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Abstract: In this  paper  we have  assumed  

that participating parties  having  database 

that contains  private   data  are  vertically  

partitioned.   We  have  proposed vertically  

partitioned CART  algorithm  and  for 

privacy  preserving  privacy protocol  we 

have  combined  scalar  dot  product  

protocol  and  xlnx protocol for efficiently 

preserving  privacy of private  data.  Later  

we improved  privacy preserving  CART  

algorithm  for multi-party and  for privacy  

preservation secure sum protocol  and secure 

size of set intersection protocols  are used. 
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1.  Privacy Preserving CART 

Algorithm for Two Parties 

Let N maps the current node, D = DX   ∪ 

DY   maps  the  current  database. Nattr list 

maps the current test attributes. The 

PPCART Tree (D,  Nattr  list) Begin 

 

 

 

 

Algorithm 1: CART for Two Parties  

Step1:  Create root node R 

X computes gini index for all attributes 

present in DX.  Similarly Y computes gini 

index for all attributes present in DY.  

Initialize the root with minimum gini index.   

Attribute of minimum gini index is selected 

as the attribute maximizes the impurity 

reduction. 

Step 2: If al l records in D have same class 

value, and then return R as the leaf node 

with the specified class value. 

Each record has been divided in between 

two parties and both parties share the class 

labels of all records.  So if we want to 

determine  whether  the both parties  remain  

with the same single class or not,  we have 

to verify whether the  records  in DX   or 

DY   all belong to  the  same single class C 

or not.   If they belong to the same single 

class, then returns the leaf node with that 

specific class value. 

Step 3: If Nattr list is empty or the left 

records are less than a given value then 

return R as a leaf node marked with the class 

value assigned to the most records in S. 

Both parties share the class labels of all 

records and the names of all attributes, so 

they both know whether Nattr list is null or 
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not.  If yes, just scan dataset DX   or DY   

and statistic the most frequent class, 

marking the leaf with the most frequent 

class label. 

Step 4:  A queue Q is initialized to contain 

the root node. 

Step 5: While queue Q is not empty do { 

Step 6: Pop out the first node N from Q. 

Step 7: Evaluate the gini index for each 

attribute. 

Step 8: Find the best split attribute. 

Step 9:  If the split attribute is continual then 

find its partition value.  

Step 10: Use the best split attribute to split 

node N into N1, N2...Nn.  

Step 11: For i=1... n 

               { 

       If al l records  in Ni  belong to the same  

class then  return  Ni  as a leaf     

    node marked  with its class value 

  Else 

Add Ni to Q and go on executing the 

PPCART Tree (D, Nattr  list) 

     } 

} 

Step 12: Calculate the classified mistakes of 

each node and carry on the tree pruning.  

Step 13: End 

1.1   Computing the Best Split 

We need to calculate the gini index for each 

attribute to acknowledge the best splitting 

attribute. Let D represent the dataset 

belonging to the current node N. Let C 

represents the needed dataset to compute the 

gini index for each record in the current 

satisfied node. There will have two kinds of 

situations: 

1. If the attributes of C and the Nattr  

list belong to the  same dataset, 

either  of them  can individually  

calculate  gini index. 

2. If all the attributes involved in C and 

the Nattr list do not belong to the 

same party, neither party can 

compute the information gain ratio 

by itself.  In this case, everyone 

needs to union the other party to 

calculate it.  The following three 

steps will be repeated until we get 

information gain ratio for all 

attributes. Finally we choose the 

attribute with the greatest value as a 

split attribute for the current node. 

Computing L(D, Nattr  list): 

L represents the logical expression that 

satisfies the current node N. L rep- resents  

the logical expression  that only involved in 

DX   attributes. LY represents the logical 

expression that only involved in D’ s 

attributes.  

A scan dataset DX    and produce a vector of 

size n.   VX (i)  = 1 if the  ith record  

satisfies LX   else VX (i)=0.  X may 

calculate the value of vector VX by itself.  
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Similarly, Y may also calculate the value of 

vector VY. 

