

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 569

Multiple Routing Configuration for Fast IP Network Recovery
Ashok Koujalagi

Under the Guidance of

Dr. JAYAPRAKASH
(Assistant professor)

Department of Computer Science and Applications, The Oxford College of science,
Bangalore-102

 ABSTRACT

As the Internet takes an increasingly

central role in our communications

infrastructure, the slow convergence of

routing protocols after a network failure

becomes a growing problem. To assure fast

recovery from link and node failures in IP

networks, we present a new recovery scheme

called Multiple Routing Configurations

(MRC). Our proposed scheme guarantees

recovery in all single failure scenarios, using

a single mechanism to handle both link and

node failures, and without knowing the root

cause of the failure. MRC is strictly

connectionless, and assumes only destination

based hop-by-hop forwarding. MRC is based

on keeping additional routing information in

the routers, and allows packet forwarding to

continue on an alternative output link

immediately after the detection of a failure. It

can be implemented with only minor changes

to existing solutions. In this paper we present

MRC, and analyze its performance with

respect to scalability, backup path lengths,

and load distribution after a failure. We also

show how an estimate of the traffic demands

in the network can be used to improve the

distribution of the recovered traffic, and thus

reduce the chances of congestion when MRC

is used.

INTRODUCTION

In recent years the Internet has been

transformed from a special purpose network
to an ubiquitous platform for a wide range of
everyday communication services. The
demands on Internet reliability and
availability have increased accordingly. A
disruption of a link in central parts of a
network has the potential to affect hundreds
of thousands of phone conversations or TCP
connections, with obvious adverse effects.

The ability to recover from failures
has always been a central design goal in the
Internet. IP networks are intrinsically robust,
since IGP routing protocols like OSPF are
designed to update the forwarding
information based on the changed topology
after a failure. This re-convergence assumes
full distribution of the new link state to all
routers in the network domain. When the new

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 570

state information is distributed, each router
individually calculates new valid routing
tables.

This network-wide IP re-convergence
is a time consuming process, and a link or
node failure is typically followed by a period
of routing instability. During this period,
packets may be dropped due to invalid
routes. This phenomenon has been studied in
both IGP and BGP context, and has an
adverse effect on real-time applications.
Events leading to a re-convergence have been
shown to occur frequently.

Much effort has been devoted to
optimizing the different steps of the
convergence of IP routing, i.e., detection,
dissemination of information and shortest
path calculation, but the Manuscript received
December 21, 2006, revised July 21 2007 All
authors are with Simula Research
Laboratory, Oslo, Norway convergence time
is still too large for applications with real
time demands . A key problem is that since
most network failures are short lived, too
rapid triggering of the reconvergence process
can cause route flapping and increased
network instability.

The IGP convergence process is slow
because it is reactive and global. It reacts to a
failure after it has happened, and it involves
all the routers in the domain. In this paper we
present a new scheme for handling link and
node failures in IP networks. Multiple
Routing Configurations (MRC) is a proactive
and local protection mechanism that allows
recovery in the range of milliseconds. MRC
allows packet forwarding to continue over
pre-configured alternative next-hops
immediately after the detection of the failure.
Using MRC as a first line of defense against
network failures, the normal IP convergence
process can be put on hold. This process is
then initiated only as a consequence of non-
transient failures. Since no global re-routing
is performed, fast failure detection

mechanisms like fast hellos or hardware
alerts can be used to trigger MRC without
compromising network stability. MRC
guarantees recovery from any single link or
node failure, which constitutes a large
majority of the failures experienced in a
network. MRC makes no assumptions with
respect to the root cause of failure, e.g.,
whether the packet forwarding is disrupted
due to a failed link or a failed router.

The main idea of MRC is to use the
network graph and the associated link
weights to produce a small set of backup
network configurations. The link weights in
these backup configurations are manipulated
so that for each link and node failure, and
regardless of whether it is a link or node
failure, the node that detects the failure can
safely forward the incoming packets towards
the destination on an alternate link. MRC
assumes that the network uses shortest path
routing and destination based hop-by-hop
forwarding.

The shifting of traffic to links
bypassing the failure can lead to congestion
and packet loss in parts of the network. This
limits the time that the proactive recovery
scheme can be used to forward traffic before
the global routing protocol is informed about
the failure, and hence reduces the chance that
a transient failure can be handled without a
full global routing re-convergence. Ideally, a
proactive recovery scheme should not only
guarantee connectivity after a failure, but also
do so in a manner that does not cause an
unacceptable load distribution. This
requirement has been noted as being one of
the principal challenges for precalculated IP
recovery schemes. With MRC, the link
weights are set individually in each backup
configuration. This gives great flexibility
with respect to how the recovered traffic is
routed. The backup configuration used after a
failure is selected based on the failure
instance, and thus we can choose link

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 571

weights in the backup configurations that are
well suited for only a subset of failure
instances.

OBJECTIVE

The main objective is to assure fast
recovery from link and node failures in IP
networks, we present a new recovery scheme
called Multiple Routing Configurations
(MRC). This scheme guarantees recovery in
all single failure scenarios, using a single
mechanism to handle both link and node
failures, and without knowing the root cause
of the failure. MRC is based on keeping
additional routing information in the routers,
and allows packet forwarding to continue on
an alternative output link immediately after
the detection of a failure. In this paper we
present MRC, and analyze its performance
with respect to scalability, backup path
lengths, and load distribution after a failure.
We also show how an estimate of the traffic
demands in the network can be used to
improve the distribution of the recovered
traffic, and thus reduce the chances of
congestion when MRC is used.

