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Abstract

In this paper, we interpret a fuzzy differential equation by using the

strongly generalized differentiability concept. Utilizing the Generalized

Characterization Theorem, we investigate the problem of finding a nu-

merical approximation of solutions. The Runge-Kutta Nystrom approx-

imation method is implemented and its error analysis, which guarantees

pointwise convergence, is given. The method applicability is illustrated

by solving a linear first-order fuzzy differential equation.
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1 Introduction

The study of fuzzy differential equations (FDEs) forms a suitable setting for
mathematical modeling of real-world problems in which uncertainties or vague-
ness pervade. There several approaches to the study of fuzzy differential equa-
tions [7,14,18]. The first and the most popular approach is using the Hukuhara
differentiability for fuzzy number value functions. Under this setting, mainly
the existence and uniqueness of the solution of a fuzzy differential equation
are studied. This approach has a drawback: the solution becomes fuzzier as
time goes by. Hence, the fuzzy solution behaves quite differently from the crisp
solution. To alleviate the situation, Hullermeier interpreted FDEs as a family
of differential inclusions. The main shortcoming of using differential inclusions
is that we do not have a derivative of a fuzzy-number-valued function.

The strongly generalized differentiability was introduced in [4] and studied
in [5,6,8]. This concept allows us to resolve the above-mentioned shortcoming.
Indeed the strongly generalized derivative is defined for a larger class of fuzzy-
number-valued functions than the Hukuhara derivative. Hence, we use this
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differentiability concept in the present paper. Under appropriate conditions,
the fuzzy initial value problem (FIVP) considered under this interpretation
has locally two solutions [5].

Numerical solution of an FDE is obtained now in a natural way, by extend-
ing the existing classical methods to the fuzzy case. Some numerical methods
for FDEs under the Hukuhara differentiability concept such as the fuzzy Euler
method, predictor- corrector method, Taylor method and Nystrom method are
presented in [1,3,10,15]. The local existence of two solutions of an FDE under
generalized differentiability implies that we present new numerical methods.
In this paper, using strongly generalized differentiability, we generalize some
numerical methods presented for solving FDEs. The original initial value prob-
lem is replaced by two parametric ordinary differential systems which are then
solved numerically using classical algorithms.

After a preliminary section, we study fuzzy differential equations using the
concept of generalized differentiability and present the generalized characteri-
zation theorem. In section 4, we propose numerical methods for solving FDEs.
A scheme based on the Runge-Kutta Nystrom method is discussed and this is
followed by a complete error analysis. Also, we present a numerical example
to illustrate our method.

2 Preliminaries

In this section, we give some definitions and introduce the necessary notation
which will be used throughout the paper. See for example [9]

Definition 2.1 Let X be a nonempty set. A fuzzy set u in X is characterized
by its membership function u : X → [0, 1]. Then u(x) is interpreted as the
degree of membership of a element x in the fuzzy set u for each x ∈ X.

Let us denote by ℜF the class of fuzzy subsets of the real axis (i.e.u : ℜ →
[0, 1]) satisfying the following properties:

(i) u is normal, i.e., there exists s0 ∈ ℜ such that u(s0) = 1,

(ii) u is a convex fuzzy set (i.e. u(ts + (1 − t)r) ≥ min {u(s), u(r)}, ∀t ∈
[0, 1], s, r ∈ ℜ),

(iii)u is upper semicontinuous on ℜ,

(iv) cl(s ∈ ℜ|u(s) > 0} is compact, where cl denotes the closure of a subset.

Then ℜF is called the space of fuzzy numbers. Obviously ℜ ⊂ ℜF . For
0 < α ≤ 1 denote [u]α = {s ∈ ℜ|u(s) ≥ α} and [u]0 = cl{s ∈ ℜ|u(s) > 0}.
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Then from (i)-(iv) it follows that if u belongs to ℜF then the α-level set[u]α is
a non-empty compact interval for all 0 ≤ α ≤ 1.

The notation [u]α = [uα, uα] denotes explicitly the α-level set of u. We refer
to u and u as the lower and upper branches on u, respectively.

