
 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 02
February 2017

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 180

Data Sharing For Auditing Efficiency in Cloud
Computing

Raya Srinivasarao1& SK Anjaneyulu Babu2
1
PG Scholar, Dept of MCA,QIS College Of Engineering And Technology, Prakasam, AP.

2
 Assistant Professor, Dept of MCA, QIS College Of Engineering And Technology, Prakasam ,AP.

Abstract- the load rebalancing problem in cloud

computing. The main objective of the paper is to

Enhance distributed load rebalancing algorithm to

cope with the load imbalance factor, movement cost,

and algorithmic overhead. The load rebalance

algorithm is compared against a centralized

approach in a production system and the

performance of the proposal implemented in the

Hadoop distributed file system for cloud computing

applications. the cloud applications process large

amount of data to provide the desired results. Data

volumes to be processed by cloud applications are

growing much faster than computing power. This

growth demands on new strategies for processing
and analysing the information. The project explores

the use of Hadoop Map Reduce framework to

execute scientific workflows in the cloud. Cloud

computing provides massive clusters for efficient

large computation and data analysis. In such file

systems, a file is partitioned into a number of file

chunks allocated in distinct nodes so that Map

Reduce tasks can performed in parallel over the

nodes to make resource utilization effective and to

improve the response time of the job. In large failure

prone cloud environments files and nodes are

dynamically created, replaced and added in the

system due to which some of the nodes are over

loaded while some others are under loaded. It leads

to load imbalance in distributed file system. To

overcome this load imbalance problem, a fully

distributed Load rebalancing algorithm has been

implemented, which is dynamic in nature does not

consider the previous state or behaviour of the
system (global knowledge) and it only depends on

the present behaviour of the system and estimation

of load, comparison of load, stability of different

system, performance of system, interaction n

between the nodes, nature of load to be transferred,

selection of nodes and network traffic. The current

Hadoop implementation assumes that computing

nodes in a cluster are homogeneous in nature.

I. Introduction

Cloud computing refers to delivery of computer

resources from a remote place based on user needs.

Network connections are necessary to access

information and utilize resources. According to

Gartner [1], cloud computing can be defined as, a

style of computing, where massively scalable IT-

enabled capabilities are delivered „as a service‟ to

external customers using Internet technologies.

According to the Seccombe [2] and National

Institute of Standards & Technology [3], guidelines

for cloud computing, it has four different

deployment models namely private, community,

public and hybrid. Performance, security, data

locality to both cloud architects and end users are the

key features of public model. Increase in the

challenges on how to transfer and where to store and

compute data are the issues caused by large

distributed file systems in cloud computing. Cloud

Computing Technologies such as Map Reduce

paradigm [4], virtualization [5] and Distributed File

Systems ([6], [7]) are used to achieve scalability and

reliability in clouds. Hadoop File Systems (HDFS)

and Google File Systems (GFS) are used to

overcome the issues which arise in achieving those

factors .HDFS cluster consist of single name node

and a server manages the file system namespace and

regulates access to files. Load balancing is the main

issue in large scale distributed computing. It is the

process of distributing tasks to all nodes involved in

cloud computing. Efficient allocation of resources to

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 02
February 2017

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 181

every computing task helps to achieve resource

utilization ratio and high user satisfaction.

Minimizing resource consumption, avoiding

bottlenecks, implementing fail-over, enabling

scalability, reducing network inconsistencies and

solving network traffic are the main goals of load

computing. Whole cloud gets fail while analyzing

existing system clouds performance bottleneck due

to failure of central node. Functional difficulties and

technical difficulties are caused because of those

failures. Cloud computing allocate resources

dynamically, which connects and add thousands of

nodes together. The main goal is to allocate files to

these nodes, for avoiding heavy nodes that files are

uniformly distributed to these nodes. Load balancing

provides maximization of network bandwidth,

reduction of network traffic and network

inconsistencies. We can add, delete and update

nodes dynamically for heterogeneity of the nodes.

