
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 118

CART Algorithm for Two and Multi- Party

Divyarth Rai , Raghvendra Kumar

Dept of Computer Engineering LNCT Group of College, Jabalpur, M.P., India

divyarthrai7@gmail.com, Raghvendraagrawal7@gmal.com

Abstract: In this paper we have assumed

that participating parties having database

that contains private data are vertically

partitioned. We have proposed vertically

partitioned CART algorithm and for

privacy preserving privacy protocol we

have combined scalar dot product

protocol and xlnx protocol for efficiently

preserving privacy of private data. Later

we improved privacy preserving CART

algorithm for multi-party and for privacy

preservation secure sum protocol and secure

size of set intersection protocols are used.

Keywords: - Vertical Partitioning,

Secure multi party computation, Privacy

Techniques, Distributed Database, CART

Algorithm.

1. Privacy Preserving CART

Algorithm for Two Parties

Let N maps the current node, D = DX ∪

DY maps the current database. Nattr list

maps the current test attributes. The

PPCART Tree (D, Nattr list) Begin

Algorithm 1: CART for Two Parties

Step1: Create root node R

X computes gini index for all attributes

present in DX. Similarly Y computes gini

index for all attributes present in DY.

Initialize the root with minimum gini index.

Attribute of minimum gini index is selected

as the attribute maximizes the impurity

reduction.

Step 2: If al l records in D have same class

value, and then return R as the leaf node

with the specified class value.

Each record has been divided in between

two parties and both parties share the class

labels of all records. So if we want to

determine whether the both parties remain

with the same single class or not, we have

to verify whether the records in DX or

DY all belong to the same single class C

or not. If they belong to the same single

class, then returns the leaf node with that

specific class value.

Step 3: If Nattr list is empty or the left

records are less than a given value then

return R as a leaf node marked with the class

value assigned to the most records in S.

Both parties share the class labels of all

records and the names of all attributes, so

they both know whether Nattr list is null or

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
mailto:divyarthrai7@gmail.com

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 119

not. If yes, just scan dataset DX or DY

and statistic the most frequent class,

marking the leaf with the most frequent

class label.

Step 4: A queue Q is initialized to contain

the root node.

Step 5: While queue Q is not empty do {

Step 6: Pop out the first node N from Q.

Step 7: Evaluate the gini index for each

attribute.

Step 8: Find the best split attribute.

Step 9: If the split attribute is continual then

find its partition value.

Step 10: Use the best split attribute to split

node N into N1, N2...Nn.

Step 11: For i=1... n

 {

 If al l records in Ni belong to the same

class then return Ni as a leaf

 node marked with its class value

 Else

Add Ni to Q and go on executing the

PPCART Tree (D, Nattr list)

 }

}

Step 12: Calculate the classified mistakes of

each node and carry on the tree pruning.

Step 13: End

1.1 Computing the Best Split

We need to calculate the gini index for each

attribute to acknowledge the best splitting

attribute. Let D represent the dataset

belonging to the current node N. Let C

represents the needed dataset to compute the

gini index for each record in the current

satisfied node. There will have two kinds of

situations:

1. If the attributes of C and the Nattr

list belong to the same dataset,

either of them can individually

calculate gini index.

2. If all the attributes involved in C and

the Nattr list do not belong to the

same party, neither party can

compute the information gain ratio

by itself. In this case, everyone

needs to union the other party to

calculate it. The following three

steps will be repeated until we get

information gain ratio for all

attributes. Finally we choose the

attribute with the greatest value as a

split attribute for the current node.

Computing L(D, Nattr list):

L represents the logical expression that

satisfies the current node N. L rep- resents

the logical expression that only involved in

DX attributes. LY represents the logical

expression that only involved in D’ s

attributes.

A scan dataset DX and produce a vector of

size n. VX (i) = 1 if the ith record

satisfies LX else VX (i)=0. X may

calculate the value of vector VX by itself.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 120

Similarly, Y may also calculate the value of

vector VY.

Let Vi be a vector of size n, Vi(n)=1, if the

nth record belongs to class i else Vi(k)=0. V

(i) = VX (i)ᴖ VY (i) means the

corresponding record that satisfies both LX

and LY

Scalar product VX • VY = Σj=1 to n VX

(j) ∗ VY (j)

 Means the number of record which LX

and LY.

