
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 18
December2016

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 977

A Power-Efficient Floating-point Co-processor design

T. Sowmya
TURAKASOWMYA@GMAIL.COM

Department Of Ece Malinani Lakshmiah Engineering College

G.Manga Rao
 Assistant Professor Department Of Ece Malinani Lakshmiah Engineering College

MANGARAO.GUNJI@GMAIL.COM

ABSTRACT

In recent years computer applications have

increased in their computational complexity. The

processor designers to pay particular attention to

implementation of the floating-point unit. And also

due to drastically growing interests in low power

and area efficient embedded processor, designers

must establish the proper power and area

strategies in their architecture while design new

embedded processor core. This paper proposed

efficient architecture to design a SPARC

compatible floating-point co-processor, which is

part of a SPARC compatible embedded processor,

which implement the SPARC V8 floating-point

instruction sat except for square root. In the

proposed architecture, decoder stage of the integer

unit pipeline generates the clock gating signals so

that the unused floating-point co-processor

execution pipeline can be clock-gated, which leads

to lower the power dissipation and of floating-

point co-processor.

INTRODUCTION

This chapter discusses about the introduction, types

of co-processors, basic formats of floating-point

numbers, normalization, rounding methods with

floating-point numbers

Co-processor

A Co-processor is a computer processor used to

supplement the functions of the primary processor

(the CPU). Operations performed by the co-

processor may be floating- point arithmetic,

graphics, signal processing, string processing, or

encryption. By offloading processor-intensive tasks

from the main processor, co-processors can

accelerate system performance. Co-processors

allow a line of computers to be customized, so that

customers who do not need the extra performance

need not pay for it. The 8087 was tightly integrated

with the 8086/8088 and responded to floating-point

machine code operation codes inserted in the 8088

instruction stream. An 8088 processor without an

8087 could not interpret these instructions,

requiring separate versions of programs for FPU

and non-FPU systems, or at least a test at run time

to detect the FPU and select appropriate

mathematical library functions. Fig.1.1 shows Intel

80386 CPU with 80387 math co-processor

Normalization

Most often M is a normalized fraction in the sign-

magnitude form. The true magnitude of it is |M| = (0.m-1m-

2…m-k). That is, 1 ≤ |M| ≤ 2. By normalizing, the MSD of the

mantissa equals non-zero, that is, m-1 ≠ 0. If it is zero, the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
mailto:turakasowmya@gmail.com
mailto:mangarao.gunji@gmail.com
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Graphics
http://en.wikipedia.org/wiki/Graphics
http://en.wikipedia.org/wiki/Graphics
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/String_processing
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Machine_code

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 18
December2016

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 978

floating-point number is un-normalized. F = (-0.0025, +3) =

(-0.25, +1) indicates how the normalization procedure can be

conducted. Note that a normalized mantissa has its absolute

value limited by ,

where is the weight carried by the MSD in the mantissa. In

other words, if the floating-point number is

normalized. For the binary case with k bits in the mantissa,

-k
. The reason for normalization is to fully

utilize the available bits which are limited in the computer

system and are hence precious. Allowing too many leading 0s

in the fraction may cause unnecessary truncation of the lower

order bits in the mantissa. The bit positions occupied by those

leading 0s are wasted, and the accuracy of the number

representation is degraded.

PIPELINING

This chapter describes about pipeline processing and

general considerations in pipeline process.

Pipelining is a technique of decomposing a

sequential process into sub-operations, with each sub-process

being executed in a special dedicated segment that operates

concurrently with all other segments. A pipeline can be

visualized as a collection of processing segments through

which binary information flows. Each segment performs

partial processing dictated by the way the task is partitioned.

The result obtained from the computation in each segment is

transferred to next segment in the pipeline. The final result is

obtained after the data have passed through all segments. The

name ―pipeline‖ implies a flow of information analogous to

an industrial assembly line. It is characteristic of pipelines

that several computations can be in progress in distinct

segments at the same time. The overlapping of computation

is made possible by associating a register with each segment

in the pipeline. The registers provide isolation between each

segment so that each can operate on distinct data

simultaneously.

General considerations

Any operation that can be decomposed into a

sequence of sub-operations of about the same complexity can

be implemented by a pipeline processor. The technique is

efficient for those applications that need to repeat the same

task many times with different sets of data. The general

structure of a four-segment pipeline is illustrated in Fig.2.2.

The operands pass through all four segments in a fixed

sequence. Each segment consists of a combinational circuit Si

that performs a sub-operation over the data stream flowing

through the pipe. The segments are separated by registers Ri

that hold the intermediate results between the stages.

Information flows between adjacent stages under the control

of a common clock applied to all the registers

simultaneously. It is defined that a task as the total operation

performed going through all the segments in the pipeline.

BOOTH ALGORITHM

This chapter discusses about booth algorithm and

multiplication methods.