 MRC OVERVIEW

MRC is based on building a small set
of backup routing configurations that are
used to route recovered traffic on alternate
paths after a failure. The backup
configurations differ from the normal routing
configuration in that link weights are set so
as to avoid routing traffic in certain parts of
the network. We observe that if all links
attached to a node are given sufficiently high
link weights, traffic will never be routed
through that node. The failure of that node
will then only affect traffic that is sourced at
or destined for the node itself. Similarly, to
exclude a link (or a group of links) from
taking part in the routing, we give it infinite

weight. The link can then fail without any
consequences for the traffic.

Our MRC approach is threefold. First,
we create a set of backup configurations, so
that every network component is excluded
from packet forwarding in one configuration.
Second, for each configuration, a standard
routing algorithm like OSPF is used to
calculate configuration specific shortest paths
and create forwarding tables in each router,
based on the configurations. The use of a
standard routing algorithm guarantees loop-
free forwarding within one configuration.
Finally, we design a forwarding process that
takes advantage of the backup configurations
to provide fast recovery from a component
failure.

In our approach, we construct the
backup configurations so that for all links and
nodes in the network, there is a configuration
where that link or node is not used to forward
traffic. Thus, for any single link or node
failure, there will exist a configuration that
will route the traffic to its destination
on a path that avoids the failed element. Also,
the backup configurations must be
constructed so that all nodes are reachable in
all configurations, i.e., there is a valid path
with a finite cost between each node pair.
Shared Risk Groups can also be protected, by
regarding such a group as a single component
that must be avoided in a particular
configuration. Here we formally describe
MRC and how to generate configurations that
protect every link and node in a network.
Using a standard shortest path calculation,
each router creates a set of configuration-
specific forwarding tables. For

Simplicity, we say that a packet is forwarded
according to a configuration, meaning that it
is forwarded using the forwarding table
calculated based on that configuration. In this
paper we talk about building a separate

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 572

forwarding table for each configuration, but
we believe that more efficient solutions can
be found in a practical implementation.

When a router detects that a
neighbour can no longer be reached through
one of its interfaces, it does not immediately
inform the rest of the network about the
connectivity failure. Instead, packets that
would normally be forwarded over the failed
interface are marked as belonging to a
backup configuration, and forwarded on an
alternative interface towards its destination.
The selection of the correct backup
configuration, and thus also the backup next-
hop, is detailed in .The packets must be
marked with a configuration identifier, so the
routers along the path know which
configuration to use. Packet marking is most
easily done by using specific values in the
DSCP field in the IP header. If this is not
possible, other packet marking strategies like
IPv6 extension headers or using a private
address space and tunnelling could be used.

If a failure lasts for more than a
specified time interval, a normal re-
convergence will be triggered. MRC does not
interfere with this convergence process, or
make it longer than normal. However, MRC
gives continuous packet forwarding during
the convergence, and hence makes it easier to
use mechanisms that prevents micro-loops
during convergence,
at the cost of longer convergence times . If a
failure is deemed permanent, new
configurations must be generated based on
the altered topology.

REVIEW OF LITERATURE

PAPER1: Routing of multipoint
connections by author B. M. Waxman.

The author addresses the problem of
routing connections in a large-scale packet-

switched network supporting multipoint
communications. He gives a formal
definition of several versions of the
multipoint problem, including both static and
dynamic versions. He looks at the Steiner
tree problem as an example of the static
problem and considers the experimental
performance of two approximation
algorithms for this problem. A weighted
greedy algorithm is considered for a version
of the dynamic problem which allows
endpoints to come and go during the life of a
connection. One of the static algorithms
serves as a reference to measure the
performance of the proposed weighted
greedy algorithm in a series of experiments

PAPER2: The Design Philosophy of the
DARPA Internet Protocols by author D.D.
Clark

The Internet protocol suite, TCP/IP,
was first proposed fifteen years ago. It was
developed by the Defense Advanced
Research Projects Agency (DARPA), and has
been used widely in military and commercial
systems. While there have been papers and
specifications that describe how the protocols
work, it is sometimes difficult to deduce from
these why the protocol is as it is. For
example, the Internet protocol is based on a
connectionless or datagram mode of service.
The motivation for this has been greatly
misunderstood. This paper attempts to
capture some of the early
reasoning which shaped the Internet
protocols.

PAPER3: Delayed Internet routing
convergence by author C. Labovitz, A.
Ahuja , A. Bose, and F. Jahanian

This paper examines the latency in
Internet path failure, failover, and repair due
to the convergence properties of inter domain

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 573

routing. Unlike circuit-switched paths which
exhibit failover on the order of milliseconds,
our experimental measurements show that
inter domain routers in the packet-switched
Internet may take tens of minutes to reach a
consistent view of the network topology after
a fault. These delays stem temporary routing
table fluctuations formed during the
operation of the Border Gateway Protocol
(BGP) path selection process on Internet
backbone routers. During these
periods delayed convergence, we show that
end-to-end Internet paths will experience
intermittent loss of connectivity, as well as
increased packet loss and latency. We present
a two-year study of Internet routing
convergence through the experimental
instrumentation of key portions of the
Internet infrastructure, including both passive
data collection and fault-injection machines
at Internet exchange points. Based on data
from the injection and measurement of
several hundred thousand inter domain
routing faults, we describe several
unexpected properties of convergence and
show that the measured upper bound on
Internet inter domain routing convergence
delay is an order of magnitude slower than
previously thought. Our analysis also shows
that the upper theoretic computational bound
on the number of router states and control
messages exchanged during the process of
BGP convergence is factorial with respect to
the number of autonomous systems in the
Internet. Finally, we demonstrate that much
of the observed convergence delay stems
from specific router vendor implementation
decisions and ambiguity in the BGP
specification.

PAPER4: An approach to alleviate link
overload as observed on an IP backbone
by author S. Iyer, S. Bhattacharyya, N.
Taft, and C. Diot.