 Pi = VX • (VY ᴖ Vj)

= (VX ᴖ Vj) • VY

Means the number of satisfies both

belonging to class i in partition S. Now we

can compute the gini index

 L(D, NAttr list) = Σj=1 to k (S1j + S2j +

..... + Snj)/S × G(S1j + S2j + + Snj)=

Σj=1 to k Pj G(S1j + S2j + + Snj)

1.2 Computing Gain

Δ Gain(D, NAttr list) = G(S1j + S2j +

+ Snj) − L(D, NAttr list)

Where L(D, Nattr list) computes the gini

index of each attributes and G(S1j + S2j +

..... + Snj) computes the gini index of the

class values. According to scalar product

protocol the semi-honest third party is

introduced to compute the scalar product

VX •VY without revealing privacy. The

result is divided into two parts

VX • VY = XX + XY

Two parties X and Y respectively shares

XX and XY , which can guarantee that X

cannot get the contents of Y and Y cannot

get the contents of X, so it can preserve

their privacy.

According to Xln(X) protocol we can

obtain ln(XX + XY) = PX + PY . X and

Y respectively shares PX and PY .

(XX + XY)ln(XX + XY) = (XX + XY

)(PX + PY)= XX PX + XY PY + XX PY

+ XY PX

Where the result of XX PY is divided into

two parts QX and QY respectively shared

by X and Y. Similarly, the result of XY

PX is also divided into two parts SX

and SY , which is also respectively shared

by X and Y. X can compute WX = XX PX

+ QX + SX and Y can compute WY =

XY PY + QY + SY .So XX + XY ln(XX +

XY) = WX + WY , the result is divided

into two parts WX and WY ,and

respectively shared by X and Y.

Now both parties have their own private

data and wishes the other party should not

know their private data. So the problems

occurred is to find the gini index and

differential gini without the knowledge of

second party. Let R be the requirement and

it is divided into two subsets RX and RY

where RX is the subset of requirement

involving party X attributes and RY is the

subset of requirement involving party Y

attributes. Let us consider two vectors VX

and VY are of size n respectively. VX (t)

= 1 and VY (t) = 1 if tth record satisfies RX

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 121

and RY respectively else VX (t) = 0 and

VY (t) = 0. Let us consider another vector

VB to know if t attribute belong to a class C

or not. If VB (C) = 1 then attributes being

to class C else VB (C) = 0.

V is a non zero entry where V (t) = VX (t) ᴖ

VY (t) where (t=1,2,....,n) means V(t) is

satisfying both RX and RY . Now party X

and Y can compute their own private data

by the following formulas for computing

scalar product of VX and VY

VX • VY = Σt=1 to n VX (t) ∗ VY (t)

For computing PC which means

calculating number of occurrences of class C

in a partition P is

PC = VX • (VY ᴖ VC) = (VX ᴖ VC) •

VY

3. Privacy Preserving CART Algorithm

for Multi- Party

Let us consider a view where N number of

sites wants to collaborate and compute

data mining task using CART algorithm

in a secured way.

Algorithm

Step 1: There are N sites participating in the

process having A attributes.

Step 2: Each site has a flag F. It is 0 if there

is no remaining attribute and 1 if there are

attributes remaining.

Step 3: Each site contains a local constraint

set (Con) which keeps the values o those

attributes that lead to class attribute and

changes the value of other attributes to not

required (*).

Step 4: Transaction set T partitioned

between sites S1....SN

.

Step 5: Site SN holding n class attribute having C1, C2,, Cn values.

Begin

{

Step a: if A is empty then

{

A_ empty()

{

S1 chooses a random integer R uniformly from 0 m - 1.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 122

S1 sends R + F1 to S2

for J = 2....k - 1 do

site SJ receives R’ from SJ −1.

SJ sends R’ + FJ mod M to SJ +1

end for

site SN receives R’ from SN −1 .

