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Abstract: Malware is pervasive in networks, 

and poses a critical threat to network 

security. However, we have very limited 

understanding of malware behavior in 

networks to date. In this paper, we 

investigate how malware propagate in 

networks from a global perspective. We 

formulate the problem, and establish a 

rigorous two layer epidemic model for 

malware propagation from network to 

network. Based on the proposed model, our 

analysis indicates that the distribution of a 

given malware follows exponential 

distribution, power law distribution with a 

short exponential tail, and power law 

distribution at its early, late and final stages, 

respectively. Extensive experiments have 

been performed through two real-world 

global scale malware data sets, and the 

results confirm our theoretical findings 

1. INTRODUCTION 

MALWARE are malicious software 

programs deployed by cyber attackers to 

compromise computer systems by exploiting 

their security vulnerabilities. Motivated by 

extraordinary financial or political rewards, 

malware owners are exhausting their energy 

to compromise as many networked 

computers as they can in order to achieve 

their malicious goals. A compromised 

computer is called a bot, and all bots 

compromised by a malware form a botnet. 

Botnets have become the attack engine of 

cyber attackers, and they pose critical 

challenges to cyber defenders. In order to 

fight against cyber criminals, it is important 

for defenders to understand malware 

behavior, such as propagation or 

membership recruitment patterns, the size of 

botnets, and distribution of bots. To date, we 

do not have a solid understanding about the 

size and distribution of malware or botnets. 
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Researchers have employed various methods 

to measure the size of botnets, such as 

botnet infiltration [1], DNS redirection [3], 

external information [2]. These efforts 

indicate that the size of botnets varies from 

millions to a few thousand. There are no 

dominant principles to explain these 

variations. As a result, researchers 

desperately desire effective models and 

explanations for the chaos. Dagon et al. [3] 

revealed that time zone has an obvious 

impact on the number of available bots. 

Mieghem et al. [4] indicated that network 

topology has an important impact on 

malware spreading through their rigorous 

mathematical analysis. Recently, the 

emergence of mobile malware, such as 

Cabir [5], Ikee [6], and Brador [7], further 

increases the difficulty level of our 

understanding on how they propagate. More 

details about mobile malware can be found 

at a recent survey paper [8]. To the best of 

our knowledge, the best finding about 

malware distribution in large-scale networks 

comes from Chen and Ji [9]: the distribution 

is non-uniform. All this indicates that the 

research in this field is in its early stage. The 

epidemic theory plays a leading role in 

malware propagation modelling. The current 

models for malware spread fall in two 

categories: the epidemiology model and the 

control theoretic model. The control system 

theory based models try to detect and 

contain the spread of malware [10], [11]. 

The epidemiology models are more focused 

on the number of compromised hosts and 

their distributions, and they have been 

explored extensively in the computer 

science community [12], [13], [14]. Zou et 

al. [15] used a susceptible-infected (SI) 

model to predict the growth of Internet 

worms at the early stage. Gao and Liu [16] 

recently employed a susceptible-infected-

recovered (SIR) model to describe mobile 

virus propagation. One critical condition for 

the epidemic models is a large vulnerable 

population because their principle is based 

on differential equations. 

More details of epidemic modelling can be 

find in [17]. As pointed by Willinger et al. 

[18], the findings, which we extract from a 

set of observed data, usually reflect parts of 

the studied objects. It is more reliable to 

extract theoretical results from appropriate 

models with confirmation from sufficient 

real world data set experiments. We practice 

this principle in this study. 
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In this paper, we study the distribution of  

malware in terms of networks (e.g., 

autonomous systems (AS), ISP domains, 

abstract networks of smartphones who share 

the same vulnerabilities) at large scales. In 

this kind of setting, we have a sufficient 

volume of data at a large enough scale to 

meet the requirements of the SI model.  we 

break our model into two layers. First of all, 

for a given time since the breakout of a 

malware, we calculate how many networks 

have been compromised based on the SI 

model. Second, for a compromised network, 

we calculate how many hosts have been 

compromised since the time that the network 

was compromised. With this two layer 

model in place, we can determine the total 

number of compromised hosts and their 

distribution in terms of networks. Through 

our rigorous analysis, we find that the 

distribution of a given malware follows an 

exponential distribution at its early stage, 

and obeys a power law distribution with a 

short exponential tail at its late stage, and 

finally converges to a power law 

distribution. We examine our theoretical 

findings through two large-scale real-world 

data sets: the Android based malware [19] 

and the Conficker. The experimental results 

strongly support our theoretical claims. To 

the best of our knowledge, the proposed two 

layer epidemic model and the findings are 

the first work in the field. 

