
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Is s ue 18

December 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1801

An Efficient Implementation of Matrix Multipliers for

signal Processing on FPGA

A. Hari Priya 1
1Assistant Professor, Dept. of ECE, Indur Institute of Engineering. And Technology, Siddipet, Medak (D) India.

ABSTRACT : Matrix multiplication and Fast Fourier transform

are two computational intensive DSP functions widely used as

kernel operations in the applications such as graphics, imaging

and wireless communication. Matrix multiplication is the kernel

operation used in many image and signal processing

applications. In this paper, we present the design and Field

Programmable Gate Array (FPGA) implementation of matrix

multiplier architectures for use in image and signal processing

applications. The designs are optimized for speed which is the

main requirement in these applications. First design involves

computation of dense matrix vector multiplication which is used

in image processing application. The design has been

implemented on Virtex-4 FPGA and the performance is

evaluated by computing the execution time on FPGA.

Implementation results demonstrate that it can provide a

throughput of 16970 frames per second which is quite adequate

for most image processing applications. The second design

involves multiplication of tri-matrix (three matrices) which is

used in signal processing application. The proposed design for

the multiplication of three matrices has been implemented on

Spartan-3 and Virtex-II Pro platform FPGAs respectively.

KEYWORDS: FPGA, Matrix Multiplier, Systolic Array, FFT

algorithms

I. INTRODUCTION

Matrix multiplication and Fast Fourier Transform are

important tools used in the Digital Signal Processing

applications. Each of them is compute-intensive portion

of broadband beam forming applications such as those

generally used in software defined radio and sensor

networks. These are frequently used kernel operations in

signal and image processing systems including mobile

systems. Recently, in signal processing there has been a

lot of development to increase its performance both at the

algorithmic level and the hardware implementation level.

Researchers have been developing efficient algorithms to

increase the speed and to keep the memory size low.

On the other hand, developers of the VLSI systems are

including features in design that improves the system

performance for applications requiring matrix

multiplication and Fast Fourier Transform. Research in

this field is not only because of the popularity, but also

because of the reason that, for decades the chip size has

decreased drastically. This has allowed portable systems

to integrate more functions and become more powerful.

These advances have also, unfortunately, led to increase

in power consumption. This has resulted in a situation,

where numbers of potential applications are limited by the

power- not the performance. Therefore, power

consumption has resulted to be the most significant design

requirement in portable systems and this has led to many

low power design techniques and algorithms.

II. LITERATURE SURVEY

H.T.Kung and PhilipL.Lehman [5] reported matrix

multiplication on systolic array. But FPGA

implementation is not covered in their work. Again they

have explained the operation on 2D systolic array. The 2D

systolic array requires more number of processing

elements interconnects and also as a result consumes

more area. Also there is difficulty of VLSI

implementation of it due to large numbers of

interconnects.

Also latency is Order of n2. Kumar and Tsai [8] achieved

the theoretical lower bound for latency for matrix

multiplication with a linear systolic design. They provide

trade-offs between the number of registers and the

latency. Their work focused on reducing the leading

coefficient for the time complexity. The latency becomes

Order of n. Due to linear systolic design the number of

interconnects gets reduced and also reduces the area by

reducing the number of processing elements.

Mencer [4] implemented matrix multiplication on the

Xilinx XC4000E FPGA device. Their design employs bit-

serial MACs using Booth encoding. They focused on

trade-offs between area and maximum running frequency

with parameterized circuit generators.

Amira [6] improved the design in [4] using the Xilinx

XCV1000E FPGA device. Their design uses modified

Booth-encoder multiplication along with Wallace tree

addition. The emphasis was once again on maximizing

the running frequency. Area or speed or, equivalently, the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Is s ue 18

December 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1802

number of CLBs divided by the maximum running

frequency was used as a performance metric.

Ju-Wook Jang, Seonil B. Choi, and Viktor K. Prasanna

[1] has developed a design to do the optimization of

energy and area at algorithmic and architectural level.

They have used a technique called domain specific

modelling technique for the optimization at high level.

Their algorithms and architectures use pipelining and

parallel processing on linear systolic array. So the area

and interconnects gets reduced But they considered the

input word width directly. So if the size of input word

increases the size of multipliers used in the design

increases so by increasing the area and power

consumption. Also it becomes difficult for VLSI

implementation.

