

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017

Thermal Analysis of Liquid Hydrogen Turbine Inlet Manifold Using CFD

Ganga Raghavender Goud
roll number: 14tq1d2124
Thermal Engineering
Siddhartha Inistitute of Technology and Sciences
Ghatkesar, Eangareddy
Telangana
India

G. NARESH BABU, ASSIATANT PROFESSOR, SIDDHARTHA INSTITUTE OF TECHNOLOGY AND SCIENCES, EXPERIENCE: 3 YEARS

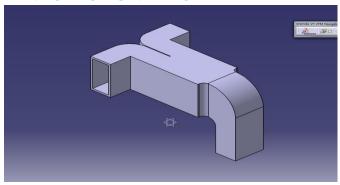
ABSTRACT:

This study takes a look at the design process of the air intake system of the Liquid Hydrogen Turbine Inlet Manifold. Differences in turbine outputs and applications require different designs of intake-air manifolds in order to achieve the best volumetric efficiency and thus the best turbine performance. In the present work, the flow characteristics of liquid hydrogen flowing in various designs of air-intake manifold will be studied. The study is done by three dimensional simulations of the flow of air within two designs of air-intake manifold into the turbine by using commercial CFD software, ANSYS. The simulation results are validated by an experimental study performed using a flow bench. The study reveals that the variations in the geometry of the air-intake system can result in a difference of up to 20% in the mass flow rate of air entering the combustion chamber.

The design will be done in a 3D software Catia and analysis carried in FEA software called Ansys.

Keywords: Thermal Analysis, Turbine, CFD.

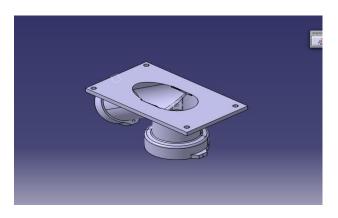
I. INTRODUCTION


A turbine is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. A turbine is a turbo machine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor. Early turbine examples are windmills and waterwheels.

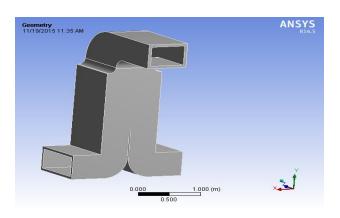
TURBINE INTAKE MANIFOLD

Intake manifold is generally is a component of internal combustion engine or a turbine, which allows the necessary charge, in case of a internal combustion engine, or a work material like, steam or gas or water or any other fluid, in case of the turbine, to drive the machine to produce some output power. Intake manifolds are generally manufactured with openings for valves to allow the flow.

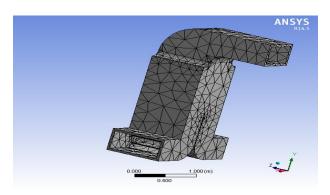
In this study, we considered the intake manifold of a liquid hydrogen turbine. The intake manifold of a turbine is subjected to high stresses. So, it is necessary, to study the mechanical behavior of body of intake manifolds.