Let Vi  be a vector of size n, Vi(n)=1, if the 

nth record belongs to class i else Vi(k)=0.  V 

(i) = VX (i)ᴖ  VY (i) means the 

corresponding  record that satisfies both  LX   

and LY      

Scalar product    VX • VY   =  Σj=1 to n VX 

(j) ∗ VY (j) 

 Means the number of record which LX   

and LY. 

                                  Pi = VX • (VY  ᴖ  Vj ) 

= (VX ᴖ  Vj ) • VY    

Means the number of satisfies both 

belonging to class i in partition S. Now we 

can compute the gini index 

 L(D, NAttr list)  = Σj=1 to k  (S1j  + S2j  + 

..... + Snj)/S × G(S1j  + S2j  + ..... + Snj )= 

Σj=1 to k  Pj G(S1j  + S2j  + ..... + Snj ) 

 

1.2 Computing Gain 

Δ Gain(D, NAttr list)  = G(S1j  + S2j  + ..... 

+ Snj ) − L(D, NAttr list) 

Where L(D, Nattr list)  computes  the gini 

index of each attributes and G(S1j  + S2j  + 

..... + Snj ) computes  the gini index of the 

class values. According  to scalar  product  

protocol  the  semi-honest  third party is 

introduced to compute the scalar product  

VX •VY without revealing privacy.  The 

result is divided into two parts 

VX • VY = XX  + XY 

Two parties X and Y respectively  shares 

XX   and XY , which can guarantee that X 

cannot  get the contents  of Y and Y cannot  

get the contents  of X, so it can preserve  

their  privacy. 

 

According  to  Xln(X)  protocol  we can  

obtain  ln(XX + XY )  = PX   + PY . X and 

Y respectively shares PX   and PY . 

(XX + XY )ln(XX + XY ) = (XX + XY 

)(PX + PY )= XX PX  + XY PY  + XX PY  

+ XY PX                     

Where the result of XX PY is divided into 

two parts QX   and QY respectively shared 

by X and  Y. Similarly,  the  result  of XY 

PX   is also divided  into  two parts  SX   

and SY , which is also respectively  shared  

by X and Y. X can compute WX  = XX PX  

+ QX  + SX   and Y can compute  WY  = 

XY PY + QY + SY .So XX  + XY ln(XX + 

XY ) = WX + WY  , the result is divided 

into two parts WX  and WY  ,and 

respectively  shared  by X and Y. 

Now both parties have their own private 

data  and wishes the other party should not 

know their  private  data.  So the problems 

occurred is to find the gini index and 

differential gini without the knowledge of 

second party.  Let R be the requirement and 

it is divided into two subsets RX   and RY   

where RX    is the subset of requirement 

involving party X attributes and RY is the 

subset of requirement involving party Y 

attributes. Let us consider two vectors VX 

and VY   are of size n respectively.  VX (t) 

= 1 and VY (t) = 1 if tth record satisfies RX   
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and RY   respectively else VX (t) = 0 and 

VY (t) = 0.  Let us consider another vector 

VB to know if t attribute belong to a class C 

or not.  If VB (C ) = 1 then  attributes being 

to class C else VB (C ) = 0.   

V is a non zero entry  where V (t) = VX (t) ᴖ 

VY (t) where (t=1,2,....,n) means V(t) is 

satisfying  both  RX   and RY . Now party X 

and Y can compute their own private  data  

by the following formulas for computing 

scalar product of VX and VY  

VX • VY = Σt=1 to n VX (t) ∗ VY (t) 

For computing PC   which means 

calculating number of occurrences of class C 

in a partition P is 

PC = VX • (VY ᴖ  VC ) = (VX  ᴖ    VC ) • 

VY 

 

3. Privacy Preserving CART Algorithm 

for Multi- Party 

Let  us consider  a view where N number  of 

sites  wants  to  collaborate  and compute  

data  mining task  using CART  algorithm  

in a secured way. 

Algorithm 

Step 1:  There are N sites participating in the 

process having A attributes. 

Step 2:  Each site has a flag F. It is 0 if there 

is no remaining attribute and 1 if there are 

attributes remaining. 