Shortest path routing protocols may
suffer from congestion due to the use of a
single shortest path between a source and a
destination. The goal of our work is to first
understand how links become overloaded in
an IP backbone, and then to explore if the
routing protocol, -either in its existing form,
or in some enhanced form could be made to
respond immediately to overload and reduce
the likelihood of its occurrence. Our method
is to use extensive measurements of Sprint's
backbone network, measuring 138 links
between September 2000 and June 2001. We
find that since the backbone is designed to be
over provisioned, link overload is rare, and
when it occurs, 80% of the time it is caused
due to link failures. Furthermore, we find that
when a link is overloaded, few (if any) other
links in the network are also overloaded. This
suggests that deflecting packets to less
utilized alternate paths could be an effective
method for tackling overload. We
analytically derive the condition that a
network, which has multiple equal length
shortest paths between every pair of nodes
(as is common in the highly meshed
backbone networks) can provide for loop-free
deflection paths if all the link weights are
within a ratio 1 + 1/(d- I) of each other;
where d is the diameter of the network. Based
on our measurements, the nature of the
backbone topology and the careful use of link
weights, we propose a deflection routing
algorithm to tackle link overload where each
node makes local decisions. Simulations
suggest that this can be a simple and efficient
way to overcome link overload, without
requiring any changes to the routing protocol.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 574

SYSTEM DESIGN

4.1 Existing System:

In Existing system, node failure and
link failure problem handle while run time of
the process. So time taken for recovery is
very high. And then packet loss, packet
reorder, delays occurring on the packet
transmission. Recover the Node failure
problem after packet dropped. Because
backup link is not available. Choosing
Alternate link select by send control packets
through other links. Suppose alternate link
also has same failure node means total time
spending for select alternate link is waste.

4.2 Proposed System:

In proposed scheme guarantees
recovery in all single failure scenarios, using
a single mechanism to handle both link and
node failures, and without knowing the root
cause of the failure. Here we maintain
backup link for each link. We present MRC,
and analyze its performance with respect to
scalability, backup path lengths, and load
distribution after a failure. We also show how
an estimate of the traffic demands in the
network can be used to improve the
distribution of the recovered traffic, and thus
reduce the chances of congestion when MRC
is used.

4.3 Architecture Diagram:

Working Procedure

Step1: Source sends the data to server.
Step2: Server updates the path information to
the routing table and calculates shortest
paths and backup paths between different
nodes.
Step 3: Finally data is sent from source to
destination.
 The data flow diagram below gives
step by step procedure in corcern to above
architecture.

Data Flow Diagram

SYSTEM IMPLEMENTATION

5.1 Requirement Analysis:

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 575

 Software Requirements
Java1.5
Java Swing
Sql Server 2000
Windows Xp.

Hardware Requirements
 Hard disk :
 60GB
 RAM : 1GB

 Processor :
 P IV

5.2 SOFTWARE REQUIRMENTS

Java Technology

Java technology is both a
programming language and a
platform.

The Java Programming Language
 The Java programming language is a
high-level language that can be characterized
by all of the following buzzwords:

� Simple
� Architecture neutral
� Object oriented
� Portable
� Distributed
� High performance
� Interpreted
� Multithreaded
� Robust
� Dynamic
� Secure

With most programming languages,
you either compile or interpret a program so
that you can run it on your computer. The
Java programming language is unusual in
that a program is both compiled and
interpreted. With the compiler, first you
translate a program into an intermediate
language called Java byte codes —the
platform-independent codes interpreted by
the interpreter on the Java platform. The
interpreter parses and runs each Java byte
code instruction on the computer.

Compilation happens just once; interpretation
occurs each time the program is executed.
The following figure illustrates how this
works.

 You can think of Java bytecodes as
the machine code instructions for the Java
Virtual Machine (Java VM). Every Java
interpreter, whether it’s a development tool
or a Web browser that can run applets, is an
implementation of the Java VM. Java
bytecodes help make “write once, run
anywhere” possible. You can compile your
program into bytecodes on any platform that
has a Java compiler. The bytecodes can then
be run on any implementation of the Java
VM. That means that as long as a computer
has a Java VM, the same program written in
the Java programming language can run on
Windows 2000, a Solaris workstation, or on
an iMac
.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 576

The Java Platform

A platform is the hardware or
software environment in which a
program runs. We’ve already
mentioned some of the most popular
platforms like Windows 2000, Linux,
Solaris, and MacOS. Most platforms
can be described as a combination of
the operating system and hardware.
The Java platform differs from most
other platforms in that it’s a software-
only platform that runs on top of other
hardware-based platforms.
The Java platform has two
components:

• The Java Virtual Machine
(Java VM)

• The Java Application
Programming Interface (Java
API)

You’ve already been introduced
to the Java VM. It’s the base for the
Java platform and is ported onto
various hardware-based platforms.

The Java API is a large collection
of ready-made software components
that provide many useful capabilities,
such as graphical user interface (GUI)
widgets. The Java API is grouped into
libraries of related classes and
interfaces; these libraries are known
as packages. The next section, What

Can Java Technology Do?, highlights
what functionality some of the
packages in the Java API provide.

The following figure depicts a program that’s
running on the Java platform. As the figure
shows, the Java API and the virtual machine
insulate the program from the hardware.

Native code is code that after you
compile it, the compiled code runs on a
specific hardware platform. As a platform-
independent environment, the Java platform
can be a bit slower than native code.
However, smart compilers, well-tuned
interpreters, and just-in-time bytecode
compilers can bring performance close to that
of native code without threatening
portability.

How does the API support all these
kinds of programs? It does so with
packages of software components that
provide a wide range of functionality.
Every full implementation of the Java
platform gives you the following
features:

• The essentials: Objects,
strings, threads, numbers,
input and output, data
structures, system properties,
date and time, and so on.

• Applets: The set of
conventions used by applets.

