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Abstract—Accurately detecting subcellular 

particles in fluorescence microscopy is of 

primary interest for further quantitative 

analysis such as counting, tracking, or 

classification. Our primary goal is to 

segment vesicles likely to share nearly the 

same size in fluorescence microscopy 

images. Our method termed adaptive 

thresholding of Laplacian of Gaussian 

(LoG) images with autoselected scale 

(ATLAS) automatically selects the optimal 

scale corresponding to the most frequent 

spot size in the image. Four criteria are 

proposed and compared to determine the 

optimal scale in a scale-space framework. 

Then, the segmentation stage amounts to 

thresholding the LoG of the intensity image. 

In contrast to other methods, the threshold is 

locally adapted given a probability of false 

alarm (PFA) specified by the user for the 

whole set of images to be processed. The 

local threshold is automatically derived from 

the PFA value and local image statistics 

estimated in a window whose size is not a 

critical parameter. We also propose a new 

data set for benchmarking, consisting of six 

collections of one hundred images each, 

which exploits backgrounds extracted from 

real microscopy images. We have carried 

out an extensive comparative evaluation on 

several data sets with ground-truth, which 

demonstrates that ATLAS outperforms 

existing methods. ATLAS does not need any 

fine parameter tuning and requires very low 

computation time. Convincing results are 

also reported on real total internal reflection 

fluorescence microscopy images. 

I. INTRODUCTION 

Since the early time of protein tagging with 

green fluorescent protein (GFP) microscopy 

investigations at the single cell level have 

been faced with the problem of determining 

the location and behavior in space and time 

of spots, such as microtubule end tips, 

adhesion molecular complexes, or vesicles 

as illustrated in Fig. 1. Detecting such 
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subcellular particles in fluorescence 

microscopy is indeed of central interest for 

further quantitative analysis as  thesis grant 

was partly supported by Brittany Council. 

The associate editor coordinating the review 

of this manuscript and approving it for 

publication was Prof. Jan Sijbers. Color 

versions of one or more of the figures in this 

paper are available 

 

 

 

Fig. 1. Cell images depicting particles of 

similar scale. (a, b) Tagged vesicles (bright 

spots) are of almost constant size over the 

image. Rab11 is tagged with mCherry in (a), 

(b) TfR is tagged with 

pHluorin in (b). 

 particle counting particle pattern 

recognition particle tracking or dynamics 

classification  All thesesubcellular analyses 

require a reliable, accurate and efficient 

detection of particles in fluorescence 

microscopy images. Our goal is to segment 

exocytotic vesicles in cell images acquired 

in total internal reflection fluorescence 

microscopy (TIRFM). Among fluorescence 

microscopy image modalities, TIRFM is the 

perfect tool to investigate processes 

occurring close to or at the cell surface such 

as endocytosis and exocytosis processes]. 

The physical size of exocytotic vesicles 

spans across a limited range. Given the 

limited depth of field (DOF) of TIRFM, the 

variation of the scale of these fluorescently 

labeled objects in the 2D images is also 

limited. 

In this paper, we will focus on M10 cell 

images showing the cargo proteins Langerin 

and Transferrin receptor (TfR) tagged with 

pHluorin, or the Rab11 GTPase tagged with 

mCherry. These proteins are associated to 

transport intermediates such as vesicles 

recycling to the cell surface and appearing 

as bright spots, which can be round or 

elongated, as depicted in Fig. 1. Another 

application of the presented method could be 

the identification, detection and 

quantification of adhesion molecular 

complexes, in cells migrating or not. These 

biological architectures are relatively small 

and regular at the single cell, composed of 

multiple molecular partners. 

As a consequence, it is worth developing a 

spot detection method able to automatically 

find the average object size or the most 

frequent one. We propose a segmentation 
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framework with automatic scale selection 

and local adaptive thresholding. Our method 

exploits the Laplacian of Gaussian (LoG) of 

the intensity image and automatically 

detects the characteristic scale of the objects 

of interest. To cope with inhomogeneous 

background, thresholding is adapted to local 

image statistics, while a single probability of 

false alarm (PFA) is set for the whole image 

or even the collection of images to be 

processed. The local image statistics are 

estimated in a Gaussian window, whose size 

has a very low impact on the detection 

performance, as demonstrated in the 

experimental results. In short, we will 

automatically infer from image data the 

optimal value of the critical parameters 

usually left to the user guidance in other 

methods, that is, LoG scale and detection 

threshold. We name ATLAS (Adaptive 

Thresholding of LoG images with Auto-

selected Scale) the method described in this 

paper. ATLAS comprises several significant 

improvements and extensions compared to 

the preliminary method SLT-LoG we 

introduced in : 

 

• We now resort to a discrete filter for the 

scale-space representation which allows us 

to deal with any arbitrary scale, i.e., with 

scales of any precision; 

• We have designed four original scale 

selection criteria; 

• We have produced and made publicly 

available a new benchmark dataset for spot 

detection methods; 

• We have conducted an extended 

comparative evaluation with existing 

methods on several datasets, and we have 

evaluated our method on a larger range of 

real images. 