Step 3:  Each site contains  a local constraint 

set (Con)  which keeps the values o those  

attributes that lead to class attribute and  

changes  the  value of other  attributes to not 

required  (*). 

 

Step 4:  Transaction set T partitioned 

between sites S1....SN 

. 

Step 5:  Site SN   holding n class attribute having C1, C2, ......, Cn values. 

Begin 

{ 

Step a: if A is empty then 

{ 

A_ empty() 

{ 

S1  chooses a random  integer  R uniformly from 0 ....  m - 1. 
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S1  sends R + F1  to S2 

for J = 2....k - 1 do 

site SJ  receives R’ from SJ −1. 

SJ  sends R’ + FJ mod M to SJ +1 

end for 

site SN   receives R’ from SN −1 . 

R0  ← R0  + FN   modM 

S1  and SN   uses secure keyed commutative hash keys E1  and EN 

S1  sends E1(R)  to SN 

SN   receives E1 (R)  and sends EN (E1 (R))  and EN (R0) to S1 

S1returns E1 (EN (R0)) = EN (E1 (R))  

{⇔ R0  = R ⇔ ΣN 

} 

FJ = 0 ⇔ 0 attributes remain  }  

Continue  at site SN   upto  the return 

(cont1....contn) ← DistC ount() 

DistCount() 

{ 

for all sites SJ  except SN 

At SJ : XJ ← T ransSet(C ontJ ) 

TransSet(Cont) 

{  

} 

End for 
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 X=Ø 

For all transaction id J T 

if tJ satisfies constr 

X ← X ∪ J 

End if 

End for return X  

For each class C1,.....,  Cn 

At SN  : constr.SN (CR , CJ ) /* To include class restriction*/ 

At SN  : XN   ← T ransSet(C onN ) 

C onstJ   ← |X1  ∩ X2  ∩ ...... ∩ Xk |  using  the  cardinalty of set intersection protocol. 

End for 

Return (C ont1,C ont2,......., C ontn) 

Build a leaf node with distribution (C ont1   ,...., C ontn) 

{ 

class ← maxJ =1...S consJ  

} 

Return ID of the constructed node 

} 

Step b:  

Else if C lassNode ← (atSN) CheckSameClass() 

CheckSameClass() 

{ 

(Cont1....Contn) ← DistCount() 

if ∃I s.t.consI ! = 0 ᴖ ∀J ! = I , ConsJ  = 0 /* If only one of the count is non zero*/ 
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Build a leaf node with distribution (C ont1....C ontn) 

Return ID of the constructed node else 

Return false end if 

} 

Return leaf NodeId ClassNode 

Step c:  

Else 

BestSite ← Diff Gini() 

DiffGini() 

{ 

For all sites SN 

BestGiniJ ← −1 

For each attribute AttrJI at siteSJ 

Gini  ← D_Gini(AttrJ I ) 

D_Gini(AttrJ I ) 

{ 

P  ← DistCount() /* total  number  of transaction at this node */ 

PaJ ← DistC ount() 

Gini  ← GiniI ndex(P )−GiniI ndex(PaJ )∗|PaJ |/|P |  

Where |P| isΣm ContJ  

End for 

Constr.S(Attr, ‘]0) /* update  local Tuple*/ 

Return Gini 

}  

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/


 International Journal of Research 
 Available at https://edupediapublications.org/journals  

p-ISSN: 2348-6848 
e-ISSN: 2348-795X 
Volume 04 Issue 01 

January 2017 

 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 125 
 

if Gini  > BestGiniJ  

BestGiniJ  ← Gini BestAttributeJ  ← AttrJ I 

End if end for 

Return maxI , BestGiniI 

} 

continue  execution  at Best_Site 

create  interior  node No with attribute 

N o.Attr  ← BestAttBests ite 

for each attribute valueVJ  No.attr 

C onstr.S(No.Attr, VJ ) /* updates local constraints set*/ 

N odeI d ← P P CART () 

N o.AttrJ  ← NodeI d /* add appropriate branch  to interior  node*/ 

end for 

C onstr.S(Attr, ‘0) /*Returning to parents; should no longer filter transactions with Attr.*/ 