For u, v ∈ ℜF and λ ∈ ℜ, the sum u+ v and the product λ⊙ u are defined
by [u+ v]α = [u]α + [v]α, [λ⊙ u]α = λ[u]α, ∀α ∈ [0, 1], where [u]α + [v]α means
the usual addition of two intervals (subsets) of ℜ and λ[u]α means the usual
product between a scalar and a subset of ℜ.
The metric structure is given by the Hausdroff distance

D : ℜF ×ℜF → ℜ+ ∪ {0},
D(u, v) = sup

α∈[0,1]

max{|uα − vα| , |uα − vα|}

(ℜF , D) is a complete metric space and the following properties are well known:

D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ ℜF ,

D(k ⊙ u, k ⊙ v) = |k|D(u, v), ∀k ∈ ℜ, u, v ∈ ℜF ,

D(u+ v, w + e) ≤ D(u, w) +D(v, e), ∀u, v, w, e ∈ ℜF .

Definition 2.2 Let x, y ∈ ℜF . If there exists z ∈ ℜF such that x = y + z,
then z is called the H-difference of x, y and it is denoted x⊖ y.

In this paper the sign ”⊖ ” always stands for the H- difference, and let us
remark that x⊖ y 6= x+ (−1)y. Usually we denote x+ (−1)y by x− y, while
x ⊖ y stands for the H-difference. In what follows, we fix I = (a, b), for a, b
∈ ℜ.

Definition 2.3 Let F : I → ℜF be a fuzzy function. We say F is differen-
tiable at t0 ∈ I if there exists an element F ′(t0) ∈ ℜF such that the limits

lim
h→0+

F (t0 + h)⊖ F (t0)

h
and lim

h→0+

F (t0)⊖ F (t0 − h)

h
, exist and are equal

F ′(to). Here the limits are taken in the metric space (ℜF , D), since we have
defined h−1 ⊙ (F (t0)⊖ F (t0 − h)) and h−1 ⊙ (F (t0 + h)⊖ F (t0)).

The above definition is a straightforward generalization of the Hukuhara
differentiability of a set-valued function. From proposition 4.2.8 in [9], it fol-
lows that a Hukuhara differentiable function has increasing length of support.
Note that this definition of a derivative is very restrictive; for instance in [5],
the authors showed that, if F (t) = c ⊙ g(t), where c is a fuzzy number and
g : [a, b] → ℜ+ is a function with g′(t) < 0, then F is not differentiable. To
avoid this difficulty, the authors of [5] introduced a more general definition of
a derivative for a fuzzy-number-valued function. In this paper we consider the
following definition [8]:

Definition 2.4 Let F : I → ℜF . Fix t0 ∈ I. We say F is differentiable at
t0, if there exists an element F ′(t0) ∈ ℜF such that
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(1) for all h > 0 sufficiently close to 0, there exist F (t0 + h)⊖ F (t0),
F (t0)⊖ F (t0 − h) and the limits (in the metric D)

lim
h→0+

F (t0 + h)⊖ F (t0)

h
= lim

h→0+

F (t0)⊖ F (t0 − h)

h
= F ′(t0),

or

(2) for all h > 0 sufficiently close to 0, there exists F (t0 + h)⊖ F (t0),
F (t0)⊖ F (t0 − h) and the limits (in the metric D)

lim
h→0−

F (t0 + h)⊖ F (t0)

h
= lim

h→0−

F (t0)⊖ F (t0 − h)

h
= F ′(t0).

Remark 2.5 ([5]). This definition agrees with the one introduced in [5].
Indeed, if F is differentiable in the senses (1) and (2) simultaneously, then for
h > 0 sufficiently small, we have F (t0+h) = F (t0)+u1, F (t0) = F (t0−h)+u2,
F (t0) = F (t0+h)+v1 and F (t0) = F (t0+h)+v2, with u1, u2, v1, v2 ∈ ℜF .Thus,
F (t0) = F (t0) + (u2 + v1), i.e., u2 + v1 = X{0}, which implies two possibilities:
u2 = v1 = X{0} if F

′(t0) = X{0}; or u2 = X{a} = −v1, with a ∈ ℜ, if F ′(t0) ∈ ℜ.
Therefore if there exists F ′(t0) in the first form (second form) with F ′(t0) /∈ ℜ,
then F ′(t0) does not exist in the second form (first form, respectively).