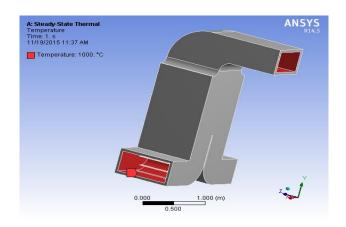

DESIGN OF HYDROGEN TURBINE INLET MANIFOLD ORIGINAL MODEL

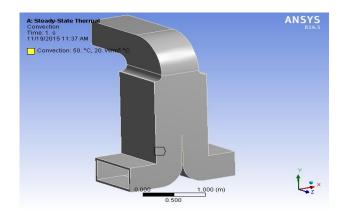
DESIGN OF MODIFIED MODEL

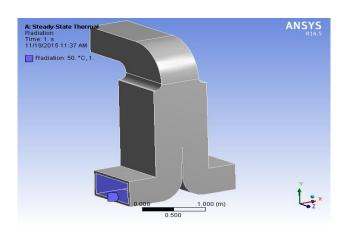


p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017

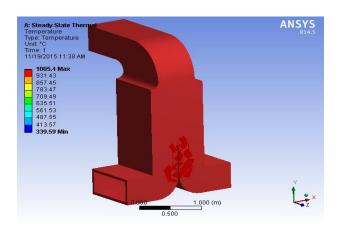


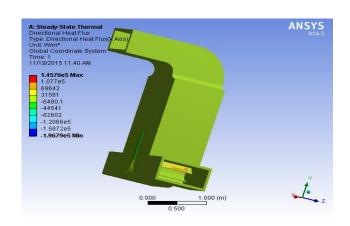

THERMAL ANALYSIS OF ORGINAL MODEL WITH CAST IRON

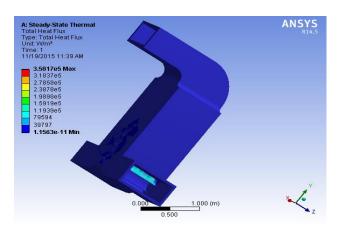

IMPORT MODEL

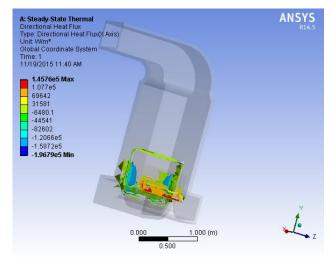


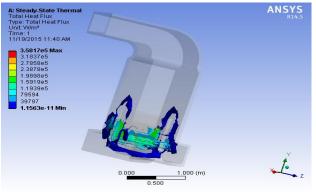
MESH MODEL



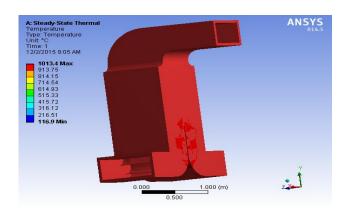

INPUT DATA TEMPERATURE


Available at https://edupediapublications.org/journals


p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017

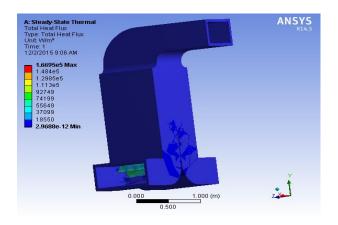


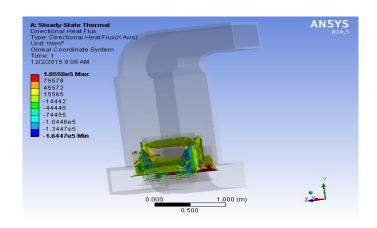
TOTAL HEAT FLUX

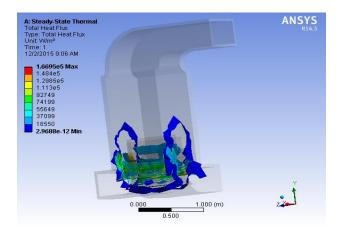


THERMAL ANALYSIS OF ORIGINAL MODEL WITH STAIN LESS STEEL

TEMPERATURE

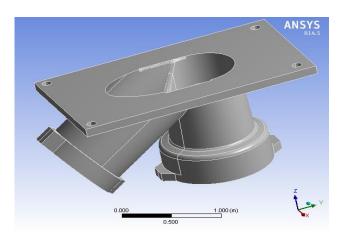

TOTAL HEAT FLUX

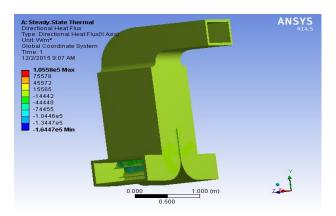

DIRECTIONAL HEAT FLUX



Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017

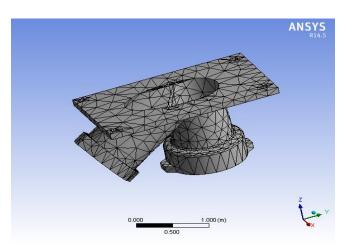


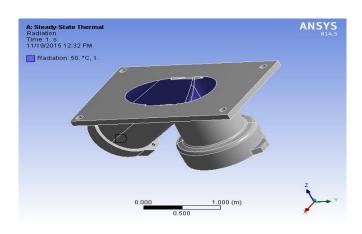


THERMAL ANALYSIS MODIFIED MODEL WITH CAST IRON

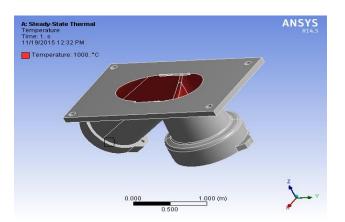
IMPORT MODEL

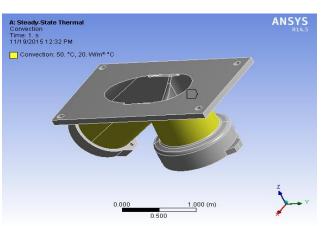
DIRECTIONAL HEAT FLUX

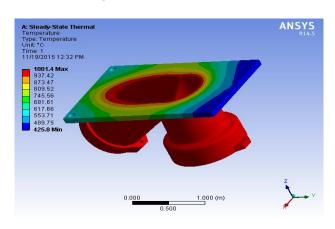




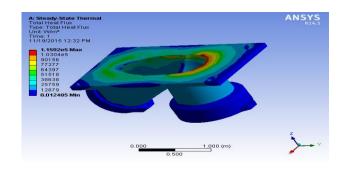
Available at https://edupediapublications.org/journals


