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Abstract  The aim of this paper is to 

construct a new nonlinear and nonseparable 

multiscale representation of piecewise 

continuous bidimensional functions. This 

representation is based on the definition of a 

linear projection and a nonlinear prediction 

operator, which locally adapts to the 

function to be represented. This adaptivity 

of the prediction operator proves to be very 

interesting for image encoding in that it 

enables a considerable reduction in the 

number of significant coefficients compared 

with other representations. Applications of 

this new nonlinear multiscale representation 

to image compression and super-resolution 

conclude this paper. 

I. INTRODUCTION 

FOR the last few decades, research has been 

carried out to improve multiscale image 

representation by departing from traditional 

linear tensor product (bi)orthogonal wavelet 

representations. Despite the fact that these 

representations are known not to be optimal, 

in terms of the number of non zero detail 

coefficients they generate, they are 

supported by powerful encoders such as 

EZW or EBCOT making them very efficient 

when applied to image compression. 

Nevertheless, the fact that wavelet 

representations generate too many detail 

coefficients has motivated new research 

toward more compact representations. For 

instance: 

• Frames having some anisotropic 

directional selectivity, such as curvelets and 

contourlets  

• Bandlets based on tensor products of 

wavelet bases combined with locally 

adapted edge operators. 

• Edgeprint approximations that are 

computed, in thevicinity of an edge, 
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according to a wedge function which locally 

fits the image. 

In all these approaches, and in order to take 

into account the presence of an edge, the 

multiscale structure is changed. Here, we 

introduce a new type of nonlinear multiscale 

The associate editor coordinating the review 

of this  image representation based on cell-

average discretization that accurately 

represents edges using a reduced number of 

detail coefficients when compared with 

wavelet transforms but maintains the same 

quadtree structure as wavelet transform 

approaches. The main difference with 

respect to wavelet representations is that the 

detail coefficients are computed by means of 

a local and nonlinear prediction operator. 

The new nonlinear multiscale representation 

(NMR) we introduce in this paper is based 

on cell-average discretization, and is close to 

the essentially non oscillatory edge adapted 

(ENO-EA) method previously discussed in  

The paper is organised as follows, first we 

recall the general framework for NMR in the 

cell-average discretization context. 

. 

II. HARTEN’S NONLINEAR 

MULTISCALE REPRESENTATION 

A. Harten introduced in  a strategy to 

construct NMRs 

based on two discrete interscale operators, 

called projection and prediction operators 

respectively and denoted by P j j−1 and P 

j−1 j in the sequel. Assuming an image is 

some function v defined on [0, 1]2 and v j is 

it’s approximation on the grid (2−j k1, 2−j 

k2), 0 ≤ k1, k2 ≤ 2 j−1, you first define a 

linear projection operatoP j j−1 acting from 

the fine to coarse levels, i.e., v j−1 = P j j−1v 

j . In the cell-average framework, this 

operator is completely characterized since v 

j k is a rescaled version of a local 

cellaverage of v computed as:  

 

v j k = 22 j _ C j k v(x, y)dx dy, (1) with C j 

k = [2−j k1, 2−j (k1 + 1)] × [2−j k2, 2−j (k2 

+ 1)], and where k = (k1, k2). In what 

follows, C j k will be called a cell. From 

this, one infers that the projection operator 

reads: V j−1 k = 1 4 _ v j2 k + v j2 k+e1 + v 

j2 k+e2 + v j2 k+e1+e2, (2) 

where e1 and e2 are unit vectors oriented to 

the right and upward, respectively. The 

prediction operator P j−1 j acts from the 

coarse to fine levels by computing an 

‘approximation’ ˆ v j of v j from v j−1, i.e. ˆ 

v j = P j−1 j v j−1. This operator may be 

nonlinear. In addition, it is assumed that 

these operators satisfy the following 

consistency property: 

P j j−1P j−1j = I, (3) 
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III. EDGE DETECTION 

To begin, we consider edge detection at 

level j−1 since the prediction at level j is 

based only on the information available at 

level j−1. In this section, we consider step-

edges, modeled by straight lines separating 

regions with constant gray level, that is, on a 

cell C j−1 k containing an edge, the function 

v is assumed to have the form v(x, y) = 

Aχ{y≥h(x)}(x, y) + Bχ{y<h(x)}(x, y), (6) 

with h(x) = mx + n, χC(x, y) the indicator 

function of C, and A and B some constants. 

The edge detection mechanism makes use of 

the 1D cost functions whose descriptions 

follow: 

IV. CONCLUSION 

In this paper, we have derived a new type of 

nonlinear multiscale representation based on 

a nonlinear prediction operator in a cell-

average framework. As the structure follows 

the same quadtree structure as the 

orthogonal wavelet transform, a 

compression algorithm such as EZW can be 

applied to the nonlinear multiscale 

representation. We noted significant 

improvement in terms of compression 

performance when compared with linear 

multiscale representations. Another 

application of the proposed nonlinear 

representation is super-resolution, for which 

we have shown that accurate reconstruction 

of piecewise regular images can be achieved 

by using an approximation of the image at a 

coarse resolution level. 
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