Remark 2.6 In the previous definition, case(1) corresponds to the H-derivative,
so this differentiability concept is a generalization of the H-derivative.

Remark 2.7 In [5], the authors consider four cases for derivatives. Here
we only consider the two first cases of Definition 5 in [5]. In the other cases,
the derivative is trivial because it is reduced to a crisp element (more precisely,
F ′ ∈ ℜ; for details see Theorem 7 in [5]).

Definition 2.8 Let F : I → ℜF . we say F is (1)-differentiable on I if F
is differentiable in the sense (1)of Definition 2.4 and its derivative is denoted
D1F , and similarly for (2)-differentiability we have D2F.

The principal properties of defined derivatives are well known and can be found
in [5,8]. In this paper, we make use of the following Theorem [8].

Theorem 2.9 Let F : I → ℜF and put [F (t)]α = [fα(t), gα(t)] for each
α ∈ [0, 1].

(i) If F is (1)-differentiable then fα and gα are differentiable functions and
[D1F (t)]α = [f ′

α(t), g
′
α(t)].

(ii) If F is (2)-differentiable then fα and gα are differentiable functions and
we have [D2F (t)]α = [g′α(t), f

′
α(t)].
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proof. see [8]

Runge-Kutta method
Consider the initial value problem

{

y′(t) = f(t, y(t)); a ≤ t ≤ b,
y(a) = α,

(1)

The basis of all Runge-Kutta methods is to express the difference between
the value of y at tn+1 and tn as

yn+1 − yn =
m
∑

i=1

wiki, (2)

where for i = 1, 2, ....m, the wi’s are constants and

ki = h f(tn + αih, yn +
i−1
∑

j=1

βijkj). (3)

Equation (2) is to be exact for powers of h through hm, because it is to be
coincident with Taylor series of order m. Therefore, the truncation error Tm,
can be written as

Tm = γmh
m+1 +O(hm+2).

The true magnitude of γm will generally be much less than the bound of
theorem 2.10. Thus if the O(hm+2) term is small compared with γmh

m+1, as
we expect to be so if h is small, then the bound on γmh

m+1, will usually be
a bound on the error as a whole. The famous nonzero constants αi, βij in the
Runge-Kutta Nystrom method of order 3 are
α1 = 0, α2 = α3 = 2/3, β21 = 2/3, β32 = 2/3,
where m = 3. Hence we have , see [11]

y0 = α,

k1 = h f(ti, yi),

k2 = h f

(

ti +
2h

3
, yi +

2

3
k1

)

,

k3 = h f

(

ti +
2h

3
, yi +

2

3
k2

)

,

yi+1 = yi +
1

8

(

2k1 + 3k2 + 3k3
)

,

where a = t0 ≤ t1 ≤ ....... ≤ tN = b and h =
(b− a)

N
= ti+1 − ti.
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Theorem 2.10 Let f(t, y) belong to C3[a, b] and let it’s partial derivatives
are bounded and assume there exists,P,M, positive numbers such that

|f(t, y)| < M,

∣

∣

∣

∣

∣

∂i+jf

∂ti∂yj

∣

∣

∣

∣

∣

<
P i+j

M j−1
, i+ j ≤ m,

then in the Runge- kutta Nystrom method of order 3,

y(ti+1)− yi+1 ≈
25

108
h4MP 3 +O(h5).

Proof. see [17 ]

3 Generalized characterization theorem for FDEs

under generalized differentiability

Let us consider the fuzzy differential equations with initial value condition

x′(t) = f(t, x), x(0) = x0, (4)

where f : I × ℜF → ℜF is a continuous fuzzy mapping and x0 is a fuzzy
number. The interval I may be [0, A] for some A > 0 or I = [0,∞).

Theorem 3.1 Let f : I × ℜF → ℜF be a continuous fuzzy function such
that there exists k > 0 such that D(f(t, x), f(t, z)) ≤ kD(x, z), ∀t ∈ I, x,
z ∈ ℜF . Then problem (4) has two solutions (one (1)- differentiable and the
other one (2)-differentiable on I.

Proof. see [8].
Let y : I → ℜF be a fuzzy function such that D1y or D2y exists. If y and

D1y satisfy problem (4), we say y is a (1)-solution of problem (4). Similarly,
if y and D2y satisfy problem (4), we say y is a (2)-solution of problem (4).