Store No locally keyed with N ode_I D 

Return Node_ID of interior node No /*Exectution continues at site owning parent node*/ 

Step d: Build_T ree(T I d, NodeID) 

{  

End if 

} 

if NodeId  is  a  leaf  node  /* Starting site  and  root  node  are eturn class or distribution saved in 

NodeId  

Else 

No ← local node with ID Node ID 
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Val ← the value of attributes No. Attr for transaction TID 

ChildId ← No. Val 

Return ChildId. Site. Build_tree(TID, Child Id) 

End if 

}  

} 

2.1 Description 

In the algorithm A_empty() checks if A is 

empty or not.  If the  result  is 0 then  no 

attributes are left and  at  the  end of this  

step,  node is constructed with  its  ID.  A 

constraint (Con)  has  be  created  which  

helps  the  sites  to keep track  of only those 

attributes and their  values which satisfies 

Con and build its path  to class attribute and 

rest attributes values are changed to not 

required (≠) values.  Initially all the attribute 

contains not required (≠) value. Constraint 

just acts as a filter. Constr.S (attribute, 

value) is a function which converts the  

attribute with  the  appropriate values.   

Attributes that satisfies Con retain their 

values and rest attributes have not required 

values. An attribute can satisfy Con if and 

only if it satisfies the following condition 

∀J (AttrJ (x) = V ⇐⇒ C on(AttrJ ) = V) ⋃ C 

on(AttrJ ) = ≠ 

 

TransSet (con) returns local transaction 

satisfying con. DistCount () calculates the  

class distribution.  Two privacy  preserving  

protocols,  secure sum protocol  is used  for 

to  check  if any  attributes are  left  and  

cardinality of set intersection protocol  is 

used to determine  the  majority class of a 

node. CheckSameClass() checks if all the  

transactions belong to  same  class values. 

D_Gini() calculates  gini index of all the 

attributes (A). Built_T ree() builds the tree 

based on NodeId but reveals only the leaf 

node by classifying the transaction. 

 

2.2. Privacy Preservation of Private Data 

among Sites 

The privacy of private data of all the sites 

participating is fully secured. Function 

A_empty() only reveals no data  in any site 

but it checks if any at- tribute left in the site.  

Since cardinality of set intersection protocol 

has been used in DistCount() function so it 

just disclose the combination of constraint 

set for each class.  CheckSameClass() only 

disclose only the class distribution  by 

discovering  the  fact that if all transaction 

are of same class or not and disclose only 

the class distribution. D_Gini() computes  

the gini of all attributes and expose only the 

counts of different attributes and Diff-Gini() 

only brings out  the gini of different sites.  
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Function Build_Tree() only expose the leaf 

node by classifying the transactions. 

 

Conclusion 

Data mining has numerous classification 

techniques to organize and classify the 

knowledge. The ID3 rule has been increased 

to PPID3 for conserving privacy of personal 

knowledge and uses info gain as its 

cacophonic attribute. C4.5 rule is 

additionally increased to PPC4.5 to avoid 

any knowledge outpouring and uses Gain 

quantitative relation as its cacophonic 

attribute. There square measure numerous 

strategies, such as, Secure total Protocol, 

Size of Set Intersection Protocol, Yao’s 

Circuit, Scalar Product Protocol, Xln(X) 

Protocol, etc. for conserving data’s’ privacy. 

CART rule has been increased to PPCART 

to totally preserve the privacy of personal 

knowledge and uses gini index as its 

cacophonic criteria. We’ve got enforced 

Privacy conserving CART rule for two 

parties. For privacy preservation scalar dot 

product protocol and xlnx protocol is 

employed to stop knowledge outpouring. 

Later PPCART rule is extended for multi 

parties wherever over two parties having 

vertically partitioned off info will participate 

in data processing. For preservation of 

privacy of personal knowledge Secure total 

and Size of Set Intersection Protocols square 

measure used. This call tree rule generates 

the binary tree. Next step of analysis is to 

seek out the latency and communication 

overhead of the rule and real time 

implementation in globe. 
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