• Networking: URLs, TCP
(Transmission Control
Protocol), UDP (User Data

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 577

gram Protocol) sockets, and IP
(Internet Protocol) addresses.

• Internationalization : Help
for writing programs that can
be localized for users
worldwide. Programs can
automatically adapt to specific
locales and be displayed in the
appropriate language.

• Security: Both low level and
high level, including
electronic signatures, public
and private key management,
access control, and
certificates.

• Software components:
Known as JavaBeansTM, can
plug into existing component
architectures.

• Object serialization: Allows
lightweight persistence and
communication via Remote
Method Invocation (RMI).

• Java Database Connectivity
(JDBCTM): Provides uniform
access to a wide range of
relational databases.

The Java platform also has APIs for
2D and 3D graphics, accessibility,
servers, collaboration, telephony,
speech, animation, and more. The
following figure depicts what is
included in the Java 2 SDK.

ODBC
Microsoft Open Database

Connectivity (ODBC) is a standard
programming interface for application
developers and database systems providers.
Before ODBC became a de facto standard for
Windows programs to interface with database
systems, programmers had to use proprietary
languages for each database they wanted to
connect to. Now, ODBC has made the choice
of the database system almost irrelevant from
a coding perspective, which is as it should be.

Application developers have much more
important things to worry about than the
syntax that is needed to port their program
from one database to another when business
needs suddenly change.

Through the ODBC Administrator in
Control Panel, you can specify the particular
database that is associated with a data source
that an ODBC application program is written
to use. Think of an ODBC data source as a
door with a name on it. Each door will lead
you to a particular database. For example, the
data source named Sales Figures might be a
SQL Server database, whereas the Accounts
Payable data source could refer to an Access
database. The physical database referred to
by a data source can reside anywhere on the
LAN.

The ODBC system files are not
installed on your system by Windows 95.
Rather, they are installed when you setup a
separate database application, such as SQL
Server Client or Visual Basic 4.0. When the
ODBC icon is installed in Control Panel, it
uses a file called ODBCINST.DLL. It is also
possible to administer your ODBC data
sources through a stand-alone program called
ODBCADM.EXE. There is a 16-bit and a 32-
bit version of this program, and each
maintains a separate list of ODBC data
sources.

From a programming perspective, the
beauty of ODBC is that the application can
be written to use the same set of function
calls to interface with any data source,
regardless of the database vendor. The source
code of the application doesn’t change
whether it talks to Oracle or SQL Server. We
only mention these two as an example. There
are ODBC drivers available for several dozen
popular database systems. Even Excel
spreadsheets and plain text files can be turned
into data sources. The operating system uses
the Registry information written by ODBC
Administrator to determine which low-level

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 578

ODBC drivers are needed to talk to the data
source (such as the interface to Oracle or
SQL Server). The loading of the ODBC
drivers is transparent to the ODBC
application program. In a client/server
environment, the ODBC API even handles
many of the network issues for the
application programmer.

The advantages of this scheme are so
numerous that you are probably thinking
there must be some catch. The only
disadvantage of ODBC is that it isn’t as
efficient as talking directly to the native
database interface. ODBC has had many
detractors make the charge that it is too slow.
Microsoft has always claimed that the critical
factor in performance is the quality of the
driver software that is used. In our humble
opinion, this is true. The availability of good
ODBC drivers has improved a great deal
recently. And anyway, the criticism about
performance is somewhat analogous to those
who said that compilers would never match
the speed of pure assembly language. Maybe
not, but the compiler (or ODBC) gives you
the opportunity to write cleaner programs,
which means you finish sooner. Meanwhile,
computers get faster every year.
JDBC

In an effort to set an independent
database standard API for Java, Sun
Microsystems developed Java Database
Connectivity, or JDBC. JDBC offers a
generic SQL database access mechanism that
provides a consistent interface to a variety of
RDBMSs. This consistent interface is
achieved through the use of “plug-in”
database connectivity modules, or drivers. If
a database vendor wishes to have JDBC
support, he or she must provide the driver for
each platform that the database and Java run
on.

To gain a wider acceptance of JDBC,
Sun based JDBC’s framework on ODBC. As
you discovered earlier in this chapter, ODBC

has widespread support on a variety of
platforms. Basing JDBC on ODBC will allow
vendors to bring JDBC drivers to market
much faster than developing a completely
new connectivity solution.

JDBC was announced in March of
1996. It was released for a 90 day public
review that ended June 8, 1996. Because of
user input, the final JDBC v1.0 specification
was released soon after.

The remainder of this section will
cover enough information about JDBC for
you to know what it is about and how to use
it effectively. This is by no means a complete
overview of JDBC. That would fill an entire
book.
JDBC Goals

Few software packages are designed
without goals in mind. JDBC is one that,
because of its many goals, drove the
development of the API. These goals, in
conjunction with early reviewer feedback,
have finalized the JDBC class library into a
solid framework for building database
applications in Java.

The goals that were set for JDBC are
important. They will give you some insight
as to why certain classes and functionalities
behave the way they do. The eight design
goals for JDBC are as follows:

SQL Level API
 The designers felt that their main
goal was to define a SQL interface for
Java. Although not the lowest database
interface level possible, it is at a low
enough level for higher-level tools and
APIs to be created. Conversely, it is at a
high enough level for application
programmers to use it confidently.
Attaining this goal allows for future tool
vendors to “generate” JDBC code and to
hide many of JDBC’s complexities from
the end user.
1. SQL Conformance

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 579

Java

Compilers

Interpreter

My Program

SQL syntax varies as you move from
database vendor to database vendor. In an
effort to support a wide variety of
vendors, JDBC will allow any query
statement to be passed through it to the
underlying database driver. This allows
the connectivity module to handle non-
standard functionality in a manner that is
suitable for its users.
2. JDBC must be implemental on top of

common database interfaces
 The JDBC SQL API must “sit” on
top of other common SQL level APIs.
This goal allows JDBC to use existing
ODBC level drivers by the use of a
software interface. This interface
would translate JDBC calls to ODBC
and vice versa.