p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017


MESH MODEL

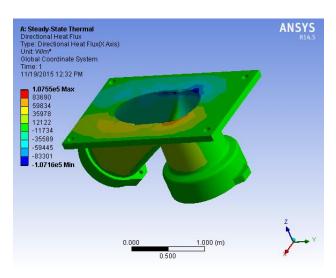


INPUT DATA



TEMPERATURE

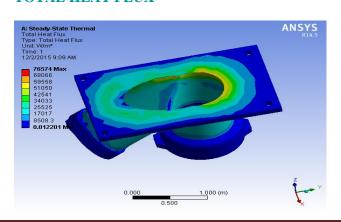
TOTAL HEAT FLUX



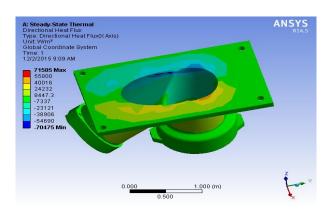
Available at https://edupediapublications.org/journals


p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017

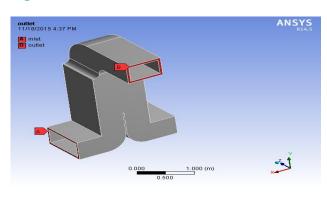
DIRECTIONAL HEAT FLUX



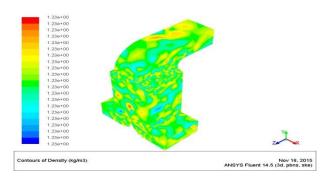
THERMAL ANALYSIS OF MODIFIED MODEL WITH STAIN LESS STEEL


TEMPERATURE

TOTAL HEAT FLUX

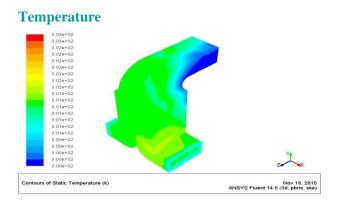


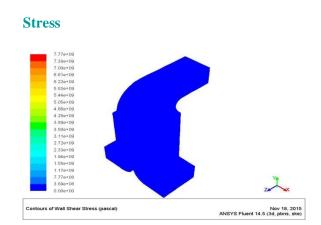
DIRECTIONAL HEAT FLUX

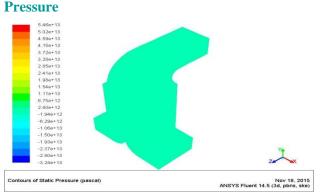


CFD ANALYSIS OF ORIGINAL MODEL

Input data

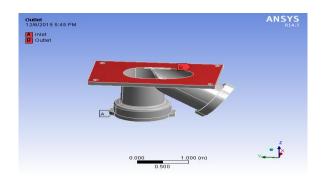

Density

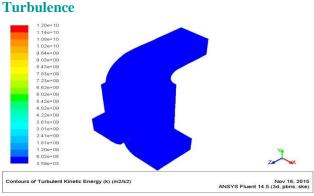


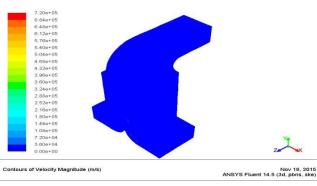


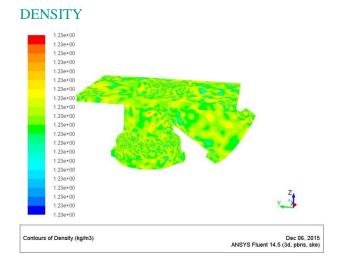
Available at https://edupediapublications.org/journals

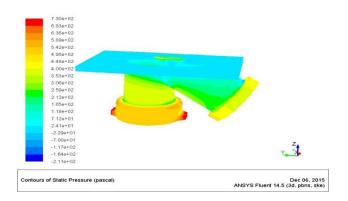
p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017