Heterogeneity of the nodes will increase the

scalability and system performance. In Distributed

File System the main functionalities of nodes is to

serve computing and storage functions. Cloud

computing is a relatively new way of referring to the

use of shared computing resources, and it is an

alternative to having local servers handle

applications. Cloud computing groups together large

numbers of computer servers and other resources

and typically offers their combined capacity on an

on-demand, pay-per-cycle basis without

sophisticated deployment and management of

resources. The end users of a cloud computing

network usually have no idea where the servers are

physically located, they just spin up their application

and start working. This flexibility is the key

advantage to cloud computing, and what

distinguishes it from other forms of grid or utility

computing and software as a service (SaaS). The

ability to launch new instances of an application

with minimal labor and expense allows application

providers to scale up and down rapidly, recover from

a failure, bring up development or test instances, and

roll out new versions to the customer base.

Distributed file systems are key building blocks for

cloud computing applications based on the Map

Reduce J. Deanet all [1] programming paradigm.

Map Reduce programs are designed to compute

large volumes of data in a parallel fashion. This

requires dividing the workload across a large

number of machines. Hadoop provides a systematic

way to implement this programming paradigm. The

computation

takes a set of input key/value pairs and produces a

set of output key/value pairs. The computation

involves two basic operations: Map and Reduce. The

Map operation, written by the user, takes an input

pair and produces a set of intermediate key/value

pairs. The Map Reduce library groups together all

intermediate values associated with the same

intermediate Key #1 and passes them to the Reduce

function. The Reduce function, also written by the

user, accepts an intermediate Key #1 and a set of

values for that key. It merges together these values

to form a possibly smaller set of values. Typically

just an output value of 0 or 1 is produced per Reduce

invocation. The intermediate values are supplied to

the user's Reduce function via an iterator (an object

that allows a programmer to traverse through all the

elements of a collection regardless of its specific

implementation. The proposed fully distributed load

rebalancing algorithm can be integrated with the

Hadoop [3] Single-Node Cluster or Multi-Node

Cluster to enhance the performance of the

NameNode in balancing the loads of storage nodes

present in

the cluster. Figure 1 represents a typical Single-

Node Hadoop Cluster. It have mainly three

components, one is master, user and slave nodes.

Master will handle two keys of the functiuons

Hadoop: storing lots of data (HDFS), and running

parallel computations on all that data (Map Reduce).

It will store the data according to data storage

function (HDFS), while the Job Tracker oversees

and coordinates the parallel processing of data using

Map Reduce. Slave nodes will be consider the

packets and it’s motion on the data . Each slave runs

both a Data Node and Task Tracker daemon that

communicate with and receive instructions from

their master nodes. The demon trackers will be

works background, the Data Node daemon a slave to

the Name Node. Client machine will have hadoop

s/w and it’s supporting hardware and it’s supporting

software’s, but are neither a Master nor a Slave.

Instead, the role of the Client machine is to load data

into the cluster, submit Map Reduce jobs describing

how that data should be processed and then retrieve

or view the results of the job when it’s finished. In

smaller clusters (~40 nodes) you may have a single

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 02
February 2017

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 182

physical server playing multiple roles, such as both

Job Tracker and Name Node.

II. Related work

Data Balancing on Cloud

an associated implementation for processing and

generating large data sets. Users specify a map

function that processes a key/value pair to generate a

set of intermediate key/value pairs, and a reduce

function that merges all intermediate values

associated with the same intermediate key. Many

real world tasks are expressible in this model. The

map and reduce primitives present in Lisp and many

other functional languages. We realized that most of

our computations involved applying a map operation

to each logical ―record‖ in our input in order to

compute a set of intermediate key/value pairs, and

then applying a reduce operation to all the values

that shared the same key, in order to combine the

derived data appropriately. The functional model

with user specified map and reduce operations

allows us to parallelize large computations easily

and to use re-execution as the primary mechanism

for fault tolerance. Programs written in this

functional style are automatically parallelized and

executed on a large cluster of commodity machines.