3. Provide a Java interface that is
consistent with the rest of the Java
system
Because of Java’s acceptance in the

user community thus far, the designers
feel that they should not stray from the
current design of the core Java system.
4. Keep it simple

This goal probably appears in all
software design goal listings. JDBC is no
exception. Sun felt that the design of
JDBC should be very simple, allowing
for only one method of completing a task
per mechanism. Allowing duplicate
functionality only serves to confuse the
users of the API.
5. Use strong, static typing wherever

possible
 Strong typing allows for more error
checking to be done at compile time;
also, less errors appear at runtime.
6. Keep the common cases simple
 Because more often than not, the
usual SQL calls used by the programmer
are simple SELECT’s, INSERT’s,
DELETE’s and UPDATE’s, these queries
should be simple to perform with JDBC.

However, more complex SQL statements
should also be possible.

Finally we decided to proceed the
implementation using Java
Networking. And for dynamically
updating the cache table we go for
MS SQL database. Java ha two
things: a programming language
and a platform.

Java is also unusual in that
each Java program is both
compiled and interpreted. With a
compile you translate a Java
program into an intermediate
language called Java byte codes
the platform-independent code
instruction is passed and run on the
computer.

Compilation happens just once;
interpretation occurs each time the
program is executed. The figure
illustrates how this works.

You can think of Java byte
codes as the machine code
instructions for the Java Virtual
Machine (Java VM). Every Java
interpreter, whether it’s a Java
development tool or a Web browser
that can run Java applets, is an
implementation of the Java VM. The

Java
VM
can

International Journal of

MULTIPLE ROUTING CON

P a g e | 580

also be implemented in hardware.

Java byte codes help make
“write once, run anywhere”
possible. You can compile your
Java program into byte codes on
my platform that has a Java
compiler. The byte codes can then
be run any implementation of the
Java VM. For example, the same
Java program can run Windows
NT, Solaris, and Macintosh.
Networking

 TCP/IP stack

The TCP/IP stack is shorter than

the OSI one:

TCP is a connection
protocol; UDP (User Datagram Protocol) is a
connectionless protocol.

International Journal of Research (IJR) Vol-1, Issue-9, October

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY

also be implemented in hardware.

Java byte codes help make
“write once, run anywhere”

e your
Java program into byte codes on
my platform that has a Java
compiler. The byte codes can then
be run any implementation of the
Java VM. For example, the same
Java program can run Windows
NT, Solaris, and Macintosh.

/IP stack is shorter than

TCP is a connection-oriented
protocol; UDP (User Datagram Protocol) is a

 IP datagram’s

The IP layer provides a
connectionless and unreliable delivery
system. It considers each datagram
independently of the others. Any
association between datagram must
be supplied by the higher layers. The
IP layer supplies a checksum that
includes its own header. The header
includes the source and destination
addresses. The IP layer handles
routing through an Internet. It is also
responsible for breaking up large
datagram into smaller ones for
transmission and rea
at the other end

UDP is also connectionless and
unreliable. What it adds to IP is a checksum
for the contents of the datagram a
numbers. These are used to give a
client/server model -

 TCP

TCP supplies logic to give a reliable
connection-oriented protocol above IP. It
provides a virtual circuit that two processes
can use to communicate.

 Internet addresses

In order to use a service, you must be
able to find it. The Internet uses an address
scheme for machines so that they can be
located. The address is a 32 bit integer which
gives the IP address. This encodes a network
ID and more addressing. The network ID
falls into various classes according to the size
of the network address.

 Network address

Class A uses 8 bits for the network
address with 24 bits left over for other

9, October 2014 ISSN 2348-6848

IP NETWORK RECOVERY Ashok Koujalagi

The IP layer provides a
connectionless and unreliable delivery
system. It considers each datagram
independently of the others. Any
association between datagram must
be supplied by the higher layers. The
IP layer supplies a checksum that
includes its own header. The header
includes the source and destination
addresses. The IP layer handles

gh an Internet. It is also
responsible for breaking up large
datagram into smaller ones for
transmission and reassembling them
at the other end

UDP is also connectionless and
unreliable. What it adds to IP is a checksum
for the contents of the datagram and port
numbers. These are used to give a

 see later.

TCP supplies logic to give a reliable
oriented protocol above IP. It

provides a virtual circuit that two processes
can use to communicate.

Internet addresses

order to use a service, you must be
able to find it. The Internet uses an address
scheme for machines so that they can be
located. The address is a 32 bit integer which
gives the IP address. This encodes a network
ID and more addressing. The network ID

lls into various classes according to the size
of the network address.

Class A uses 8 bits for the network
address with 24 bits left over for other

International Journal of

MULTIPLE ROUTING CON

P a g e | 581

addressing. Class B uses 16 bit network
addressing. Class C uses 24 bit network
addressing and class D uses all 32.

 Subnet address

Internally, the UNIX network is
divided into sub networks. Building 11 is
currently on one sub network and uses 10
addressing, allowing 1024 different hosts.

 Host address

8 bits are finally used for host
addresses within our subnet. This places a
limit of 256 machines that can be on the
subnet.

 Total address

 The 32 bit address is usually written as 4
integers separated by dots.

 Port addresses

A service exists on a host, and is
identified by its port. This is a 16 bit number.
To send a message to a server, you send it to
the port for that service of the host that it is
running on. This is not location transparency!
Certain of these ports are "well known".