Our contributions are summarized as 

follows. We propose a two layer malware 

propagation model to describe the 

development of a given malware at the 

Internet level. Compared with the existing 

singlelayer epidemic models, the proposed 

model represents malware propagation 

better in large-scale networks. We find the 

malware distribution in terms of networks 

varies from exponential to power law with a 

short exponential tail, and to power law 

distribution at its early, late, and final stage, 

respectively. These findings are first 

theoretically proved based on the proposed 

model, and then confirmed by the 

experiments through the two large-scale 

real-world data sets.  

2 RELATED WORK 

The basic story of malware is as follows. A 

malware programmer writes a program, 

called bot or agent, and then installs the bots 

at compromised computers on the Internet 

using various network virus-like techniques. 

All of his bots form a botnet, which is 

controlled by its owners to commit illegal 
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tasks, such as launching DDoS attacks, 

sending spam emails, performing phishing 

activities, and collecting sensitive 

information. There is a command and 

control (C&C) server(s) to communicate 

with the bots and collect data from bots. In 

order to disguise himself from legal forces, 

the botmaster changes the url of his C&C 

frequently, e.g., weekly. An excellent 

explanation about this can be found in [1]. 

With the significant growing of 

smartphones, we have witnessed an 

increasing number of mobile malware. 

Malware writers have develop many mobile 

malware in recent years. Cabir [5] was 

developed in 2004, and was the first 

malware targeting on the Symbian operating 

system for mobile devices. Moreover, it was 

also the first malware propagating via 

Bluetooth. Ikee [6] was the first mobile 

malware against Apple iPhones, while 

Brador [7] was developed against Windows 

CE operating systems. The attack victors for 

mobile malware are diverse, such as SMS, 

MMS, Bluetooth, WiFi, and Web browsing. 

Peng et al. [8] presented the short history of 

mobile malware since 2004, and surveyed 

their propagation models. A direct method 

to count the number of bots is to use botnet 

infiltration to count the bot IDs or IP 

addresses. Stone- Gross et al. [1] registered 

the URL of the Torpig botnet before the 

botmaster, and therefore were able to hijack 

the C&C server for ten days, and collect 

about 70G data from the bots of the Torpig 

botnet. They reported that the footprint of 

the Torpig botnet was 182,800, and the 

median and average size of the Torpig’s live 

population was 49,272 and 48,532, 

respectively. They found 49,294 new 

infections during the ten days takeover. 

Their research also indicated that the live 

population fluctuates periodically as users 

switch between being online and offline. 

This issue was also tacked by Dagon et al. in 

[3]. Another method is to use DNS 

redirection. Dagon et al. [3] analyzed 

captured bots by honypot, and then 

identified the C&C server using source code 

reverse engineering tools. They then 

manipulated the DNS entry which is related 

to a botnet’s IRC server, and redirected the 

DNS requests to a local sinkhole. They 

therefore could count the number of bots in 

the botnet. As discussed previously, their 

method counts the footprint of the botnet, 

which was 350,000 in their report. 
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In this paper, we use two large scale 

malware data sets for our experiments. 

Conficker is a well-known and one of the 

most recently widespread malware. Shin et 

al.collected a data set about 25 million 

Conficker victims from all over the world at 

different levels. At the same time, malware 

targeting on Android based mobile systems 

are developing quickly in recent years. Zhou 

and Jiang [19] collected a large data set of 

Android based malware. In [2], Rajab et al. 

pointed out that it is inaccurate to count the 

unique IP addresses of bots because DHCP 

and NAT techniques are employed 

extensively on the Internet ([1] confirms this 

by their observation that 78.9 percent of the 

infected machines were behind a NAT, 

VPN, proxy, or firewall). They therefore 

proposed to examine the hits of DNS caches 

to find the lower bound of the size of a 

given botnet. Rajab et al. [21] reported that 

botnets can be categorized into two major 

genres in terms of membership recruitment: 

worm-like botnets and variable scanning 

botnets. The latter weights about 82 percent 

in the 192 IRC bots that they investigated, 

and is the more prevalent class seen 

currently. Such botnets usually perform 

localized and non-uniform scanning, and are 

difficult to track due to their intermittent and 

continuously changing behavior. The 

statistics on the lifetime of bots are also 

reported as 25 minutes on average with 90 

percent of them staying for less than 50 

minutes. Malware propagation modelling 

has been extensively explored. Based on 

epidemiology research, Zou et al. [15] 

proposed a number of models for malware 

monitoring at the early stage. They pointed 

out that these kinds of model are appropriate 

for a system that consists of a large number 

of vulnerable hosts; in other words, the 

model is effective at the early stage of the 

outbreak of malware, and the accuracy of 

the model drops when the malware develops 

further. As a variant of the epidemic 

category, Sellke et al. [12] proposed a 

stochastic branching process model for 

characterizing the propagation of Internet 

worms, which especially focuses on the 

number of compromised computers against 

the number of worm scans, and presented a 

closed form expression for the relationship. 