The run-time system takes care of the details of

partitioning the input data, scheduling the program’s

execution across a set of machines, handling

machine failures, and managing the required inter-

machine communication. This allows programmers

without any experience with parallel and distributed

systems to easily utilize the resources of a large

distributed system. Distributed file systems are key

building blocks for cloud computing applications

based on the MapReduce programming paradigm. In

such file systems, nodes simultaneously serve

computing and storage functions; a file is partitioned

into a number of chunks allocated in distinct nodes

so that MapReduce tasks can be performed in

parallel over the nodes. The implementation of

MapReduce runs on a large cluster of commodity

machines and is highly scalable: a typical

MapReduce computation processes many terabytes

of data on thousands of machines. Programmers find

the system easy to use: hundreds of MapReduce

programs have been implemented and upwards of

one thousand MapReduce jobs are executed on

Google’s clusters every day. The MapReduce

programming model has been successfully used at

Google for many different purposes. The model is

easy to use, even for programmers without

experience with parallel and distributed systems,

since it hides the details of parallelization, fault-

tolerance, locality optimization, and load balancing.

Second, a large variety of problems are easily

expressible as MapReduce computations. For

example, MapReduce is used for the generation of

data for Google’s production web search service, for

sorting, for data mining, for machine learning, and

many other systems. Third, we have developed an

implementation of MapReduce that scales to large

clusters of machines comprising thousands of

machines. The implementation makes efficient use

of these machine resources and therefore is suitable

for use on many of the large computational problems

encountered at Google. So MapReduce processes

many terabytes of data on thousands of machines.

Easy to use scalable programming model for large-

scale data processing on clusters. It achieves

efficiency through disk-locality and also achieves

fault-tolerance through replication. Movement.

Second, it can avoid transferring loads across high-

latency wide area links, thereby enabling fast

convergence on load balance and quick response to

load imbalance. To use proximity information in

load balancing the main contributions are: 1)

Relying on a self-organized, fully distributed k-ary

tree structure constructed on top of a DHT, load

balance is achieved by aligning those two skews in

load distribution and node capacity inherent in P2P

systems. 2) Proximity information is used to guide

virtual server reassignments such that virtual servers

are reassigned and transferred between physically

close heavily loaded nodes and lightly loaded nodes,

thereby minimizing the load movement cost and

allowing load balancing to perform efficiently.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 02
February 2017

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 183

Fig: single node cluster

The load rebalancing problem in distributed file

systems specialized for large scale, dynamic and

data-intensive clouds. Our objective is to allocate the

chunks of files as uniformly as possible among the

nodes such that no node manages an excessive

number of chunks.

III. Balancing for DHT-Based Systems

DHT based P2P systems offer a distributed hash

table (DHT) abstraction for object storage and

retrieval. Many solutions have been proposed to

tackle the load balancing issue in DHT-based P2P

systems. However, all these solutions either ignore

the heterogeneity nature of the system, or reassign

loads among nodes without considering proximity

relationships, or both. To tackle this issue an

efficient, proximity-aware load balancing scheme by

using the concept of virtual servers. The goal is to

ensure fair load distribution over nodes proportional

to their capacities, but also to minimize the load-

balancing cost (e.g., bandwidth consumption due to

load movement) by transferring virtual servers

between heavily loaded nodes and lightly loaded

nodes in a proximity-aware fashion. To achieve the

latter goal by using proximity information to guide

virtual server reassignments. There are two main

advantages of a proximity-aware load balancing

scheme. First, from the system perspective, a load

balancing scheme bearing network proximity in

mind can reduce the bandwidth consumption (e.g.,

bisection backbone bandwidth) dedicated to load

IV.Peer-to-Peer Lookup for Internet Applications

ADistributed System-to-System applications that

can store in data items. The cloud Protocal can

solve the this problem using decentralized

Networking systems. Cloud can support Single

operation : given a key, it can assign a map to key .

Data association will be mapped with all the part of

the application data . Chord simplifies the design of

System-to-System and applications based on it by

pointing different problems. Those are as follows :

Load balance: Cloud act as decentralized

distribution system to spread over the networks so it

can get all the keys of the cloud and it’s applications

.

Decentralization: Cloud is fully distributed ., No

node is more important than any other key nodes .

This improves robustness and makes Chord

appropriate for loosely-organized System -to-

System applications.

Scalability: even very large system are flexble in

the cloud computing ., so it can communicate with

each other components . No parameter tuning is

required to achieve this scaling.

Availability: Cloud automatically adjust it’s internal

tables and data components. Because map reducing

algoritham will take a relation between node to node

and it’s formation . so that data will be associated

with each other and it’s keys .so data will be avialble

with all formats for the customers..