 Sockets

A socket is a data structure
maintained by the system to handle network
connections. A socket is created using the

International Journal of Research (IJR) Vol-1, Issue-9, October

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY

addressing. Class B uses 16 bit network
addressing. Class C uses 24 bit network

g and class D uses all 32.

Internally, the UNIX network is
divided into sub networks. Building 11 is
currently on one sub network and uses 10-bit
addressing, allowing 1024 different hosts.

8 bits are finally used for host
addresses within our subnet. This places a
limit of 256 machines that can be on the

The 32 bit address is usually written as 4

A service exists on a host, and is
ort. This is a 16 bit number.

To send a message to a server, you send it to
the port for that service of the host that it is
running on. This is not location transparency!
Certain of these ports are "well known".

A socket is a data structure
ntained by the system to handle network

connections. A socket is created using the

call socket. It returns an integer that is like a
file descriptor. In fact, under Windows, this
handle can be used with
File functions.

#include <sys/typ
#include <sys/socket.h>
int socket(

int protocol);

Here "family" will be
IP communications,
and type will depend on whether TCP or
UDP is used. Two processes wishing to
communicate over a networ
each. These are similar to two ends of a pipe
- but the actual pipe does not yet exist.

5.3 System Modules

• Topology Construction

• Link Failure Detection

• Node Failure Detection

• Backup Path Transmission

Topology Construction

 In this module we design a topology to
overcome the link failure and node failure
problem. In the network, numerous nodes are
interconnected and exchange data or services
directly with each other nodes. Each node has
Connection with other nodes. Eac
details are maintained in the server system.
Link details also maintain in the server
system

Node Failure Detection:

 In this module we find the Node failure
by using send control packets through links.

9, October 2014 ISSN 2348-6848

IP NETWORK RECOVERY Ashok Koujalagi

. It returns an integer that is like a
file descriptor. In fact, under Windows, this
handle can be used with Read File and Write

#include <sys/types.h>
#include <sys/socket.h>

socket(int family, int type,
protocol);

Here "family" will be AF_INET for
IP communications, protocol will be zero,

will depend on whether TCP or
UDP is used. Two processes wishing to
communicate over a network create a socket
each. These are similar to two ends of a pipe

but the actual pipe does not yet exist.

 With Code:

Topology Construction

Link Failure Detection

Node Failure Detection

Backup Path Transmission

Topology Construction:

In this module we design a topology to
the link failure and node failure

problem. In the network, numerous nodes are
interconnected and exchange data or services
directly with each other nodes. Each node has
Connection with other nodes. Each node
details are maintained in the server system.
Link details also maintain in the server

Node Failure Detection:

In this module we find the Node failure
by using send control packets through links.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 582

If any node failure means acknowledgement
is not there. So we easily find the node
failure. Data does not reach destination. Then
we solve this problem by using alternate node
selection in the link.

Link Failure Detection:

 In this module we find the Link failure
by using Node failure result.. Each node has
more than one path. We find the shortest path
by using cost based technique and use that
shortest path. .If data does not reach
destination through this Link means that is
called link failure .we can solve this problem
by using backup path a

Backup Path Transmission:

 In this module we find more than one
shortest path for each transmission. And use
this path like Backup path for data
transmission. Suppose any problem in data
transmission means that sender use this
alternate path for transmission of data to
receiver node. So time consuming for
alternate path selection is reduced.

PROJECT CODES

Login Code
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import java.net.*;

 public class login extends JFrame
implements MouseListener
 {

 // Variables declaration
 private JLabel login;
 private JLabel nuser;
 private JLabel cancel;
 private JLabel jLabel5;

 private JLabel jLabel7;

 private JPanel contentPane;
 public static ServerSocket ssoc1;

 public static Socket sousoc1,ss1;
 static node sf1;
 public static String username="";
 static int portno;
 public login() throws Exception
 {
 super();
 initializeComponent();

 this.setVisible(true);
 }

 public void initializeComponent()
 {
 nuser= new JLabel("New
User");
 login = new JLabel("Login");
 cancel = new
JLabel("Cancel");
 jLabel5 = new JLabel();
 jLabel7 = new JLabel(new
ImageIcon("system.jpg"));

 contentPane =
(JPanel)this.getContentPane();

login.setCursor(Cursor.getPredefinedCursor(
Cursor.HAND_CURSOR));

 login.addMouseListener(this);

 nuser.setCursor(Cursor.getPredefined
Cursor(Cursor.HAND_CURSOR));

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 583

 nuser.addMouseListener(this);

 cancel.setCursor(Cursor.getPredefine
dCursor(Cursor.HAND_CURSOR));

 cancel.addMouseListener(this);

 contentPane.setLayout(null);

 contentPane.setBackground(new
Color(255, 255, 255));
 addComponent(contentPane, login,
25,25,70,18);
 addComponent(contentPane,
nuser, 125,25,70,18);
 addComponent(contentPane, cancel ,
227,25,70,18);

 addComponent(contentPane,
jLabel5, -1,203,495,31);
 addComponent(contentPane,
jLabel7, 10,50,500,200);

 this.setTitle("login");
 this.setLocation(new Point(19,
37));
 this.setSize(new
Dimension(500, 350));

 this.setDefaultCloseOperation(DO_N
OTHING_ON_CLOSE);
 this.setResizable(false);
 }

 /** Add Component Without a
Layout Manager (Absolute Positioning) */
 private void
addComponent(Container

container,Component c,int x,int y,int
width,int height)
 {
 c.setBounds(x,y,width,height);
 container.add(c);
 }

 public void
mousePressed(MouseEvent m)
 {
try
{
 if(m.getSource()==login)
 {

new userlogin(portno);
dispose();
 }
 if(m.getSource()==nuser)
 {
 new newuser(portno);
 dispose();
 }
 if(m.getSource()==cancel)
 {