This problem of increase of word width was being solved

by Sangjin Hong, KyoungSu Park [3] and by designing a

very flexible architecture for a 2×2 matrix multiplier on

FPGA. It has also mechanism to support 2’complement

data. But they have not given any attempt to increase the

throughput by pipelining or parallel processing. Again

they didn’t propose block matrix multiplication. They

have also not used the optimization procedure by

constructing high level energy model. So in this article

the proposed architecture uses algorithm for matrix

multiplication on a linear systolic array to reduce the

interconnects, uses pipelining and parallel processing to

increase throughput there by reducing the latency. It also

solves the problem of increasing size of the multipliers by

using word width decomposition technique by modifying

the algorithm and architecture. Then a high level model is

constructed for the optimization of various parameters at

high level.

In this section, we present the design and discuss the

results of implementing matrix-vector multiplication

which is computationally very intensive. It requires

several multiply and add units. In DSPs, the overall

performance is limited by the number of multiplications

and additions that could be done in parallel. DSPs take

several clock cycles to perform all the necessary multiply

add operations. However, modern FPGAs on the other

hand has large number of hardware resources embedded

in the FPGA fabric itself such as DSP48 blocks,

multipliers, Block RAMs, etc. It can provide higher and

more efficient processing rates required by such

applications if the algorithm is coded in a way to utilize

these embedded resources efficiently. The objective of

this paper is to realize a large matrix-vector multiplier for

image processing applications [51]. To achieve this,

FPGA is used for faster and efficient realization.

III. MATRIX-VECTOR MULTIPLICATION: DESIGN

AND IMPLEMENTATION

A. Mathemat ical Formulat ion

We represent the vector C as (C1, C2...Cm)T and vector G

which represents the image data. According to the

application, we want to multiply matrix S with vector C

represented by the following equation

C=SG (1)

where, S is a Jacobian matrix. In the discrete form, it is

required to find the unknown vector G from the known

vector C, while S is treated as a constant matrix for

simplicity. We can represent G by the following

relationship

 G=STC (2)

Where, ST is the transpose of S. Replacing ST by A,

mathematically; the above equation is approximated by

the following relationship

 G=AC (3)

The key idea here is to calculate G using (3). The

dimension of the given matrices depends on the

application, which, in this case is summarized in Table 1.

Table 1: Matrix Dimensions

B. Hardware Arch itectu re

This section presents the technique to design hardware

architecture for implementing matrix-vector

multiplication algorithm on FPGA. As can be seen from

(3), matrix vector multiplication is the kernel operation.

For efficient implementation and maximum speed-up,

integer arithmetic is used. Since the floating-point

arithmetic unit consumes more silicon real estate of

FPGA and are slower as compared to integer arithmetic,

we used integer arithmetic for our designs.

The design involves the computation of G = AC, where A

is a matrix, C and G are vectors as summarized in table 1.

We need to calculate vector G. Broadcast algorithm is

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Is s ue 18

December 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1803

adopted for the matrix-vector multiplication. The matrix–

vector multiplication is performed by broadcasting rows

of matrix A and multiplying the corresponding column

elements of vector C. Following operations are involved:

• Reading individual row elements of matrix A and

individual column elements of vector C

• Storing them in internal buffers row and column wise

respectively

• Multiplying row and column elements

• Accumulating the multiplier output and writing back the

results to the output buffers.

The input and output buffers are implemented on the

FPGA. The matrix-vector multiplications involve

multiply and accumulate operations. The multiply-

accumulate unit consists of a multiplier and adder. The

row and the column elements are supplied as the two

inputs to the multiplier.

The output of the multiplier is directly given to the adder

as one of the inputs. The previous output of the adder is

fed back as the second input to the adder.

The multiply-accumulate unit takes each element of the

matrix A in row major format and each element of vector

C, multiplies them and adds the result to the running total.

This process is repeated till the last element of row A and

column C. The values are fed in a sequential manner. If

the reset signal is asserted high, the contents of registers

A and C are cleared.

After a delay, as determined by the

implementation results, the first element of vector G is

available at the serial output and this output is stored in

on-chip memory. This operation is repeated and the

process continues until all the rows of matrix A are

processed. Finally, the output vector G is available with

all the elements stored in the memory locations. A

simplified block diagram of matrix-vector multiplication

is shown in fig.3.

Fig. 3 Block diagram of matrix-vector multiplication

In order to evaluate the performance of our FPGA-based

implementation, the algorithm was coded in VHDL and

implemented on Xilinx Virtex-4 (XC4VLX200FF1513,

speed grade: -11) family using Xilinx ISE 9.2i tool. The

design was synthesized into Virtex-4 FPGA optimized for

speed. The hardware resource utilization is summarized in

Table 2.

Table 2: FPGA Resource Utilization

As shown in table 2, roughly 14% of the slices and 57%

DSP48s are utilized leaving a plenty of room to

implement more parallel processors on the same FPGA

chip. The results listed in table 2 were obtained using

Xilinx ISE 9.2i tool configured to optimize for speed. The

total processing time using Virtex-4 FPGA is found to be

58.93 µs; this is equivalent to a throughput of 16970

frames per second. The results indicate the feasibility of

using FPGA for real time high speed image processing

applications using this matrix-vector multiplication.