Flexible naming: cloud place the flexible formation

on the node : The cloud key space is very plane . it

can givce the information how it can associate and

form the flexble flow of the data .. it will follow the

hash function mapping keys and it’s modification

among the data and it’s flows. With high probability

the hash function balances load (all nodes receive

roughly the same number of keys). Also with high

probability, when an Nth node joins (or leaves) the

network, only a O(1=N) fraction of the keys are

moved to a different location—this is clearly the

minimum necessary to maintain a balanced load.

Chord improves the scalability of consistent hashing

by avoiding the requirement that every node know

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 02
February 2017

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 184

about every other node. A Chord node needs only a

small amount of ―routing‖ information about other

nodes. Because this information is distributed, a

node resolves the hash function by communicating

with other nodes. In an N-node network, each node

maintains information about only O(logN) other

nodes, and a lookup requires O(logN) messages. The

consistent hash function assigns each node and key

an m bit identifier using SHA-1 [10] as a base hash

function. A node’s identifier is chosen by hashing

the node’s IP address, while a key identifier is

produced by hashing the key. We will use the term

―key‖ to refer to both the original key and its image

under the hash function, as the meaning will be clear

from context. Similarly, the term ―node‖ will refer to

both the node and its identifier under the hash

function. The identifier length m must be large

enough to make the probability of two nodes or keys

hashing to the same identifier negligible. Consistent

hashing assigns keys to nodes as follows. Identifiers

are ordered on an identifier circle modulo 2m. Key k

is assigned to the first node whose identifier is equal

to or follows (the identifier of) k in the identifier

space. This node is called the successor node of key

k, denoted by successor(k). If identifiers are

represented as a circle of numbers from 0 to 2m- 1,

then successor(k) is the first node clockwise from k.

In this paper the Chord uses consistent hashing to

assign keys to Chord nodes. Consistent hashing

tends to balance load, since each node receives

roughly the same number of keys, and requires

relatively little movement of keys when nodes join

and leave the system. Chord will be a valuable

component for peer-to-peer, large-scale distributed

applications and also adapts efficiently as nodes join

and leave the system, and can answer queries even if

the system is continuously changing. Chord acts as a

distributed hash function, spreading keys evenly

over the nodes; this provides a degree of natural load

balance.

V. Global Load Balancing in Peer-to-Peer

Systems

A new framework, called Histogram-based Global

Load Balancing (HiGLOB) to facilitate global load

balancing in structured P2P systems. Each node P in

HiGLOB has two key components. The first

component is a histogram manager that maintains a

histogram that reflects a global view of the

distribution of the load in the system. The histogram

stores statistical information that characterizes the

average load of no overlapping groups of nodes in

the P2P network. It is used to determine if a node is

normally loaded, overloaded, or under loaded. The

second component of the system is a load balancing

manager that takes actions to redistribute the load

whenever a node becomes overloaded or under

loaded. The load-balancing manager may

redistribute the load both statically when a new node

joins the system and dynamically when an existing

node in the system becomes overloaded or under

loaded. the cost of constructing and maintaining

them may be expensive especially in dynamic

systems. As a result, we introduce two techniques

that reduce the maintenance cost. . Reduce the cost

of constructing histogram. Constructing a histogram

for a new node may be expensive since it requires

histogram information from all neighbor nodes.

Additionally, the histograms of the new node’s

neighbors also need to be updated since adding a

new node to a group of nodes changes the average

load of that group. Constructing and maintaining

histograms may therefore be expensive if nodes join

and leave the system frequently. In light of the fact

that every new node in the P2P system must find and

notify its neighbor nodes about its existence while

these neighbor nodes need to send their information

to the new node to setup connections after that, we

suggest that histogram information can be

piggybacked with messages used in this process. In

this way, we can avoid sending separate histogram

messages and totally eliminate the effect of node

join on the histogram construction of the new node

and histogram update of its neighbor nodes. The

overhead cost of using histograms is now solely

based on histogram update messages caused by

changing of load at nodes in the system. Maintaining

histograms can be expensive since any load change

at a node causes an update to be propagated to all

other nodes in the system. To avoid this propagation,

we suggest that we do not need to keep exact

histogram values. We only need to keep

approximate values in the histogram. A node only

needs to send load information to other nodes when

there is a significant change in either its load or the

average load of a non-overlapping group.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848
e-ISSN: 2348-795X