 System.exit(0);
 }
}
catch (Exception e)
{
 e.printStackTrace();
}

 }
 public void
mouseClicked(MouseEvent m1)
 {

 }
 public void
mouseEntered(MouseEvent m2)
 {

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 584

 }
 public void
mouseExited(MouseEvent m3)
 {

 }
 public void
mouseReleased(MouseEvent m4)
 {

 }

 //=============================
Testing
================================/
/
 //=
=//
 //= The following main method is just for
testing this class you built.=//
 //= After testing,you may simply delete it.
=//

//===============================
================================
=======//
 public static void main(String[] args)
 {

 JFrame.setDefaultLookAndFeelDecor
ated(true);

 JDialog.setDefaultLookAndFeelDeco
rated(true);
 try
 {
 sf1=new node();
 new login();
 portno=new sender().login();
ssoc1=new ServerSocket(portno);

 while(true)
 {

 ss1=ssoc1.accept();

 sf1.receiver();
 }

 }

 catch (Exception ex)
 {

 System.out.println("Failed loading
L&F: ");
 System.out.println(ex);
 }

 }
 }

NewUser Code

 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import java.net.*;
 import java.util.*;
 /**
 * Summary description for login
 *
 */
 public class newuser extends JFrame
 {

 // Variables declaration
 private JLabel userlabel;
 private JLabel nodelabel;
 private JLabel passwordlabel;
 private JLabel jLabel5;
 private JTextField userfield;
 private JPasswordField
jPasswordField1;
 private JComboBox nodes;

 private JButton login;
 private JButton back;
 private JButton connection;

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 585

 private JPanel contentPane;
 public static ServerSocket ssoc1;

 public static Socket sousoc1,ss1;
 // End of variables declaration
static sender sf1;
 public static String
username="",pword="",nodename="";
 static int portno;
 Vector nodes1;
 public newuser(int portno) throws
Exception
 {
 super();
 sf1=new sender();
 sf1.portnodetails(portno);
 nodedetails();
 initializeComponent();

 this.setVisible(true);
 }
 public void nodedetails()throws Exception
 {
 nodes1=new Vector();
 nodes1=sf1.ndetails();
 }

 public void initializeComponent()
 {
 userlabel = new JLabel();
 nodelabel = new JLabel();
 passwordlabel = new JLabel();
 jLabel5 = new JLabel(new
ImageIcon("user.jpg"));
 userfield = new JTextField();
 jPasswordField1 = new
JPasswordField();
 nodes=new
JComboBox(nodes1);
 login = new JButton();
 back = new JButton();
 connection=new JButton();
 contentPane =
(JPanel)this.getContentPane();

 userlabel.setHorizontalAlignment(Sw
ingConstants.CENTER);

 userlabel.setHorizontalTextPosition(S
wingConstants.CENTER);
 userlabel.setText("Node
Name");

 passwordlabel.setHorizontalAlignmen
t(SwingConstants.CENTER);

 passwordlabel.setHorizontalTextPosit
ion(SwingConstants.CENTER);
 passwordlabel.setText("Pass
word");

nodelabel.setHorizontalAlignment(SwingCon
stants.CENTER);

 nodelabel.setHorizontalTextPosition(
SwingConstants.CENTER);
 nodelabel.setText("Nodes");

 //
 // userfield
 //

 userfield.addActionListener(new
ActionListener() {
 public void
actionPerformed(ActionEvent e)
 {

 userfield_actionPerformed(e);
 }

 });
 //
 // jPasswordField1
 //

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 586

 jPasswordField1.addActionListener(n
ew ActionListener() {
 public void
actionPerformed(ActionEvent e)
 {

 jPasswordField1_actionPerformed(e);
 }

 });
 //
 // login
 //
 login.setText("Submit");
 login.addActionListener(new
ActionListener() {
 public void
actionPerformed(ActionEvent e)
 {

 login_actionPerformed(e);
 }

 });
 //
 // clear
 //
 back.setText("Back");
 back.addActionListener(new
ActionListener() {
 public void
actionPerformed(ActionEvent e)
 {

 back_actionPerformed(e);
 }

 });

 connection.setText("Path");

 connection.addActionListener(new
ActionListener() {

 public void
actionPerformed(ActionEvent e)
 {
 try
 {

 if(!username.equals(nodename))
 {

 sf1.connection(username,nodename);

 connection.setEnabled(false);

 }
 else
 {

 JOptionPane.showMessageDialog(nul
l,"Please Enter the Proper value");

 }
 }
 catch
(Exception e2)
 {

 e2.printStackTrace();
 }

 }

 });

connection.setEnabled(false);
 nodes.setBackground(new
Color(251, 250, 250));
 nodes.addActionListener(new
ActionListener() {
 public void
actionPerformed(ActionEvent e)
 {

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 587

 nodes_actionPerformed(e);
 }

 });

 //
 // contentPane
 //
 contentPane.setLayout(null);
 addComponent(contentPane,
userlabel, 106,150,70,28);
 addComponent(contentPane,
nodelabel, 106,230,70,28);
 addComponent(contentPane,
passwordlabel,106,190,70,28);

 addComponent(contentPane,
userfield, 232,150,100,25);
 addComponent(contentPane,
nodes, 232,230,100,25);

 addComponent(contentPane,jPasswor
dField1, 232,190,100,25);

 addComponent(contentPane,
jLabel5, 380,150,100,200);

 addComponent(contentPane,
login, 50,300,100,28);
 addComponent(contentPane,
back, 150,300,100,28);
 addComponent(contentPane,
connection, 250,300,100,28);

 this.setTitle("User Account
Creation");
 this.setLocation(new Point(19,
37));
 this.setSize(new
Dimension(500, 370));

 this.setDefaultCloseOperation(DO_N
OTHING_ON_CLOSE);
 this.setResizable(false);
 }