Dagon et al. [3] extended the model of [15] 

by introducing time zone information aðtÞ, 

and built a model to describe the impact on 

the number of live members of botnets with 

diurnal effect. 
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 3 PRELIMINARIES 

Preliminaries of epidemic modelling and 

complex networks are presented in this 

section as this work is mainly based on the 

two fields. For the sake of convenience, we 

summarize the symbols that we use in this 

paper . 

3.1 Deterministic Epidemic Models 

After nearly 100 years development, the 

epidemic models [17] have proved effective 

and appropriate for a system that possesses a 

large number of vulnerable hosts. In other 

words, they are suitable at a macro level. 

Zou et al. [15] demonstrated that they were 

suitable for the studies of Internet based 

virus propagation at the early stage. We note 

that there are many factors that impact the 

malware propagation or botnet membership 

recruitment, such as network topology, 

recruitment frequency, and connection status 

of vulnerable hosts. All these factors 

contribute to the speed of malware 

propagation. Fortunately, we can include all 

these factors into one parameter as infection 

rate b in epidemic theory. Therefore, in our 

study, let N be the total number of 

vulnerable hosts of a large-scale network 

(e.g., the Internet) for a given malware. 

There are two statuses for any one of the N 

hosts, either infected or susceptible. Let IðtÞ 

be the number of infected hosts at time t, 

then we  where RðtÞ, and QðtÞ represent the 

number of removed hosts from the infected 

population, and the number of 

removed hosts from the susceptible 

population at time t. The variable bðtÞ is the 

infection rate at time t. For our study, model 

(1) is too detailed and not necessary 

as we expect to know the propagation and 

distribution of a given malware. As a result, 

we employ the following susceptible- 

infected model: 

dI  (t)   

dt = βI (t) [N − I (t)] (2) 

where the infection rate b is a constant for a 

given malware for any network. 

We note that the variable t is continuous in 

model (2) and (1). In practice, we measure 

IðtÞ at discrete time points. Therefore, t ¼ 0; 

1; 2; . . . . We can interpret each time point 

as a new round of malware membership 

recruitment, such as vulnerable host 

scanning. As a result, we can transform 

model (2) into the discrete form as follows: 
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I (t) = (1 + α∆)I (t − 1) − β∆I (t − 1)2, (3) 

where t ¼ 0; 1; 2; . . . ; D is the unit of time, 

Ið0Þ is the initial number of infected hosts 

(we also call them seeds in this paper), and a 

¼ bN, which represents the average number 

of vulnerable hosts that can be infected by 

one infected host per time unit. In order to 

simplify our analysis, let D ¼ 1, it could be 

one second, one minute, one day, or one 

month, even one year, depending on the 

time scale in a given context. Hence, we 

have a simpler discrete form given by 

I (t) = (1 + α)I (t − 1) − β (I (t − 1)) (4) 

Based on Equation (4), we define the 

increase of infected hosts for each time unit 

as follows. 

∆I (t) , I (t) − I (t − 1), t = 1, 2, . . . (5) 

To date, many researches are confined to the 

“early stage” of an epidemic, such as [15]. 

Under the early stage condition, IðtÞ << N, 

therefore, N _ IðtÞ _ N. As a result, 

a closed form solution is obtained as 

follows:I (t) = I (0)eβN t . (6) 

Whenwe take the ln operation on both sides 

of Equation (6), 

 

we have I (t) = βN t + ln I (0). (7) For a 

given vulnerable network, b, N and Ið0Þ are 

constants, therefore, the graphical 

representation of Equation (7) is a straight 

line. Based on the definition of Equation (5), 

we obtain the increase of new members of a 

malware at the early stage as 

∆I (t)  = (eβN  − 1)I (t − 1) 

=  (eβN − 1)I (0)eβN (t−1) .(8) 

Taking the ln operation on both side of (8), 

we have 

ln ∆I (t) = βN (t − 1) + ln (eβN − 1)I (0)  . 