Volume 04 Issue 02
February 2017

Available online:https://edupediapublications.org/journals/index.php/IJR/ P a g e | 185

VI. Conclusion

In this paper the load rebalancing problem in large-

scal, dynamic and distributed file systems in clouds

has been presented. This is our first paper in which

only the overview of load rebalancing algorithm

have been done and we will provide a load balanced

cloud, then only the resources can be well utilized

and provisioned, maximizing the performance of

MapReduce-based applications. The load-balancing

algorithm to deal with the load rebalancing problem

in large-scale, dynamic, and distributed file systems

in clouds has been presented in this paper. The

proposal strives to balance the loads of data nodes

and task nodes efficiently. Then only can able to

distribute the file chunks as uniformly as possible.

The proposed algorithm operates in a distributed

manner in which nodes perform their load-balancing

tasks independently without synchronization or

global knowledge regarding the system. In a

loadbalanced cloud, the resources can be well

utilized and provisioned, maximizing the

performance of MapReduce-based applications. The

algorithm also outperforms the competing

distributed algorithm in terms of load imbalance

factor, movement cost, and algorithmic overhead.

References

[1] 1 J. Dean and S. Ghemawat, ―MapReduce:

Simplified Data Processing on Large Clusters,‖ in Proc.

6th Symp. Operating System Design and Implementation

(OSDI’04), Dec. 2004, pp. 137–150.

[2] 2 G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels, ―Dynamo:

Amazon’s Highly Available Key-value Store,‖ in Proc.

21st ACM Symp.

[3] 3 Hadoop Distributed File System,

―RebalancingBlocks,‖ http://develop

er.yahoo.com/hadoop/tutorial/module2.html#rebalancing.

[4] HDFSFederation, http://h adoop.apach

e.org/commo n/docs/r0 .23.0/hadoop-yarn/hadoop-yarn-

site/Federation.html.

[5] D. Karger and M. Ruhl, ―Simple Efficient Load

Balancing Algorithms for Peer-to-Peer Systems,‖ in Proc.

16th ACM Symp. Parallel Algorithms and Architectures

(SPAA’04), June 2004, pp. 36–43.

[6] M. Raab and A. Steger, ―Balls into Bins—A

Simple and Tight Analysis,‖LNCS 1518, pp. 159–

170, Oct. 1998.

[7] M. Jelasity, A. Montresor, and O. Babaoglu,

―Gossip-Based Aggregationin Large Dynamic Networks,‖

ACM Trans. Comput. Syst., vol. 23, no. 3,pp. 219–252,

Aug. 2005.

[8] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.

Kermarrec, and M. V. Steen,―Gossip-Based Peer

Sampling,‖ ACM Trans. Comput. Syst., vol. 25, no.

3,Aug. 2007.

[9] H. Sagan, Space-Filling Curves, 1st ed.

Springer,1994.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi,

C. Tian, Y. Zhang, andS. Lu, ―BCube: A High

Performance, Server-Centric Network Architecturefor

Modular Data Centers,‖ in Proc. ACM SIGCOMM’09,

Aug. 2009, pp.63–74.

[11] H. Abu-Libdeh, P. Costa, A. Rowstron, G.

O’Shea, and A. Donnelly,―Symbiotic Routing in Future

Data Centers,‖ in Proc. ACM SIGCOMM’10,

Aug. 2010, pp. 51–62.

[12] S. Surana, B. Godfrey, K. Lakshminarayanan, R.

Karp, and I. Stoica,―Load Balancing in Dynamic

Structured P2P Systems,‖ PerformanceEvaluation, vol.

63, no. 6, pp. 217–240, Mar. 2006.

Authors Profile:

SK Anjaneyulu Babu

Asst Professor, M.C.A

Qis College Of Engineering & Technology

Vengamukkalapalem,Ongole, Prakasam ,AP.

 Raya Srinivasarao,M.C.A

Qis College Of Engineering & Technology

Vengamukkalapalem,Ongole, Prakasam ,AP.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://develop/