Then Theorem 2.9 shows us a way to translate the FIVP(4) into a system of
ODEs. Let [x(t)]α = [xα(t), xα(t)]. If x(t) is (1)-differentiable then [D1x(t)]

α =
[x′

α(t), x
′
α(t)],and (4)-translates into the following system of ODEs:











x′(t) = f
α
(t, xα, xα) = F (t, x, x), x(0) = x0,

x′(t) = fα(t, xα, xα) = G(t, x, x), x(0) = x0.
(5)

Also, if x(t) is (2)-differentiable then [D2x(t)]
α = [x′

α(t), x
′
α(t)], and (4) trans-

lates into the following system of ODEs:










x′(t) = fα(t, xα, xα) = G(t, x, x), x(0) = x0,

x′(t) = f
α
(t, xα, xα) = F (t, x, x), x(0) = x0,

(6)
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where [f(t, x)]α = [f
α
(t, xα, xα), fα(t, xα, xα)]. Then, the authors of [8] state

that if we ensure that the solution [xα(t), xα(t)] of the system (5) are valid level
sets of a fuzzy number valued function and if [x′

α(t), x
′
α(t)] are valid level sets

of a fuzzy valued function, then by the stacking Theorem [14], it is possible
to construct the (1)-solution of FIVP (4). Also, for the (2)-solution, we can
proceed in a similar way.

The characterization theorem [5] states that a fuzzy differential equation
is equivalent to a system of ordinary differential equations under certain con-
ditions. The next result extends Bede’s characterization theorem to fuzzy
differential equations under generalized differentiability.

Theorem 3.2 Let us consider the FIVP (4) where f : I × ℜF → ℜF is
such that

(i) [f(t, x)]α = [f
α
(t, xα, xα), fα(t, xα, xα)];

(ii) f
α
and fα are equicontinuous;

(iii) there exists L > 0 such that
∣

∣

∣f
α
(t, x1, y1)− f

α
(t, x2, y2)

∣

∣

∣ ≤ Lmax{|x1 − x2| , |y1 − y2|}, ∀α ∈ [0, 1],
∣

∣

∣fα(t, x1, y1)− fα(t, x2, y2)
∣

∣

∣ ≤ Lmax{|x1 − x2| , |y1 − y2|}, ∀α ∈ [0, 1].

Then , for (1)-differentiability, the FIVP (4) and the system of ODEs (5)are
equivalent and in (2)-differentiability, the FIVP (4) and the system of ODEs
(6) are equivalent.

Proof. In the paper [5] , the authors proved for (1)- differentiability. The
result for (2)- differentiability is obtained analogously by using Theorem 2.9 .

4 Numerical solution of fuzzy differential equa-

tion by generalized characterization theo-

rem

In this section we present numerical methods for solving (4) by the generalized
characterization theorem. Here we assume the existence of two solutions for
(4) based on Theorem 3.1 .
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Lemma 4.1 ([5]). The fuzzy differential equation (4), where f : I ×ℜF →
ℜF is supposed to be continuous, is equivalent to one of the integral equations:

x(t) = x0 +
∫ t

0
f(s, x(s))ds, ∀t ∈ I, or

x0 = x(t) + (−1)⊙
∫ t

0
f(s, x(s))ds, ∀t ∈ I,

depending on the strongly differentiability considered, (1)-differentiability or
(2)-differentiability, respectively. Here the equivalence between two equations
means that any solution of an equation is a solution too for the other one.

Remark 4.2 ([5]). Under appropriate conditions, the fuzzy initial value
problem (4) considered under generalized differentiability has locally two solu-
tions, and the successive iterations

x(0) = x0, xn+1(t) = x0 +
∫ t

0
f(s, xn(s))ds, and

x(0) = x0, xn+1(t) = x0 ⊖ (−1)⊙
∫ t

0
f(s, xn(s))ds,

converge to the (1)- solution and the (2)- solution, respectively.

In the interval I = [a, b] we consider a set of discrete equally spaced grid
points a = t0 < t1 < t2 < ... < tN = b at which two exact solutions [Y1(t)]

α =
[Y1(t, α), Y1(t, α)] and [Y2(t)]

α = [Y2(t, α), Y2(t, α)] are approximated by some
[y1(t)]

α = [y1(t, α), y1(t, α)] and [y2(t)]
α = [y2(t, α), y2(t, α)], respectively. The

grid points at which the solutions are calculated are

tn = t0 + nh, h = (b− a)/N.