Multiplication of Positive Numbers

The usual algorithm for multiplying integers by

hand is illustrated in Fig.3.1a for the binary system. This

algorithm applies to unsigned numbers and to positive signed

numbers. The product of two n-digit numbers can be

accommodated in 2n digits, so the product of the two 4-bit

numbers in this example fits into 8-bits, as shown. In the

binary system, multiplication of the multiplicand by one bit

of the multiplier is easy. If the multiplier bit is 1, the

multiplicand is entered in the appropriate position to be added

to the partial product. If the multiplier bit is 0, then 0s are

entered, as in the third row of the example.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 18
December2016

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 979

Implementation of Booth Algorithm

The booth algorithm generates a 2n-bit product and treats

both positive and negative

2’s-complement n-bit operands uniformly. To understand the

essence of this algorithm, consider a multiplication operation

in which the multiplier is positive and has a single block of

1s, for example, 0011110. To derive the product, add four

appropriately shifted versions of the multiplicand, as in the

standard procedure. However, it then reduces the number of

required operations by regarding this multiplier as the

difference between two numbers:

This suggests that the product can be generated by

adding 2
5
 times the multiplicand to the 2’s-complement of 2

1

times the multiplicand. For convenience, describe the

sequence of required operations by recoding the preceding

multiplier as 0 +1000 -10.

Fast Multiplication

This describe two techniques for speeding up the

multiplication operation. The first technique quarantines that

the maximum number of summands (versions of the

multiplicand) that must be added is n/2 for n-bit operands.

The second technique reduces the time needed to add the

summands.

WALLACE TREE
This chapter discusses about Wallace tree and carry-save

addition methods.

Carry-Save Addition Of Summands

Multiplication requires the addition of several

summands. A technique called carry-save addition (CSA)

speeds up the addition process. Consider the array for 4x4

multiplication shown in Fig.4.1a this structure is the general

array shown in Fig.3.1, with the first row consisting of just

the AND gates that implement the bit products

m3q0,m2q0,m1q0, and m0q0.

a. Ripple-Carry Array

b. Carry-Save Arra

Implementation of Wallace Tree

A Wallace tree is a combinatorial circuit used to

multiply two numbers. Although it requires more hardware

than shift-add multipliers, it produces a product in far less

time. Instead of performing additions using standard parallel

adders, Wallace trees use carry-save adders and only one

parallel adder.

A carry-save adder can add three values simultaneously,

instead of just two. However, it does not output a single

result. Instead, it outputs both a sum and a set of carry bits.

To illustrate this, consider the carry-save adder

CARRY-PROPAGATE ADDER

This chapter discusses about Carry-propagate adder.

With the carry input, full adders can be cascaded to produce

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 18
December2016

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 980

an n-bit adder by connecting output C of an adder to Cin of

the next adder. This configuration is called a ripple adder.A

4-bit ripple adder is shown in Fig.5.1, along with its

schematic symbol. Note that the least significant adder is a

full adder with an externally generated carry input. Most

CPUs require this carry input for some operations. If it was

not needed, this full adder either could have its carry input set

to 0, it could be replaced by a half adder.

SRT DIVISION

This chapter discusses about SRT division methods.

SRT is named after its inventors Sweeney, Robertson and

Tocher. Independently and

at about the same time, D.W. Sweeney of IBM, J.E

Robertson of the university of Illinois and K.D Tocher of

imperial college, London, discovered a new method of binary

division. In

partial dividends are normalized fractions. Recall that the

partial dividend is r times of the partial remainder in general.

Unlike in non-restoring division algorithm qj+1 Є {-1, 1}, qj+1

Є

{-1, 0, 1} now. Here the divisor is shifted, or added to or

subtracted from the partial dividend since {-1, 0, 1} is to be

selected. That is,

Modified SRT Division

The design of fast dividers is an important issue in

high-speed computing because division accounts for a

significant fraction of the total arithmetic operation. Most

implementations for the division are based on the SRT

algorithm that uses a recurrence producing one quotient digit

for each step. The speed of such SRT-based dividers is

mainly determined by the complexity of the quotient-digit

selection. Fig.6.1 illustrates architecture of a radix-4 SRT

divider which employs a quotient-digit selection table (QST).

The use of QST significantly reduces the complexity of

quotient-digit selection. However, the table size increases

drastically with high radices. The table size can be reduced

significantly by estimating the quotient digit instead of

finding the exact one. The estimated quotient digit is

calibrated in parallel with updating the new partial remainder.

Since the two-step process does not affect the division speed,

the approach has fast speed performance due to significant

reduction in table size.

ARCHITECTURE OF FLOATING-POINT UNIT

This chapter discusses abouArchitecture of floating-point unit

operation.

The power dissipation of pipeline register is an

important part of the whole processor. In addition, the low

power strategy design in this project is a fine-grained clock

gating technique, which can reduce the power dissipation of

pipeline register by gating the register’s input clock when the

corresponding execution pipeline is unused. Because of these

facts, in this project emphasize the execution pipeline

organization and eliminate the irrespective design details.

