

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Retroactive Data Structure Vipin Shukla & Nikhil
P a g e |

762

Retroactive Data Structure

Nikhil & Vipin Shukla

Department of Information and Technology Dronacharya College of Engineering
Gurgaon, India

Nikhil.16540@ggnindia.dronacharya.info Vipin.16562@ggnindia.dronacharya.info

Abstract—

Retroactive data structure is a new data
structuring paradigm in computer science
introduced by Demaine, Iacono and
Langerman. It supports efficient modifications
to a sequence of operations that have been
performed on the structure. Retroactive
arbitrary insertion, deletion or updating an
operation can occur at any point in time in the
past. A data structure is fully retroactive if it
supports queries and updates to current and
past version. Here, in this paper, we focus on
the different definitions related to retroactivity,
its Comparison to persistence. We have also
tried to analyse their performance and portray
their utility through real life examples and
applications.

Keywords – modifications; updating;
retroactivity; persistence

Introduction

Basically a data structure consists of two
operations invoking and revoking i.e.,
inserting and deleting (respectively), Insert(x)
operation inserts ‘x’ value in the data structure,
whereas Delete(x) operation removes ‘x’ value
from the data structure. The ability to review
thesequence of operations performed on a data
structure is often extremely important and
helpful. For instance, if incorrect value

isinserted or deleted at a particular instance in
pasterroneously. It is important tochange the
mistaken information and to find all the
decisions based on this information and to
review them efficiently. Now the question
arises,How to revitalize that data structure with
correct values in present? In general there are
two ways to regenerate data structure. The first
and in most existing systems, the only way to
support these changes is to rollback the state of
the system to before the time in question and
then re-compute all of the operations from the
modifications to the present. But, this is
considered as wasteful, time consuming
solution, inefficient, and often unnecessary.
The second way appeared when Demaine,
Iacono, and Langerman introduced and
developed the idea of retroactive data
structures, which are data structures that
efficiently support modifications to the
historical sequence of operations that have
been performed on the structure. These
modifications can take the form of retroactive
insertion, deletion or updating an operation that
was performed at some time in the past on data
structure.

Definitions

Any data structure can be reformulated in a
retroactive setting. In general the data structure
involves a series of updates and queries made

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Retroactive Data Structure Vipin Shukla & Nikhil
P a g e |

763

over some period of time. Let U = [ut1, ut2, ut3,
...,utm] be the sequence of update operations
from t1 to tm such that t1 < t2 < ... < tm. The
assumption here is that at most one operation
can be performed for a given time t.

Partially Retroactive

We define the data structure to be partially

retroactive if in addition to supporting updates

and queries operations on the current

time (present state),it also supports insertion

and deletion of operations at the past as well.

Thus for partially retroactive we are interested

in the following operations:

• Insert(t, u): Insert a new operation u into the

list U at time t.

• Delete(t): Delete the operation at time t from

the list U.

Given the above retroactive operations, a
standard insertion operation would now the
form of Insert(t, "insert(x)"). All retroactive
changes on the operational history of the data
structure can potentially affect all the
operations at the time of the operation to the
present. For example if we have ti-1 < t < ti+1,
then Insert(t, insert(x)) would be place a new
operation, op, between the operations opi-

1 and opi+1. The present state of the data
structure (i.e.: the data structure at the current
time) would then be in a state such the
operations opi-1, op and opi+1 all happened in a
sequence, as if the operation op was throughout
all time there. The retroactive changes on the
operational history of the data structure
strongly affect all existing operations between
the modification time and the present time.

Fully Retroactive

The partial retroactivity definitions only takes
control of half of the idea of retroactivity. The
ability to insert or delete update operations in
the past, and to view the effects at the present
time. Easily we can travel back in time to alter
the past, but we cannot directly observe the
past.We define the data structure to be fully
retroactive if in addition to the partially
retroactive operations it can also perform
queries about the past. Similar to how the
standard operation insert(x) becomes Insert(t,
"insert(x)") in the partially retroactive model,
the operation query(x) in the fully retroactive
model now has the form Query(t, "query(x)").

Retroactive Running times

To retroactive data structures running time
depends on `m` which is the total number of
updates applied in the structure(retroactive or
not) , `r` which is the number of updates before
which the retroactive operation is to be
performed and `n`which is the maximum
number of elements present in the structure at
any single time.

Automatic Retroactivity

A natural question regarding automatic
retroactivity with respect to data structures is
whether or not there is a general technique
which can convert any data structure into an
efficient retroactive counterpart. one simple
approach is to perform a rollback method on all
the changes made to the structure preceding to
the retroactive operation that is to be
applied.Here we store as secondary information
all changes to the data structure made by each
operation in such a way that every change
could be reversed. Once we have rolled back
the data structure to the suitable state we can

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Retroactive Data Structure Vipin Shukla & Nikhil
P a g e |

764

then apply the retroactive operation to make
the change we wanted. Once the change is
made we must then reapply all the changes we
rolled back before to put the data structure into
its new state. While this can work for any data
structure, it is often inefficient and wasteful
especially once the number of changes we need
to roll-back is large. To create
an efficient retroactive data structure we must
take a look at the properties of the structure
itself to determine where speed ups can be
understood. Thus there is no general way to
convert any data structure into an efficient
retroactive counterpart. Erik D. Demaine, John
Iacono and Stefan Langerman prove this.