The exact and approximate solutions at tn, 0 ≤ n ≤ N are denoted by
Y1n(α), Y2n(α), y1n(α), and y2n(α) respectively.

The generalized Runge-kutta Nystrom method of order 3 based on the first-
order approximation of Y ′

1(t, α), Y
′

1(t, α), and Y ′
2(t, α), Y

′

2(t, α) are equations
(5)and (6) is obtained as follows:
From (2),(3) we define



































































y1n+1
(α) = y1n(α) +

3
∑

i=1

wiki1(tn, [y1(tn)]
α),

y1n+1(α) = y1n(α) +
3
∑

i=1

wiki1(tn, [y1(tn)]
α),

y2n+1
(α) = y2n(α) +

3
∑

i=1

wiki2(tn, [y2(tn)]
α),

y2n+1(α) = y2n(α) +
3
∑

i=1

wiki2(tn, [y2(tn)]
α),

(7)
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where the wi’s are constants and
{

ki1(tn, [y1(tn)]
α) = [ki1(tn, [y1(tn)]

α), ki1(tn, [y1(tn)]
α)],

ki2(tn, [y2(tn)]
α) = [ki2(tn, [y2(tn)]

α), ki2(tn, [y2(tn)]
α)],

where

ki1(tn, [y1(tn)]
α) = h F

(

tn + αih, [y1(tn)]
α +

i−1
∑

j=1

βijkj1(tn, [y1(tn)]
α)
)

,

ki1(tn, [y1(tn)]
α) = h G

(

tn + αih, [y1(tn)]
α +

i−1
∑

j=1

βijkj1(tn, [y1(tn)]
α)
)

,

ki2(tn, [y2(tn)]
α) = h G

(

tn + αih, [y2(tn)]
α +

i−1
∑

j=1

βijkj2(tn, [y2(tn)]
α)
)

,

ki2(tn, [y2(tn)]
α) = h F

(

tn + αih, [y2(tn)]
α +

i−1
∑

j=1

βijkj2(tn, [y2(tn)]
α)
)

,

and

k11(tn, [y1(tn)]
α) = min

{

h F
[

tn, y1n(α), y1n(α)
]}

,

k21(tn, [y1(tn)]
α) = min

{

h F

[

tn +
2h

3
, [y1(tn)]

α +
2

3
k11(t, [y1(tn)]

α)

]}

,

k31(tn, [y1(tn)]
α) = min

{

h F

[

tn +
2h

3
, [y1(tn)]

α +
2

3
k21(t, [y1(tn)]

α)

]}

,

k11(tn, [y1(tn)]
α) = max

{

h G
[

tn, y1n(α), y1n(α)
]}

,

k21(tn, [y1(tn)]
α) = max

{

h G

[

tn +
2h

3
, [y1(tn)]

α +
2

3
k11(t, [y1(tn)]

α

]}

,

k31(tn, [y1(tn)]
α) = max

{

h G

[

tn +
2h

3
, [y1(tn)]

α +
2

3
k21(t, [y1(tn)]

α)

]}

,

k12(tn, [y2(tn)]
α) = max

{

h G
[

tn, y2n(α), y2n(α)
]}

,

k22(tn, [y2(tn)]
α) = max

{

h G

[

tn +
2h

3
, [y2(tn)]

α +
2

3
k12(t, [y2(tn)]

α)

]}

,

k32(tn, [y2(tn)]
α) = max

{

h G

[

tn +
2h

3
, [y2(tn)]

α +
2

3
k22(t, [y2(tn)]

α)

]}

,
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k12(tn, [y2(tn)]
α) = min

{

h F
[

tn, y2n(α), y2n(α)
]}

,

k22(tn, [y2(tn)]
α) = min

{

h F

[

tn +
2h

3
, [y2(tn)]

α +
2

3
k12(t, [y2(tn)]

α)

]}

,

k32(tn, [y2(tn)]
α) = min

{

h F

[

tn +
2h

3
, [y2(tn)]

α +
2

3
k22(t, [y2(tn)]