The data path shown in Fig.7.1, implements an always clock

on block. Considering the performance and design

complexity, the floating-point co-processor includes three

independent execution pipelines: floating-point adder which

completes addition, subtract, compare and conversion

instructions, floating-point multiplier which completes

multiply instructions and floating-point divider which

executes divide instructions.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 18
December2016

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 981

Floating-Point Division

Floating-point division requires that the exponents

be subtracted and the mantissas divided. The mantissa

division is done as in fixed-point except that the dividend has

a single-precision mantissa that is placed in the mant_C_r.

remember that the mantissa dividend is a fraction and not an

integer. For integer representation, a single-precision

dividend must be placed in mant_A_w.

The check for divide-overflow is the same as in

fixed-point representation. However, with floating-point

numbers the divide-overflow imposes no problems. If the

dividend is greater than or equal to the divisor, the dividend

fraction is shifted to the right and its exponent incremented

by 1. For normalized operands this is a sufficient operation to

ensure that no mantissa divide overflow will occur. The

operation above is referred to as a dividend alignment.

The division algorithm can be subdivided into four parts or

stages.

1. Initialize the values and evaluate the sign and

exponent.

2. SRT algorithm is implemented.

3. Adjust the exponents and mantissa.

4. Round the result.

The RTL schematic of divider block and pipeline

flow for floating-point division

RESULTS

This chapter gives the simulation results occurred

with different combination of inputs. Mant_c_r is used as

mantissa output, expo_c_r is used as exponent output and

sign_C_r is used as sign output. Sign, exponent and mantissa

inputs are given through sign_A_w, sign_B_w, expo_A_w,

expo_B_w, mant_A_w, mant_B_w. when a valid inputs are

given the outputs are generated or else the output will be not-

a-number, infinity and so on signals will appear.

Inputs:

sign_A_w=0, sign_B_w= 0, expo_A_w=10000000110,

expo_B_w=10000000110,

mant_A_w=111100110000000000000000000000000000000

00000000000000 0=243,

mant_B_w=111010100000000000000000000000000000000

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 18
December2016

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 982

00000000000000 0=234.

Outputs:

sign_C_r=0, expo_C_r=10000000111,

mant_C_r=1110101000000000000000000000000000000000

0000000000000

RTL Schematic for FPU (Floating-Point Unit) – Adder,

Divider

 RTL schematic for FPU (Floating-Point Unit) – Adder,

Divider

RTL Schematic for Divider

RTL schematic for divider, a block in the schematic.

CONCLUSION

This chapter gives the final conclusion of the overall project.

Although some commercial processors may use some form of

clock gating, most of them are focused on the circuit level.

Aimed at our space application, this develops a SPARC

compatible floating-point co-processor and corresponding

micro-architecture clock gating method with tiny cost, based

on the intuition of DCG (Deterministic Clock Gating). The

floating-point co-processor contains roughly 23150 gates. As

per VIRTEX IV family and 4VSX35FF668-12 device CLB

slices used are 10013, function generators used are 20026,

latches used are 5748. Individual blocks in the floating-point

co-processor like adder uses 1215 gates, multiplier uses

11771, divider uses 10064 gates. And at 330 MHz frequency

675 mW.

REFERENCES

[1] D.F.M keating, Low Power Methodology Manual for

System-on-Chip Design. New York, USA: Springer, 2007.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 03 Issue 18
December2016

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 983

[2] microSPARC-IIep User Manual. CA, USA: SUN

Microsystems, 1999.

[3] J. Gaisler, The LEON-2 Processor User’s Manual

Version 1.0.13. Goteberg, Sweden: Gaisler Research, 2003.

[4] The SPARC Architecture Manual Version 8. Menlo

Park, California, USA: SPARC International, Inc., 1991.

[5] IEEE Standard for Binary Floating-Point Arithmetic.

New York, USA: IEEE, 1985.

[6] M. Lu, Arithmetic and Logic in Computer Systems. New

Jersey, USA: John Wiley Sons, 2004.

[7] B. Parhami, Computer Arithmetic: Algorithms and

Hardware Designs. New York, USA: Oxford, 2000.

[8] W. J. P. Silvia M. Mueller, Computer Architecture:

Complexity and Correctness. New York, USA: Springer,

2000.

[9] J. E. Stine, Digital Computer Arithmetic Data Path

Design Using Verilog HDL. New York, USA: Kluwer, 2003.

[10] S. M. R. I. Bahar, ―Power and energy reduction via

pipeline balancing,‖ in Proc. 28
th

International Symposium on Computer Architecture

(ISCA’01), July 1999, pp. 218-229.

[11] R. Gonzalez and M. Horowitz, ―Energy dissipation in

general purpose processors,‖ IEEE Journal of Solid-State

Circuits, vol. 31, no. 9, pp.1277-1284, September 19

BOOK’S

[1] Computer system organization by Morris Mano.

[2] Computer organization by Carl Hamacher.

[3] Computer systems organization & architecture by John

D. Carpinelli.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

