

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Cache organization and Optimization Sumit Yadav; Usha Verma & chhavi Bhardwaj
P a g e | 513

Cache organization and Optimization

Sumit Yadav; Usha Verma & chhavi Bhardwaj
(ryadav1918@gmail.com),

(usha.verma1991@gmail.com),
(chhavi985@gmail.com)

Abstract –
Cache memory is the fastest and most
expensive memory. As we know
computer programmer always want
unlimited amount of fast memory, thus
a small amount of cache memory is
used which stores frequently used
data. That data is stored in cache in
form of blocks, because of cache
organization. Different techniques are
used for cache organization. To
reduce the miss rate and miss time
and to increases hit ration different
optimization techniques are used.
Different cache organization and
optimization methods are discussed.

1. INTRODUCTION

Cache memory is the fastest and most
expensive memory.

Computer programmer always want
unlimited amount of fast memory. An
economical solution to that desire is a
memory hierarchy, which takes advantage of
locality and cost- performance of memory
technology. This principle, plus the guide
line that smaller hardware can be made
faster, led to hierarchies based on memories
of different speeds and sizes. The memory
system consists of a hierarchy of storage
elements. Excluding the register set, the
cache has the shortest access time, or
latency, of all the levels of the storage
system, and the highest bandwidth.

Fig.:- The levels in a typical memory hierarchy in embedded, desktop, and server computers.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Cache organization and Optimization Sumit Yadav; Usha Verma & chhavi Bhardwaj
P a g e | 514

Cache memory works as intermediate
between CPU and main memory. As we
know our CPU works at a very fast speed
but compare to that main memory work at a
very slow speed. Thus while fetching the
data from main memory CPU had to sit idle.
That is waste of time, thus throughput is
low. So cache memory is used between the
CPU and main memory. Cache memory
stores the frequently used data in it, so that
CPU can retrieve the data at a very fast
speed.

Since fast memory is expensive, a memory
is organized into several levels-each smaller,
faster, and more expensive per byte than the
next lower level. The goal is to provide a
memory system with cost per byte as low as
the cheapest level of the memory and speed
almost as fast as the fastest level.

The importance of the memory hierarchy
has increased with advances in
performances of processors.

Fig:- Starting with 1980 performance as a baseline, the gap in performance between memory
and processors is plotted over time.

2. CACHE ORGANIZATION

A cache may be organized to fetch on
demand or to prefetch data. The former
organization, usually referred to as demand
fetch organization, is the most commonly
used.

A demand fetch cache brings a new memory
locality into the cache only when a
processor reference is not found in the
current content. The prefetch cache attempts
to anticipate the locality about to be

requested by the processor and thus
prefetches it into the cache.

When a word is not found in the cache, the
word must be fetched from the memory and
placed in the cache before continuing.
Multiple words, called a block (or line), are
moved for efficiency reasons. Each cache
block includes a tag to see which memory
address it corresponds to.

Cache hits:- Processor references that are
found in the cache are called cache hits.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Cache organization and Optimization Sumit Yadav; Usha Verma & chhavi Bhardwaj
P a g e | 515

Cache misses:- References that are not
found in the cache are called cache misses.

When a cache miss occurs, cache control
mechanism fetches the missing data from
cache memory.

3. TYPES OF CACHE
ORGANIZATION

Cache treats main memory as a set of
blocks. As the cache size is much smaller
than main memory so the numbers of cache
lines are very less than the number of main
memory blocks. So a procedure is needed
for mapping main memory blocks into cache
lines. cache mapping scheme affects cost
and performance. There are three methods in
block placement-

• Direct Mapped Cache (Each
address has a specific each address
has a specific place in the cache).

• Fully Associative Mapped Cache
(Search the entire cache for an
address).

• Set Associative Mapped Cache
(Each address can be in any of a
small set of cache locations)

1) Fully Associative Mapped Cache

In fully associative mapping when a
request is made to the cache, the requested
address is compared in a directory against
all entries in the directory. If the requested
address is found, the corresponding location
in the cache is fetched and returned to the
processor, otherwise a cache miss occurs.

Steps –

1. Translate VPN (virtual page
number) to RPN (real page
number) with TLB.

2. Access the cache directory,
then the cache.

3. Access cache with address
from the directory index and
offset bits.

4. If compare valid, enable data
to go to processor.

2) Direct Mapped Cache

In direct mapping lower order line address
bits are used to access the directory. Since
multiple line addresses map into the same
location in the cache directory, the upper
address bits must be compared with the
directory address to ensure a hit. If a
comparison is not valid, the result is a cache
miss.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Cache organization and Optimization Sumit Yadav; Usha Verma & chhavi Bhardwaj
P a g e | 516

Steps –

1. Translate VPN (virtual page
number) to RPN (real page
number) with TLB.

2. Access cache array and
directory simultaneously and
compare tag with directory
entry to ensure correct line is
accessed.