While our primary goal is to detect exocytic 

vesicles in 2D TIRFM images, the ATLAS 

method can be applied to other types of 

images as well, provided objects to be 

detected are of similar size in the image or 

of a couple of sizes at most. Comparisons of 

spot detection methods were reported In and 

providing with a broad overview of stateof- 

the-art methods. Nevertheless, the dataset 

used in these two previous comparative 

works remains limited in terms of content 

and challenges. Indeed, real TIRFM images 

are far more complex than images of this 

dataset, specifically, the signal-to-noise ratio 

(SNR) is generally lower in real images and 

objects to be detected are smaller and often 

darker. We have constructed a new dataset 

with ground truth exploiting backgrounds 

extracted from real TIRFM image 

sequences. In addition, we have used 

complementary datasets supplied by the 
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simulators designed in and We have thus 

quantitatively evaluated our method and 

compared it with other methods on a total of 

four datasets. The remainder of the paper is 

structured as follows. 

II. RELATED WORK 

In the authors provide a broad panorama of 

spot detection methods, and thoroughly 

evaluate the performance of a dozen 

methods. As explained by Smal et al. [17], 

the common detection framework consists in 

first denoising the image and enhancing the 

spots to be detected. Then, highest (or 

lowest) values of the enhanced signal, 

corresponding to spots, are extracted. The 

simplest way of detecting spots in a gray 

level image is to threshold the image 

intensities from the intensity histogram. The 

threshold value can be automatically 

selected by techniques such as Otsu’s 

method or entropy minimization. However, 

a single global threshold cannot tackle 

complex images where variation in 

background intensities may exceed spot 

intensity magnitude. Therefore, numerous 

space-varying thresholding methods were 

proposed In particular, local threshold 

values are deduced from local statistics to 

detect cell nuclei in  More advanced 

methods, such as detectors based on top-hat 

(TH) or LoG filter as in the SEF (Spot 

Enhancing Filter) method not only smooth 

the image, but also enhance the underlying 

signal. More specifically, the LoG filter 

(which we will rely on) is a band-pass filter 

which enhances objects of a particular size, 

reduces noise and lowers low-frequency 

background structures. observed that the 

LoG filter is close to the optimal whitened 

matched filter for Gaussian spots in 

fluorescence microscopy images, that is, the 

SNR of the filtered image is maximized at 

the spot center. Yet, the choice of the LoG 

variance is critical and highly dependent on 

the spot size. Similarly, the bandwidth of the 

TH filter is adjusted with two critical 

parameters, the top and brim radii. They 

should ideally correspond to the spot size 

and distance between neighboring spots, 

respectively. In the so-called morphological 

top-hat (MTH) version of TH the image 

background is estimated by an opening 

operation which removes objects smaller 

than the structuring element. In order to 

reduce noise, a Gaussian blur is initially 

performed. The background estimate is then 

subtracted to the image to detect spots by 

thresholding. In   an isotropic undecimated 

wavelet transform (IUWT)  of the image is 

exploited to detect objects of various sizes. 

A wavelet multiscale product (WMP) 

operation is performed in [30], which 
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consists, for every point, in multiplying the 

wavelet coefficients of different scales to 

reveal correlations across the scales. From a 

given wavelet scale, spots respond more 

strongly to IUWT than uncorrelated noise. 

For low SNRs, however, noise has a higher 

response than spots at smallest scales, 

inducing wrong detections. Hence, smallest 

scales – up to a characteristic scale – must 

be discarded to lower the false detection 

rate. The WMP map is finally thresholded to 

get the binary detection map. The multiscale 

variance stabilizing transform (MS-VST) 

method relies on variance stabilization to 

rule out insignificant coefficients of the 

IUWT Then, the image is reconstructed 

without taking into account the coarsest 

scale, corresponding to the background 

structures, nor the smallest ones 

corresponding to noise. The spots are finally 

detected by thresholding the reconstructed 

image. Therefore, with both IUWT-based 

methods, the set of wavelet scales must be 

chosen accordingly to the spot size. Finally, 

h-dome (HD) methods   detect local 

maxima, called domes, in a LoG- or 

Gaussian-filtered image. The kernel must be 

chosen smaller than the spots. Peaks of the 

filtered image with an amplitude greater 

than a given height h (hence, the name of the 

method) are extracted. The so-built “dome 

map” comprises small domes corresponding 

to noise, domes corresponding to spots, and 

large domes corresponding to background 

structures. To discard irrelevant large and 

small domes, samples are generated 

according to the domes map seen as an 

importance sampling function. 