 (9) 

Similar to Equation (7), the graphical 

representation of equation (9) is also a 

straight line. In other words, the number of 

recruited members for each round follows an 

exponential distribution at the early stage. 
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We have to note that it is hard for us to 

know whether an epidemic is at its early 

stage or not in practice. Moreover, there is 

no mathematical definition about the term 

early stage. In epidemic models, the 

infection rate b has a critical impact on the 

membership recruitment progress, and b is 

usually a small positive number, such as 

0.00084 for worm Code Red [12]. For 

example, for a network with N ¼ 10;000 

vulnerable hosts, we show the recruited 

members under different infection rates in 

Fig. 1. From this diagram, we can see that 

the recruitment goes slowly when b ¼ 

0:0001, however, all vulnerable hosts have 

been compromised in less than 7 time units 

when b ¼ 0:0003, and the recruitment 

progresses in an exponential fashion. This 

reflects the malware propagation styles in 

practice. For malware based on “contact”, 

such as blue tooth contacts, or viruses 

depending on emails to propagate, the 

infection rate is usually small, and it takes a 

long time to compromise a large number of 

vulnerable hosts in a given network. On the 

other hand, for some malware, which take 

active actions for recruitment, such as 

vulnerable host scanning, it may take one or 

a few rounds of scanning to recruit all or a 

majority of the vulnerable hosts in a given 

network. We will apply this in the following 

analysis and performance evaluation. 

3.2 Complex Networks 

Research on complex networks have 

demonstrated that the number of hosts of 

networks follows the power law. People 

found that the size distribution usually 

follows the power law, such as population in 

cities in a country or personal income in a 

nation . In terms of the Internet, researchers 

have also discovered many power law 

phenomenon, such as the size distribution of 

web files . Recent progresses reported in 

further demonstrated that the size of 

networks follows the power law. The power 

law has two expression forms: the Pareto 

distribution and the Zipf distribution. For the 

same objects of the power law, we can use 

any one of them to represent it. However, 

the Zipf distributions are tidier than the 

expression of the Pareto distributions. In this 

paper, we will use Zipf distributions to 

represent the power law. 

 4 PERFORMANCE EVALUATION 

In this section, we examine our theoretical 

analysis through two well-known large scale 

malware: Android malware and Conficker. 
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Android malware is a recent fast developing 

and dominant smartphone based malware 

[19]. Different from Android malware, the 

Conficker worm is an Internet based state-

of-the-art botnet . Both the data sets have 

been widely used by the community. From 

the Android malware data set, we have an 

overview of the malware development from 

August 2010 to October 2011. There are 

1,260 samples in total from 49 different 

Android malware in the data set. For a given 

Android malware program, it only focuses 

on one or a number of specific 

vulnerabilities. Therefore, all smartphones 

share these vulnerabilities form a specific 

network for that Android malware. In other 

words, there are 49 networks in the data set, 

and it is reasonable that the population of 

each network is huge. We sort the malware 

subclasses according to their size(number of 

samples in the data set), and present them in 

a loglog format in  we can say that the 

Android malware distribution in terms of 

networks follows the power law. We now 

examine the growth pattern of total number 

of compromised hosts of Android malware 

against time, namely, the pattern of IðtÞ. We 

extract the data from the data set and present  

We have to note that our experiments also 

indicate that this data does not fit the power 

law (we do not show them here due to space 

limitation). we match a straight line to the 

real data through the least squares method. 

Based on the data, we can estimate that the 

number of seeds (Ið0Þ) is 10, and a ¼ 

0:2349. Following our previous discussion, 

we infer that the propagation of Android 

malware was in its early stage. It is 

reasonable as the size of each Android 

vulnerable network is huge and the infection 

rate is quite low (the infection is basically 

based on contacts). We also collected a large 

data set of Conficker from various aspects. 

Due to the space limitation, we can only 

present a few of them here to examine our 

theoretical analysis. First of all, we treat AS 

as networks in the Internet. In general, ASs 

are large scale elements of the Internet. 

5.Concusion 

In this paper, we thoroughly explore the 

problem of malware distribution at large-

scale networks. The solution to this problem 

is desperately desired by cyber defenders as 

the network security community does not 

yet have solid answers. Different from 

previous modelling methods, we propose a 

two layer epidemic model: the upper layer 

focuses on networks of a large scale 
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networks, for example, domains of the 

Internet; the lower layer focuses on the hosts 

of a given network. This two layer model 

improves the accuracy compared with the 

available single layer epidemic models in 

malware modelling. Moreover, the proposed 

two layer model offers us the distribution of 

malware in terms of the low layer networks. 

We perform a restricted analysis based on 

the proposed model, and obtain three 

conclusions: The distribution for a given 

malware in terms of networks follows 

exponential distribution, power law 

distribution with a short exponential tail, and 

power law distribution, at its early, late, and 

final stage, respectively. In order to examine 

our theoretical findings, we have conducted 

extensive experiments based on two real-

world large-scale malware, and the results 

confirm our theoretical claims. 
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