging 

with a hand-held camera. As a future work, 

we would like to incorporate a gyroscope 

registration technique, see [25], to create a 
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realtime system for removing camera shake 

in image bursts. A very related problem is 

how to determine the best capture strategy. 

Giving a total exposure time, would it be 

more convenient to take several pictures 

with a short exposure (i.e., noisy) or only a 

few with a larger exposure time 

(i.e., blurred)? Variants of these questions 

have been previously tackled in the context 

of denoising/ deconvolution tradeoff. We 

would like to explore this analysis using the 

Fourier Burst Accumulation principle. 
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