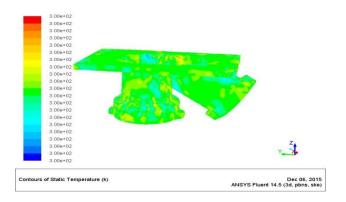




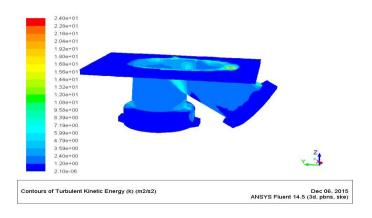


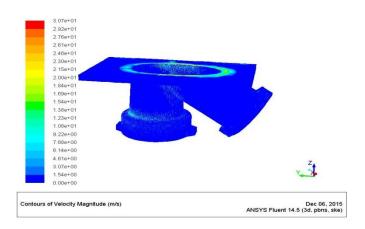

INPUT DATA

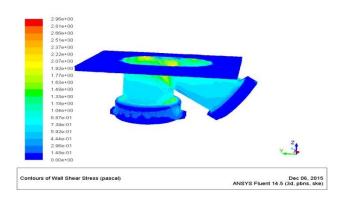



Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017


PRESSURE


TEMPERATURE


TURBULENCE

VELOCITY

STRESS

RESULTS TABLE

ORIGINAL MODEL

	TEMPERA		HEAT FLUX		DIRECTIONAL		
	TURE				HEAT FLUX		
	MI	MA	MIN	MAX	MIN	MAX	
	N	X					
CA	339	1005	1.16	3.58E	-	1.46E+	
ST	.59	.4	E-11	+05	1.97E+	05	
IRO					05		
N							
ST	-	1013	2.96	6905	-	1.0558	
AIN	106	.4	88E-	6	1.6447	E+05	
LES	.6		12		E+05		
S							
STE							
EL							

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017

MODIFIED MODEL:

	TEMI	PERA	HEAT FLUX		DIRECTIONA		
	TURE				L HEAT		
					FLUX		
	MIN	MA	MIN	MAX	MIN	MAX	
		X					
CAS	425.	100	0.012	1.16E	-	1.08E	
T	8	1.4	485	+05	1.07E	+05	
IRO					+05		
N							
STA	142.	100	0.012	76574	-	71585	
IN	71	2.8	201		70475		
LES							
S							
STE							
EL							

CFD Analysis

	PRESS		DE	TEMPE		KINETI		VE	S
	URE		NS	RATUR		C		LO	Н
			IT	E		ENERG		CIT	Е
						Y		Y	A
								MA	R
								GNI	ST
								TU	R
								DE	ES
									S
	MI	M		MI	M	MI	M		
	N	A		N	A	N	A		
		X			X		X		
OR	1	5.	1.2	3.	3.	3.	1.	7.20	7.
IGI	3.	46	3E	00	03	59	20	E+0	77
NA	24	E+	+0	E+	E+	E+	E+	5	E+
L	E+	13	0	02	03	03	10		09
	13								
M	-	7.	1.2	3.	3.	2.	2.	3.07	2.
OD	2.	3E	3E	00	00	10	40	E+0	96
IFI	11	+0	+0	E+	E+	E-	E+	1	E+
ED	E+	2	0	02	02	06	01		00
	02								

CONCLUSION

This study takes a look at the design process of the air intake system of the Liquid Hydrogen Turbine Inlet Manifold. Differences in turbine outputs and applications require different designs of intake-air manifolds in order to achieve the best volumetric efficiency and thus the best turbine performance. In the present work, the flow characteristics of liquid hydrogen flowing in various designs of air-intake manifold will be studied. The study is done by three dimensional simulations of the flow of air within two designs of air-intake manifold into the turbine by using commercial CFD software, ANSYS.

Here we have done thermal analysis on the original model and even on the modified model with the materials cast iron and stainless steel, as if we compare the results obtained we have plotted them in a tubular form, so by the results we can conclude that modified model with stainless steel is the best material as it is having very low heat flux and even the directional heat flux.

As we observe here all the results which are obtained here are plotted in to tabular and graph form, as we can observe in all the variants here the modified model is considered as the best model as here there is a lot of difference in stress and velocity and temperature difference. As for the modified model it is very low, so here we can conclude that the modified model is the best model.

REFRENCES

- Journal of Propulsion and Power, Volume 24, Issues 4-6, American Institute of Aeronautics and Astronautics, 2008
- Modern Turbine Practice: And Water-power Plants, John Wolf Thurso, Allan V. Garratt, D. Van Nostrand Company, 1905
- 3. Turbines Compressors and Fans, S. M. Yahya, Tata McGraw-Hill Education, 1987
- 4. Gas Turbine Performance, Philip Walsh, Paul Fletcher, John Wiley & Sons, 15-Apr-2008

Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848 e-ISSN: 2348-795X Volume 04 Issue 02 February 2017

 Gas Turbines: A Handbook of Air, Land and Sea Applications, Claire Soares, Elsevier, 23-Oct-2014

AUTHORS

Ganga Raghavender Goud
roll number: 14tq1d2124
Thermal Engineering
Siddhartha Inistitute of Technology and Sciences
Ghatkesar, Eangareddy
Telangana
India

G. NARESH BABU,
ASSIATANT PROFESSOR,
SIDDHARTHA INSTITUTE OF
TECHNOLOGY AND SCIENCES,
EXPERIENCE: 3 YEARS