Domes containing too few samples are 

removed since they probably correspond to 

noise. Domes where samples are too 

scattered are also removed, because they 

probably correspond to large background 

structures. Thus, the maximum dome size 

must be carefully set. However, the objects 

to detect do not often have the same 

magnitude h, so that the method sometimes 

merges very bright neighboring spots, and 

sometimes misses less bright spots. To 

tackle this problem, 

Rezatofighi et al. [34] proposed a method 

called maximum possible height dome 

(MPHD) for locally detecting the best height 

threshold h. Then, the norm of the spatial 

image gradient is thresholded, which is more 

robust to strong background variations than 

directly thresholding intensity. Two 

supervised detection methods were also 

involved in the comparative study reported 

based on classical machine learning 

agorithms, respectively,  processing 
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fluorescence microscopy sequences, the 

statistics of the image may vary in time 

(e.g., due to photo-bleaching), so that one 

threshold should be set for each image 

according to its intensity range. Obviously, 

this approach is not applicable 

to sequences containing hundreds of frames, 

or to datasets containing images of various 

dynamic ranges. In contrast, as described in 

we propose a locally adapted threshold 

automatically inferred from local intensity 

statistics. 

The user on his/her side only fixes once for 

all a PFA value which can be used for all the 

images of the conducted experiment. 

III. ADAPTIVE SEGMENTATION  

A. Local Threshold 

Once the object scale is determined, we can 

proceed to vesicle segmentation in the 

acquired fluorescence microscopy images. 

Since the scale selection step relies on LoG, 

it is natural to detect vesicles based on this 

particular filter. Furthermore, it has been 

shown in [8] that LoG is close to the optimal 

filter in applications like ours, that is 

detecting subresolved objects in 

fluorescence microscopy images. As 

explained, our goal is to extract the lowest 

values of the selected LoG map Hf (·, s_). 

When the background is complex or the 

image exhibits large contrast variations, the 

use of a global threshold τ is not 

satisfactory, as illustrated in Fig.. Instead, 

we propose to locally infer a threshold τ (p) 

for every point p ∈  _ from local image 

statistics. To this end, we assume that the 

distribution of the image background is 

smooth and corrupted by white Gaussian 

noise. It holds because low frequency 

background structures are locally constant if 

the neighborhood is small enough, while 

Fig. . Segmentation maps obtained with 

global and local thresholding. (a) Gaussian 

spots are added to a varying background so 

that contrast increases from left to right. (b) 

With a global threshold, segmentation maps 

contain both false positives (red) and false 

negatives (yellow). (c) With a locally 

adapted threshold, far better performance is 

achieved. noise is supposed to be normally 

distributed. Then, Hf is obtained by finite 

convolution of f , so that this assumption 

also holds for Hf . For every point p ∈  _, the 

local mean μ(p) and variance σ2(p) are 

estimated over a window Wp centered in p. 

Then, we can infer the likelihood L( p) of 

the background model N(μ(p) , σ(p)) given 

Hf (p, s_):where  is the Gaussian probability 

density function. can be inverted to get a 

threshold value below which a point is 

detected, according to a user-selected 

probability of false alarm Pfa, or p-value: 
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Let us point out that we need to compute −1 

only once. 

The local thresholding can thus 

automatically adapt to the local image 

statistics, while the PFA setting does not 

depend on the image intensity range. As a 

consequence, the spot detection is not 

affected by photobleaching when processing 

fluorescence microscopy image sequences. 

Indeed, the PFA is a parameter which is not 

directly related to the image properties but 

to the desired performance of the algorithm. 