Hardware Arch itectu re

The system for the above given mathematical formulation

translates into two blocks, in which the first block

multiplies matrix X by diagonal matrix Y and then serves

the output from this block to another block, which

multiplies the product XY by Z. We used the two

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Is s ue 18

December 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1804

dimensional systolic array based architecture as shown in

fig. 4 and fig. 5 for the matrix multiplication.

Fig. 4 Architecture of first block

Fig. 5 Architecture of second block

Systolic arrays accelerate medium sized matrix

multiplication by exploiting the inherent data parallelism

in matrix multiplication. Multiplying the matrix X by the

diagonal square matrix Y is equivalent to multiplying the

first diagonal element by the entries of first row of X, the

second diagonal element by the entries of the second row

of X and so on.

Fig. 4 and fig. 5 shows the systolic architecture for both

the modules for N1=3 and N2=3 respectively. Both the

matrix multiplier blocks consist of nine identical

processing elements, PE1 and PE2, respectively. PE1

consists of multiplier whereas PE2 consists of MAC unit

where each MAC unit consists of a multiplier and adder.

The function of each PE1 in the first array is to multiply

the diagonal elements of Y by one element of matrix X

during each clock period. First column PE1 are

responsible for producing first column of the product XY

referred to as W in the fig. 4, second column generates the

second column and so on. The entries are stored in an

internal buffer to be used later by the next array.

Similarly, the second array as shown in fig. 5 performs

the multiplication of (XY) with Z.

Table 3: FPGA Resource Utilization Comparison

IV. CONCLUSIONS

Most of the algorithms which are used in DSP, image and

video processing, computer graphics and vision and high

performance supercomputing applications have matrix

multiplication as the kernel operation. In this paper, we

considered two different examples of matrix multiplier

architecture where speed is the main constraint. The first

design involving computation of dense matrix-vector

multiplication is implemented on Xilinx Virtex-4 FPGA

and the performance is evaluated by computing its

execution time on FPGA. Hardware implementation

results demonstrate that it can provide a throughput of

16970 frames per second which is sufficient for many

image and video processing applications. The second

design for the multiplication of three matrices is based on

systolic array and implemented on Spartan-3 and Virtex-II

Pro platform FPGAs respectively.

REFERENCES

[1] S. Ogrenci, A. K. Katsaggelos, and M. Sarrafzadeh,

“Analysis and FPGA Implementation of Image restoration

under resource constraint,” IEEE Trans. on Computers, Vol. 52,

No. 3, pp. 390-399, 2003.

[2] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu,

“Implementing an OFDM Receiver on the RaPiD

Reconfigurable Architecture,” IEEE Trans. on Computers, Vol.

53, No. 11, pp. 1436-1448, 2004.

[3] G. R. Goslin, “A Guide to Using Field Programmable Gate

Arrays for Application-Specific Digital Signal Processing

Performance,” M icroelectronics Journal, Vol. 28, Issue 4, pp.

24-35, 1997.

[4] J. Isoaho, J. Pasanen, O. Vainio, and H. Tenhunen, “DSP

System Integration and Prototyping with FPGAs,” Journal of

VLSI Signal Processing, Vol. 6, pp. 155-172, 1993.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 03 Is s ue 18

December 2016

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1805

[5] A. G. Ye and D. M. Lewis, “Procedural Texture Mapping on

FPGAs,” in Proc. of ACM/SIGDA 7th Intl. Symp. On Field

Programmable Gate Arrays, pp. 112-120, 1999.

[6] S. Knapp, “Using Programmable Logic to Accelerate DSP

Functions,” http://www. xilinx.com/appnotes/ dspintro.pdf.

[7] J. Ma, “Signal and Image processing via Reconfigurable

Computing,” in Proc. of the First Workshop on Information and

Systems Technology, 2003.

[8] F. Otto and Z. Pavel, “Hardware Accelerated Imaging

Algorithms,” in Proc. of AUTOS’2002 Automatizacesystému,

pp. 165-171, 2002.

[9] L. Batina, S. B. Ors, B. Preneel, and J. Vandewalle,

“Hardware architectures for public key cryptography,”

Integration, the VLSI Journal, Vol. 34, pp. 1-64, 2003.

[10] D. Johnson, K. Gribbon, D. Bailey, and S. Demidenko,

“Implementing Digital Signal Processing Algorithm’s in

FPGA’s: Digital Spectral Warping,” in Proc. of 9th Electronics

New Zealand Conf., pp. 72-77, 2002.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://www/