Comparison to persistence

At first glance the idea of a retroactive data
structures is related at a high level to
the persistence data structures since they both
take into account the dimension of time . The
key difference between persistent data
structures and retroactive data structures
is how they handle the element of time.In
persistent data structures, each version is
treated as an unchangeable archive. Each new
version is dependent on the state of existing
versions of the structure. However, because
existing versions are never changed, the
dependence relationship between two versions
never changes.A persistent data structure
maintains several versions of a data structure
and operations are performed on one version
to produce another version of the data
structure.It always preserves the previous
version of itself when it is modified. Such data
structures are effectively perpetual, as their
operations do not update the structure in-place,
but instead always produce a new updated
structure.Thus, the persistence model is useful

for upholding archival versions of a structure,
but inappropriate for when changes must be
made directly to the past state of the structure.
On the other hand in retroactive data structure
changes are made to the past versions.Because
of the interdependence ofversions, a single
change can fundamentally cause a ripple of
changes of all later versions.

Some applications of Retroactive Data
Structures

In the real world there are many places where

one would like to modify(insert and delete) a

past operation from a sequence of operations.

Some of the possible applications are:

• Error correction: Sometimes the data is

entered mistakenly which should be corrected.

Also the secondary effects of the incorrect data

be removed.

• Recovery: Assume a hardware sensor was

damaged but is now repaired and working

correctly also the data is able to be read from

the sensor. We would like to be able to insert

the data back into the system as if the sensor

was never damaged in the first place.

• Bad data: When dealing with large systems,

particular those involving a large amount of

automated data transfer, it is not uncommon.

For example suppose one of the sensors for a

weather network malfunctions and starts to

report garbage data or incorrect data. The ideal

solution would be to remove all the data that

the sensor produced since it malfunctioned

along with all the effects the bad data had on

the overall system.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Retroactive Data Structure Vipin Shukla & Nikhil
P a g e |

765

• Handling the past: Modifying the past can be

beneficial in the cases of damage control and

retroactive data structures are designed for

intentional manipulation of the past.

Retroactive Union-Sameset: Recovery of

Weather- Forecasting Data

In places where, data pertaining to weather is
taken from different weather stations and is
finally reported to a central computer. Various
stations are placed in small groups, thus an
average of the data is computed. Small groups
are then combined to form larger groups, and
now an average of the data is taken and so-on
until we are left with only single group. Final
data evaluated is, thus, analysed and various
statistics are drawn out of it.

1) Problem 1: Suppose, we come to know that
one of the weather station got crashed at time
‘t’ in the past.

Normal Solution: Rollback to the point where
station got malfunctioned. The solution has
linear intricacy and is inefficient, especially in
the cases where the number of stations affected
is expressively less than the total number of
stations. Therefore, we come up with the
retroactive solution.

Retroactive Solution: The stations which would
have been affected by malfunctioning of that
station, only data of those needs to be
retroactively modified. That particular group of
affected stations can be identified by retroactive
query, sameset(x,y).

Thus, data can be recovered and it would
indicate as if the malicious operation never
occurred.

2) Problem 2: Suppose, we come to know that
one of the weather station was missed to be
considered before.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Retroactive Data Structure Vipin Shukla & Nikhil

P a g e |

766

Normal Solution: Rollback to the point where
station was missed to be considered. The
solution has linear intricacy and is ineffective,
especially in the cases where the number of
stations affected is significantly less than the
total number of stations. Therefore, we come up
with the retroactive solution.

Retroactive solution: The stations whose data
would have been affected by neglecting that
station, only data of those need to be
retroactively modified. Retroactive operation
can be used to identify that particular group of
affected stationsi.e insert (Union(x,y),t).

The data from the missed station can be used to
evaluate final data again by applying
retroactively adding the station into the group of
stations. Thus, data can be analyzed again and it
would indicate as if that station was already
under consideration.

References:

[1]. Demaine, Erik D; John Iacono and
Stefan Langerman (2007). "Retroactive
data structures".

[2]. Sylvain Conchon, Jean-Christophe
Filliatre, “A Persistent Union-Find Data
Structure”, Workshop on ML 2007

[3]. Suneeta Agarwal, Prakhar panwaria.
“Implementation, Analysis and
Application of Retroactive Data
Structures”.

[4]. Kanat Tangwongsan, Guy Blelloch.
“Active Data Structures and
Applications to Dynamic and Kinetic
Algorithms”.

[5]. J. R. Driscoll, N. Sarnak, D. D. Sleator,
and R. E. Tarjan. Making data structures
persistent. Journal of Computer and
System Sciences, 38(1):86–124, 1989.

[6]. A. Fiat and H. Kaplan. Making data
structures confluently persistent. In Proc.
12th Ann. Symp. Discrete Algorithms,
pages 537–546, Washington, DC,
January 2001.