Thus, it can be set once for all for a whole 

set of images in a given experiment 

IV. EXPERIMENTAL RESULTS 

We have compared ATLAS to state-of-the-

art spot detection methods in a wide variety 

of cases. Comparative quantitative 

evaluation was carried out on several 

datasets with groundtruth. The first dataset 

is generated with the Synthetic Data 

Generator ImageJ plugin introduced Twelve 

methods were compared on this dataset, 

which is (to our knowledge) the most 

complete comparison of spot detection 

methods to date, but the images remain 

somewhat too artificial and too simple. As 

mentioned in the Introduction section, we 

have conducted comparative experiments on 

three other datasets involving more complex 

contents with the most competitive 

detection methods, namely MS-VST, 

MPHD, HD and C-CRAFT. First, 

Boulanger et al. [19] and 

Rezatofighi et al. proposed particle 

dynamics simulators, referred in the sequel 

as Traffic simulator and TIRFM simulator, 

respectively. The Traffic simulator was used 

in  to evaluate the performance of several 

methods. Secondly, we have constructed 

another image dataset named 

Spot in M10 where image backgrounds are 

extracted from real TIRFM images. As 

stated in  

A. Performance Measures 

ATLAS delivers a binary detection map. In 

order to evaluate the performance of the 

method and compare it to other ones, we 

compute the centroid of every segmented 

connected component, resulting in a set of 

locations {δ}. Then, following  

an object ω of the ground-truth is correctly 

detected if and only if:  

(1) its nearest neighbor δ in the set of 

detected centroids is closer than 4 pixels 

away, and 

 (2) ω is also the nearest neighbor of δ in the 

ground-truth set of locations. Let us denote 

NTP the number of true positives, NFP the 

number of false positives and NFN the 

number of false negatives. We can evaluate 

different scores for every image and 
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parameter setting. As in compute the true 

positive ratio TPR = NTP/(NTP + NFN) and 

the modified false positive ratio FPR* = 

NFP/(NTP + NFN). The value of TPR when 

FPR* = 0.01 is denoted TPR* and is used to 

compare methods. Moreover, to compare 

ATLAS with the detection methods tested 

in, namely HD, MS-VST and C-CRAFT, we 

compute the precision Prec = NTP/(NTP + 

NFP) and recall Rec = NTP/(NTP + NFN). 

Varying the threshold parameter for the 

existing methods or the PFA value for 

ATLAS, we can plot the free-response 

receiver-operator characteristic (FROC), that 

is the TPR-versus-FPR* curve, and the 

precision-versusrecall curve. That way, the 

behaviors of the methods can be evaluated 

more thoroughly. Additionally, we compute 

the area under the FROC curve as a 

performance score over a wide range of 

thresholds or PFA values. We also resort to 

the F-measure defined by the harmonic 

mean of precision and recall F = 

2Prec.Rec/(Prec+Rec), and more precisely 

to the best reachable F-measure F*. 

B. Synthetic Data Generator 

In twelve methods are evaluated over six 

image sets of 16 images each. They are 

depicted in Fig.. Two object shapes are 

considered: isotropic Gaussian spots of 

standard deviation 2 pixels, and elliptic 

Gaussian spots of standard deviations 5 and 

2 pixels along the two principal axes, 

respectively. Three types of background are 

generated: uniform intensity (type A), 

horizontal intensity gradient (type B), and 

large random structures (type C). A Poisson 

noise is added 

 

Fig. Sample images from the Synthetic Data 

Generator benchmark for SNR = 2. Types 

are defined in the main text. 

V. CONCLUSION 

We have proposed a novel and efficient 

vesicle segmentation method called ATLAS 

which involves an automatic scale selection 

and a local threshold setting. It is dedicated 

to situations where most of the visible 

structures share about the same size in the 

image. The selected scale can be of any 

arbitrary precision. After determining the 

optimal scale, a LoG operator is applied on 

the images. The segmentation threshold is 

automatically and locally set according to a 

given PFA value. Overall, ATLAS 

outperforms state-of-theart methods on 
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various datasets, including a new one we 

have constructed and made publicly 

available for further comparison. 

Satisfactory segmentation results on several 

challenging real TIRFM images have been 

reported. We have shown that ATLAS is not 

sensitive to the Gaussian window size in the 

segmentation step. Moreover, the PFA value 

is a user-friendly parameter which allows 

the user to adapt the method to the targeted 

detection sensitivity according to the 

application needs and the further 

exploitation of the detection results. Thus, 

no specific knowledge is required on the 

algorithm itself, that is, the method can be 

used as a black box by someone nonexpert 

in image processing. We have shown that 

ATLAS can be successfully applied to 

different kinds of images. We have also 

demonstrated that ATLAS can deal with a 

couple of scales if needed. We will further 

investigate the detection and exploitation of 

a wider set of scales if one or two scales are 

not sufficient to accurately describe the 

structures of interest. We also plan to apply 

ATLAS to three-dimensional images. 
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