3. Access cache array with
index and offset bits.

4. If compare valid, enable data
to go to processor.

3) Set Associative Mapped Cache

 In set associative mapping, cache operates
in a fashion somewhat similar to the direct

mapped cache. Bits from the line address are
used to address a cache memory. However,
now there are multiple choices: two, four or
more complete line addresses maybe present
in the directory. Each of these line addresses
corresponds to a location in a sub cache. The
collection of these sub-cache forms the total
cache array.

In a set associative cache, as in the direct
mapped cache, all of these sub arrays can be
accessed simultaneously, together with the
cache directory. If any of the entry in the
cache directory matches the reference
address, and there is a hit, that particular sub
cache array is selected and out gated back to
the processor. While selection in the out
gating process adds somewhat to the cache
access time, the set associative cache access
time is generally better than that of the
associative mapped cache.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Cache organization and Optimization Sumit Yadav; Usha Verma & chhavi Bhardwaj
P a g e | 517

Steps –

1. Translate VPN (virtual page number)
to RPN (real page number) with
TLB.

2. Access cache array sets and cache
directory entries to ensure correct
line is in cache.

3. Compare tags from directory with
tag address bits.

4. If compare valid, select
corresponding set and MUX data to
processor.

Still, from an access time consideration
alone, the direct mapped cache provides the
fastest processor access to cache data for
any given size cache.

4. ISSUES

One measure of the benefits of different
cache organizations is miss rate. Miss rate is
simply the fraction of cache accesses that
result in a miss—that is, the number of
accesses that miss divided by the number of
accesses.

To gain insights into the causes of high miss
rates, which can inspire better cache designs,

the three Cs model sorts all misses into three
simple categories:

■ Compulsory—The very first access to a
block cannot be in the cache, so the block
must be brought into the cache. Compulsory
misses are those that occur even if you had
an infinite cache.

■ Capacity—If the cache cannot contain all
the blocks needed during execution of a
program, capacity misses (in addition to
compulsory misses) will occur because of
blocks being discarded and later retrieved.

■ Conflict—If the block placement strategy
is not fully associative, conflict misses (in
addition to compulsory and capacity misses)
will occur because a block may be discarded
and later retrieved if conflicting blocks map
to its set.

miss rate can be a misleading measure for
several reasons. Hence, some designers
prefer measuring misses per instruction
rather than misses per memory reference
(miss rate). These two are related:

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Cache organization and Optimization Sumit Yadav; Usha Verma & chhavi Bhardwaj
P a g e | 518

 Misses miss rate*memory
accesses miss rate* memory
accesses
Instruction Instruction count
instruction

(It’s often reported as misses per 1000
instructions to use integers instead of
fractions.) For speculative processors, we
only count instructions that commit.
The problem with both measures is that they
don’t factor in the cost of a miss. A better
measure is the average is the average
memory access time:

Average memory access time= hit
time + miss rate * miss penalty

Where hit time is the time to hit in the cache
and Miss penalty is the time to replace the
block from memory (that is, the cost of a
miss). Average memory access time is still
an indirect measure of performance;
although it is a better measure than miss
rate, it is not a substitute for execution time.

5. ADVANCED
OPTIMIZATIONS OF
CACHE PERFORMANCE

The average memory access time formula
above gives us three metrics for cache
optimizations: hit time, miss rate, and miss
penalty.

• Advanced cache optimizations are
into the following categories:

• Reducing the hit time: small and
simple caches, way prediction, and
trace Caches

• Increasing cache bandwidth:
pipelined caches, multibank caches,
and non blocking caches.

• Reducing the miss penalty: critical
word first and merging write buffers

• Reducing the miss rate: compiler
optimizations

• Reducing the miss penalty or miss
rate via parallelism: hardware
prefetching and compiler prefetching

Small and Simple Caches to Reduce
Hit Time

A time-consuming portion of a cache hit is
using the index portion of the address to
read the tag memory and then compare it to
the address. Smaller hardware can be faster,
so a small cache can help the hit time. It is
also critical to keep an L2 cache small
enough to fit on the same chip as the
processor to avoid the time penalty of going
off chip.