R0 ← R0 + FN modM

S1 and SN uses secure keyed commutative hash keys E1 and EN

S1 sends E1(R) to SN

SN receives E1 (R) and sends EN (E1 (R)) and EN (R0) to S1

S1returns E1 (EN (R0)) = EN (E1 (R))

{⇔ R0 = R ⇔ ΣN

}

FJ = 0 ⇔ 0 attributes remain }

Continue at site SN upto the return

(cont1....contn) ← DistC ount()

DistCount()

{

for all sites SJ except SN

At SJ : XJ ← T ransSet(C ontJ)

TransSet(Cont)

{

}

End for

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 123

 X=Ø

For all transaction id J T

if tJ satisfies constr

X ← X ∪ J

End if

End for return X

For each class C1,....., Cn

At SN : constr.SN (CR , CJ) /* To include class restriction*/

At SN : XN ← T ransSet(C onN)

C onstJ ← |X1 ∩ X2 ∩ ∩ Xk | using the cardinalty of set intersection protocol.

End for

Return (C ont1,C ont2,......., C ontn)

Build a leaf node with distribution (C ont1 ,...., C ontn)

{

class ← maxJ =1...S consJ

}

Return ID of the constructed node

}

Step b:

Else if C lassNode ← (atSN) CheckSameClass()

CheckSameClass()

{

(Cont1....Contn) ← DistCount()

if ∃I s.t.consI ! = 0 ᴖ ∀J ! = I , ConsJ = 0 /* If only one of the count is non zero*/

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 124

Build a leaf node with distribution (C ont1....C ontn)

Return ID of the constructed node else

Return false end if

}

Return leaf NodeId ClassNode

Step c:

Else

BestSite ← Diff Gini()

DiffGini()

{

For all sites SN

BestGiniJ ← −1

For each attribute AttrJI at siteSJ

Gini ← D_Gini(AttrJ I)

D_Gini(AttrJ I)

{

P ← DistCount() /* total number of transaction at this node */

PaJ ← DistC ount()

Gini ← GiniI ndex(P)−GiniI ndex(PaJ)∗|PaJ |/|P |

Where |P| isΣm ContJ

End for

Constr.S(Attr, ‘]0) /* update local Tuple*/

Return Gini

}

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 125

if Gini > BestGiniJ

BestGiniJ ← Gini BestAttributeJ ← AttrJ I

End if end for

Return maxI , BestGiniI

}

continue execution at Best_Site

create interior node No with attribute

N o.Attr ← BestAttBests ite

for each attribute valueVJ No.attr

C onstr.S(No.Attr, VJ) /* updates local constraints set*/

N odeI d ← P P CART ()

N o.AttrJ ← NodeI d /* add appropriate branch to interior node*/

end for

C onstr.S(Attr, ‘0) /*Returning to parents; should no longer filter transactions with Attr.*/

Store No locally keyed with N ode_I D

Return Node_ID of interior node No /*Exectution continues at site owning parent node*/

Step d: Build_T ree(T I d, NodeID)

{

End if

}

if NodeId is a leaf node /* Starting site and root node are eturn class or distribution saved in

NodeId

Else

No ← local node with ID Node ID

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 126

Val ← the value of attributes No. Attr for transaction TID

ChildId ← No. Val

Return ChildId. Site. Build_tree(TID, Child Id)

End if

}

}

2.1 Description

In the algorithm A_empty() checks if A is

empty or not. If the result is 0 then no

attributes are left and at the end of this

step, node is constructed with its ID. A

constraint (Con) has be created which

helps the sites to keep track of only those

attributes and their values which satisfies

Con and build its path to class attribute and

rest attributes values are changed to not

required (≠) values. Initially all the attribute

contains not required (≠) value. Constraint

just acts as a filter. Constr.S (attribute,

value) is a function which converts the

attribute with the appropriate values.

Attributes that satisfies Con retain their

values and rest attributes have not required

values. An attribute can satisfy Con if and

only if it satisfies the following condition

∀J (AttrJ (x) = V ⇐⇒ C on(AttrJ) = V) ⋃ C

on(AttrJ) = ≠

TransSet (con) returns local transaction

satisfying con. DistCount () calculates the

class distribution. Two privacy preserving

protocols, secure sum protocol is used for

to check if any attributes are left and

cardinality of set intersection protocol is

used to determine the majority class of a

node. CheckSameClass() checks if all the

transactions belong to same class values.

D_Gini() calculates gini index of all the

attributes (A). Built_T ree() builds the tree

based on NodeId but reveals only the leaf

node by classifying the transaction.