α)

]}

,

Define

F [tn, [y1(tn)]
α]] = 2k11(tn, [y1(tn)]

α) + 3k21(tn, [y1(tn)]
α) + 3k31(tn, [y1(tn)]

α),

G[tn, [y1(tn)]
α]] = 2k11(tn, [y1(tn)]

α) + 3k21(tn, [y1(tn)]
α) + 3k31(tn, [y1(tn)]

α),

G[tn, [y2(tn)]
α] = 2k12(tn, [y2(tn)]

α) + 3k22(tn, [y2(tn)]
α) + 3k32(tn, [y2(tn)]

α),

F [tn, [y2(tn)]
α] = 2k12(tn, [y2(tn)]

α) + 3k22(tn, [y2(tn)]
α) + 3k32(tn, [y2(tn)]

α).

from the above equations






















y1n+1
(α) = y1n(α) +

1
8
F [tn, y1n(α), y1n(α)],

y1n+1(α) = y1n(α) +
1
8
G[tn, y1n(α), y1n(α)],

y10(α) = y0(α),
y10(α) = y0(α),

(8)

and






















y2n+1
(α) = y2n(α) +

1
8
G[tn, y2n(α), y2n(α)],

y2n+1(α) = y2n(α) +
1
8
F [tn, y2n(α), y2n(α)],

y20(α) = y0(α),
y20(α) = y0(α),

(9)

where y0 is an initial value. Our next result determines the pointwise conver-
gences of the generalized Runge-Kutta approximates to the exact solutions.
Let F (t, u, v) and G(t, u, v) be the functions F and G of equations (5) and
(6), where u and v are constants and u≤ v. The domain where F and G are
defined is therefore

K = {(t, u, v) |0 ≤ t ≤ A, −∞ < v < ∞, −∞ < u ≤ v}.
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Theorem 4.3 Let F (t, u, v) and G(t, u, v) belong to C3(K) and let the par-
tial derivatives of F,G be bounded over K. Then, for arbitrary fixed α : 0 ≤
α ≤ 1, the generalized Runge - kutta Nystrom approximates of equations (8)
and (9) converge to the exact solutions Y1(t;α), Y2(t;α) uniformly in t.

Proof. If we consider (1)-differentiability, then convergence of equation (8)
is obtained from Theorem (3) in [2]. In the same way, if we consider(2)-
differentiability then analogously to the demonstration of Theorem (3) in [2],
we can prove the convergence of equation (9).

Remark 4.4 By Theorem 3.1 we observe that the solution of the fuzzy dif-
ferential equations is not unique. This may seem a deficiency of the method.
However, this disadvantage can be converted into an advantage since we may
sometimes choose between two solutions, so for example we can study the real
system and choose the solution which better reflects the behavior of the system
and then consider that solution in all similar cases. This advantage is shown
by the following simple modeling Example [6].

5 Example

Let us consider the equation

x′(t) = −λ⊙ x(t), x(0) = x0. (10)

Let λ = 1, I = [0, 1] and x0 = [α− 1, 1− α].
By using the formulation (5) we get the exact solution

x(t, α) = [(α− 1)et, (1− α)et],

that is a (1)-differentiable solution of the problem (4).
Using the formulation (6),

x(t, α) = [(α− 1)e−t, (1− α)e−t],

is a (2)-differentiable solution of the problem (4).
To get the generalized Runge-kutta Nystrom approximation we divide I into
N =10 equally spaced subintervals and calculate
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for finding the (1)-solution and compute
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= x0,
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(12)

for finding the (2)-solution.
A comparison between the exact the and the approximate solutions at t =

1 is shown in the following figures (1) and (2).
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Figure 1: (1)-solution for h=0.1

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Exact
Euler
Runge kutta Nystrom

Figure 2: (2)-solution for h=0.1



running head 13

6 Conclusion

In this paper we presented the solution of fuzzy differential equations under
generalized differentiability by using generalized characterization theorem, we
translate the fuzzy differential equations into two systems of ordinary differen-
tial equations and then solve numerically by Runge-Kutta Nystrom method of
order three. From figures (1) and (2) we see that our proposed Runge-Kutta
Nystrom method of order three gives better solution than Euler method which
was studied by Nieto et all.[16].
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