 /** Add Component Without a
Layout Manager (Absolute Positioning) */
 private void
addComponent(Container
container,Component c,int x,int y,int
width,int height)
 {
 c.setBounds(x,y,width,height);
 container.add(c);
 }

 private void
userfield_actionPerformed(ActionEvent e)
 {

 System.out.println("\nuserfield_action
Performed(ActionEvent e) called.");

 }

 private void
jPasswordField1_actionPerformed(ActionEv
ent e)
 {

 System.out.println("\njPasswordField
1_actionPerformed(ActionEvent e) called.");

 }

 private void
login_actionPerformed(ActionEvent e)
 {
 try
 {

 username=userfield.getText();

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 588

 pword=jPasswordField1.getText();
sf1.userlogin(username,pword);
login.setEnabled(false);
 }
 catch (Exception e1)
 {
 }

 System.out.println("\nlogin_actionPer
formed(ActionEvent e) called.");
 // TODO: Add any handling
code here
 }

 private void
back_actionPerformed(ActionEvent m)
 {

 try
 {
new login();
dispose();
 }
 catch(Exception e)
 {
 }
 }

 private void
nodes_actionPerformed(ActionEvent e)
 {

 System.out.println("\njComboBox1_a
ctionPerformed(ActionEvent e) called.");

 Object o =
nodes.getSelectedItem();
 System.out.println(">>" +
((o==null)? "null" : o.toString()) + " is
selected.");
 // TODO: Add any handling
code here for the particular object being
selected

 nodename=o.toString();
 if
(!nodename.equals("select"))
 {

 connection.setEnabled(true);
 }
 else
 {

 connection.setEnabled(false);
 }
 }
 }

RESULT ANALYSIS
STEP 1: Compile the code.

STEP 2: Run the server.

STEP 3: Login 1st node.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 589

STEP 4: Create user account as new user.
We get the following windows.

 The user and server prompt updated
as shown above as you enter user details.

STEP 5: After entering user details login the
node with same details. As shown below.

 The port no: of the node which has
loggined is sent to the server. Thus the 1st
node named as “node a” is created. The
frame is shown below.

STEP 6: Now the 2nd user is logged in with
the “node b”. And the server gets the port
no: of this new node. The updates are as
shown below.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 590

 This node can link to the “node a”
with the help of select option and then path is
formed by selecting path button in the frame
shown below.

STEP 7: Next login the “node b” we get the
fame as shown below.

STEP 8: Similarly you can create any no: of
nodes dynamically.
STEP 9: Now select the any source node, say
“node b” and enter any data or message as
shown below. Also select any destination
node, say “node a”, and press send button.

 The shortest path from source to
destination is chosen.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 591

STEP 10: The data is moved from source to
destination along the shortest path. The
received frame at “node a” is shown below.

The updates at server, source and
destination nodes after data transfer is shown
below.

ADVANTAGES AND DISADVANTAGES

ADVANTAGES

• Since no global re-routing is
performed fast failure detection
mechanism is done.

• MRC guarantees recovery from any
single link or node failure.

• MRC makes no assumptions with
respect to the root cause of the failure.

DISADVANTAGES

• There will not be any assurance for
information to arrive at the target.

• Somehow it is time taking practice.
• It will not be having a accurate

information of breakdown spots.

CHAPTER 8:

 CONCLUSION

We have presented Multiple Routing
Configurations as an approach to achieve fast

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

MULTIPLE ROUTING CONFIGURATION FOR FAST IP NETWORK RECOVERY Ashok Koujalagi

P a g e | 592

recovery in IP networks. MRC is based on
providing the routers with additional routing
configurations, allowing them to forward
packets along routes that avoid a failed
component. MRC guarantees recovery from
any single node or link failure in an arbitrary
bi-connected network. By calculating backup
configurations in advance, and operating
based on locally available information only,
MRC can act promptly after failure
discovery.
MRC operates without knowing the root
cause of failure, i.e., whether the forwarding
disruption is caused by a node or link failure.
This is achieved by using careful link weight
assignment according to the rules we have
described. The link weight assignment rules
also provide basis for the specification of a
forwarding procedure that successfully solves
the last hop
problem.

The performance of the algorithm and
the forwarding mechanism has been
evaluated using simulations. We have shown
that MRC scales well: 3 or 4 backup
configurations is typically enough to isolate
all links and nodes in our test topologies.
MRC backup path lengths are comparable to
the optimal backup path lengths—MRC
backup paths are typically zero to two hops
longer. We have evaluated the effect MRC
has on the load distribution in the network
while traffic is routed in the backup
configurations, and we shave proposed a
method that minimizes the risk of congestion
after a link failure if we have an estimate of
the demand matrix. In the COST239
network, this approach gave a maximum link
load after the worst case link failure that was
even lower than after a full IGP re-
convergence on the altered topology. MRC
thus achieves fast recovery with a very
limited performance penalty.

REFERENCES

1. D. D. Clark, “The design philosophy of the
DARPA internet protocols,”
SIGCOMM, Computer Communications
Review, vol. 18, no. 4, pp. 106–
114, Aug. 1988.

2. A. Basu and J. G. Riecke, “Stability issues
in OSPF routing,” in
Proceedings of SIGCOMM, San Diego,
California, USA, Aug. 2001,
pp. 225–236.

3. C. Labovitz, A. Ahuja, A. Bose, and F.
Jahanian, “Delayed Internet
Routing Convergence,” IEEE/ACM
Transactions on Networking, vol. 9,
no. 3, pp. 293–306, June 2001.

4. C. Boutremans, G. Iannaccone, and C.
Diot, “Impact of link failures
on VoIP performance,” in Proceedings of
International Workshop on
Network and Operating System Support for
Digital Audio and Video,
2002, pp. 63–71.