2.2. Privacy Preservation of Private Data

among Sites

The privacy of private data of all the sites

participating is fully secured. Function

A_empty() only reveals no data in any site

but it checks if any at- tribute left in the site.

Since cardinality of set intersection protocol

has been used in DistCount() function so it

just disclose the combination of constraint

set for each class. CheckSameClass() only

disclose only the class distribution by

discovering the fact that if all transaction

are of same class or not and disclose only

the class distribution. D_Gini() computes

the gini of all attributes and expose only the

counts of different attributes and Diff-Gini()

only brings out the gini of different sites.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 127

Function Build_Tree() only expose the leaf

node by classifying the transactions.

Conclusion

Data mining has numerous classification

techniques to organize and classify the

knowledge. The ID3 rule has been increased

to PPID3 for conserving privacy of personal

knowledge and uses info gain as its

cacophonic attribute. C4.5 rule is

additionally increased to PPC4.5 to avoid

any knowledge outpouring and uses Gain

quantitative relation as its cacophonic

attribute. There square measure numerous

strategies, such as, Secure total Protocol,

Size of Set Intersection Protocol, Yao’s

Circuit, Scalar Product Protocol, Xln(X)

Protocol, etc. for conserving data’s’ privacy.

CART rule has been increased to PPCART

to totally preserve the privacy of personal

knowledge and uses gini index as its

cacophonic criteria. We’ve got enforced

Privacy conserving CART rule for two

parties. For privacy preservation scalar dot

product protocol and xlnx protocol is

employed to stop knowledge outpouring.

Later PPCART rule is extended for multi

parties wherever over two parties having

vertically partitioned off info will participate

in data processing. For preservation of

privacy of personal knowledge Secure total

and Size of Set Intersection Protocols square

measure used. This call tree rule generates

the binary tree. Next step of analysis is to

seek out the latency and communication

overhead of the rule and real time

implementation in globe.

References

[1] J. Han and M. Kamber, Data Mining:

Concepts and Techniques, 2nd ed. New

York: Morgan Kaufmann, 2009.

[2] S. Ceri and G. Pelagatti, Distributed

Databases: Principles and Systems.

Singapore: Interntional Edition, 1984.

[3] W. Du and Z. Zhan, “Building decision

tree classifier on private data,” in 14th IEEE

International Conference on Privacy,

Security and Data Mining, Darlinghurst,

Australia, 2002, pp. 1–8.

[4] J. R. Quinlan, “Induction of decision

trees,” Machine Learning, vol. 1, pp. 81–

106, 1986.

[5] A. C.-C. Yao, “How to generate and

exchange secrets(extended abstract),” in

27th IEEE symposium on Foundation of

Computer Science(FOCS), 1986, pp. 162–

167.

[6] R. Agrawal and R. Srikant, “Privacy-

preserving data mining,” in Proceedings of

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X
Volume 04 Issue 01

January 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 128

the 2000 ACM SIGMOD international

conference on Management of data, vol. 29,

New York, 2000, pp. 439–450.

[7] Y. Lindell and B. Pinkas, “Privacy

preserving data mining,” Advances in

Cryptology - Crypto2000, vol. 1880, pp. 1–

26, 2000.

[8] R. Sugumar, C. Jayakumar, and A.

Rengarajan, “Design a secure multiparty

computation system for privacy preserving

data mining,” International Journal of

Computer Science and Telecommunications,

vol. 3, pp. 101–105, 2012.

[9] J. Vaidya, C. Clifton, M. Kantarcioglu,

X. Lin, and M. Y. Zhu, “Tools for privacy

preserving distributed data mining,” in ACM

SIGKDD Explorations, vol. 4, no. 2, 2002,

pp. 28–34.

[10] C. Clifton and D. Marks, “Security and

privacy implementations of data mining,” in

ACM SIGMOD Workshop on Data Mining

and Knowledge Discovery, 1996.

[11] J. Vaidya, “Privacy preserving data

mining over vertically partitioned data,”

Ph.D. dissertation, Purdue University, 2004.

[12] J. Vaidya, C. Clifton, M. Kantarcioglu,

and A. S. Patterson, “Privacy preserving

decision trees over vertically partitioned

data,” in ACM Transactions on Knowledge

Discovery from Data, vol. 2, no. 3, 2008, pp.

14–41.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