The second suggestion is to keep the cache
simple, such as using direct mapping. One
benefit of direct- mapped caches is that the
designer can overlap the tag check with the
transmission of the data. This effectively
reduces hit time.

Way prediction to reduce hit time

Another approach reduces conflict misses
and yet maintains the hit speed direct-
mapped. In way prediction, extra bits are
kept in the cache to predict the way, or block
within the set of the next cache access. This
prediction means the multiplexer is set early
to select the desired block and only a single
tag comparison is performed that clock cycle

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Cache organization and Optimization Sumit Yadav; Usha Verma & chhavi Bhardwaj
P a g e | 519

in parallel with reading the cache data. A
miss results in checking the other blocks for
matches in the next clock cycle.

Added to each block of a cache are block
predictor bits. The bits select which of the
blocks to try on the next cache access. If the
predictor is correct, the cache access latency
is the fast hit time. If not, it tries the other
block, changes the way predictor, and has a
latency of one extra clock cycle. Simulations
suggested set prediction accuracy is in
excess of 85% for a two-way set, so way
prediction saves pipeline stages more than
85% of the time. Way prediction is a good
match to speculative processors, since they
must already undo actions when speculation
is unsuccessful. The Pentium 4 uses way
prediction.

Trace Caches to Reduce Hit Time

A challenge in the effort to find lots of
instruction-level parallelism is to find
enough instructions every cycle without use
dependencies. To address this challenge,
block in trace cache contain dynamic traces
of the executed instructions rather than static
sequences of instructions as determined by
layout in memory. Hence, the branch
prediction is folded into the cache and must
be validated along with the addresses to
have a valid fetch.

Pipelined Cache Access to Increase
Cache Bandwidth

This optimization is simply to pipeline cache
access so that the effective latency of a first-
level cache hit can be multiple clock cycles,

giving fast clock cycle time and high
bandwidth but slow hits.

Critical Word First and Early
Restart to Reduce Miss Penalty

This technique is based on the observation
that the processor normally needs just one
word of the block at a time. This strategy is
impatience: Don’t wait for the full block to
be loaded before sending the requested word
and restarting the processor. Here are two
specific strategies:

• Critical word first—Request the
missed word first from memory and
send it to the processor as soon as it
arrives; let the processor continue
execution while filling the rest of the
words in the block.

• Early restart—Fetch the words in
normal order, but as soon as the
requested word of the block arrives,
send it to the processor and let the
processor continue execution.

Compiler Optimizations to Reduce
Miss Rate

Thus far, our techniques have required
changing the hardware. This next technique
reduces miss rates without any hardware
changes.

This magical reduction comes from
optimized software. The increasing
performance gap between processors and
main memory has inspired compiler writers
to scrutinize the memory hierarchy to see if
compile time optimizations can improve
performance. Once again, research is split

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Cache organization and Optimization Sumit Yadav; Usha Verma & chhavi Bhardwaj
P a g e | 520

between improvements in instruction misses
and improvements in data misses.

Hardware Prefetching of
Instructions

Instruction prefetch is frequently done in
hardware outside of the cache. Typically, the
processor fetches two blocks on a miss: the
requested block and the next consecutive
block. The requested block is placed in the
instruction cache when it returns, and the
prefetched block is placed into the
instruction stream buffer. If the requested
block is present in the instruction stream
buffer, the original cache request is
canceled, the bloch is read from the stream
buffer, and the next prefetch request is
issued.

6. REFERENCES
[1]. Michael J. Flynn- Computer

Architecture: Pipelined and
Parallel Processor Design

[2]. John L. Hennessy-Stanford
University”, “David A.
Patterson- University of
California at Berkeley”--
Computer Architecture: A
Quantitative Approach, Fourth
Edition

[3]. Cache mapping-
http://williams.comp.ncat.edu/co
mp375/CacheMapping.pdf

[4]. CPU cache”-
http://en.wikipedia.org/wiki/CPU
_cache

[5]. cache organization-

http://www.cs.utexas.edu/~fussell/

courses/cs429h/lectures/Lecture_1

9-429h.pdf
[6]. Andreas Moshovos- Advanced

Computer Architecture-
http://www.eecg.toronto.edu/~m
oshovos/ACA05/001-intro.pdf

[7]. virtual lab-IIT Kharagpur,
computer organization and
Architecture- http://virtual-
labs.ac.in/labs/cse10/ac.html

[8]. Cache organization-

http://ecee.colorado.edu/~ecen21
20/Manual/caches/cache.html

