
A Method to Design Single Error Correction Codes With Subset of

Critical Bits

Abstract—Single error correction (SEC) codes are widely used
to protect data stored in memories and registers. In some ap-
plications, such as networking, a few control bits are added to
the data to facilitate their processing. For example, flags to mark
the start or the end of a packet are widely used. Therefore, it is
important to have SEC codes that protect both the data and the
associated control bits. It is attractive for these codes to provide
fast decoding of the control bits, as these are used to determine
the processing of the data and are commonly on the critical timing
path. In this brief, a method to extend SEC codes to support a few
additional control bits is presented. The derived codes support fast
decoding of the additional control bits and are therefore suitable
for networking applications.

Index Terms—Error correction codes, high-speed networking,
memory, single error correction (SEC).

I. INTRODUCTION

N ETWORKING applications require high-speed process-

ing of data and thus rely on complex integrated circuits

[1]. In routers and switches, packets typically enter the device

through one port, are processed, and are then sent to one or

more output ports. During this processing, data are stored and

moved through the device [2].

Reliability is a key requirement for networking equipment

such as core routers [3]. Therefore, the stored data must be

protected to detect and correct errors. This is commonly done

using error-correcting codes (ECCs) [4]. For memories and

registers, single error correction (SEC) codes that can correct

1-bit errors are commonly used [5], [6].

One problem that occurs when protecting the data in net-

working applications is that, to facilitate its processing, a few

control bits are added to each data block. For example, flags to

mark the start of a packet (SOP), the end of a packet (EOP), or

an error (ERR) are commonly used [7]. These flags are used to

determine the processing of the data, and the associated control

logic is commonly on the critical timing path. To access the

control bits, if they are protected with an ECC, they must first

be decoded. This decoding adds delay and may limit the overall

Fig. 1. Typical packet data storage in a networking application.

Then, a SEC code can protect a data block using 8 parity

check bits, and another SEC code can protect the 3 control

bits using 3 parity check bits. This option provides

independent decoding of data and control bits which reduces

the delay but requires additional parity check bits. Another

option is to use a single ECC to protect both the data and

control bits. Protecting 128 + 3 bits requires only 8 parity

check bits, thus saving 3 bits compared to the use of separate

ECCs. However, in this case, the decoding of the control bits

is more complex and incurs more delay.

In this brief, a method to extend a SEC code to also protect

a few additional control bits is proposed. In the resulting codes,

the control bits can be decoded using a subset of the parity

check bits. This reduces the decoding delay and makes them

suitable for networking applications. To evaluate the method,

several codes have been constructed and implemented. They

are then compared with existing solutions in terms of decoding

delay and area.

The rest of this brief is organized as follows. In Section II, the

problem of control bit decoding in networking applications is

described. In Section III, the proposed method to construct the

codes to support fast decoding of the control bits is presented.

The proposed scheme is evaluated for some relevant examples

in Section IV. Finally, the conclusion and some ideas for future

work are presented in Section V.

II. DATA PROTECTION IN NETWORKING APPLICATIONS

Modern networking equipment supports data rates that range

from 10 to 400 Gbit/s, and terabit rates are expected in the

near future [8]. The clock frequencies used in current ASICs

are typically in the range of 300 MHz to 1 GHz, and the clock

frequencies in FPGAs are typically lower (under 400 MHz).

To support these high data rates, on-chip packet data buses are

wide, with typical widths between 64 and 2048 bits [9], [10].

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6 8 4 8 e-ISSN: 2 3 4 8 -7 9 5 X

Volume 03 Issue 18 December 2 0 1 6

Available online: https://edupediapublications.org/journals/index.php/IJR/

Fig. 2. Parity check matrix for a minimum-weight SEC code that protects 128 data bits.

Fig. 3. Parity check matrix for a minimum-weight SEC code that protects 128 data and 3 control bits.

Fig. 4. Decoding of a control bit for single and independent SEC codes for data and control. (a) SEC code for both data and control bits. (b) Independent SEC
codes for data and control bits.

Packet data must frequently be stored in RAMs, e.g., in

FIFOs for adapting processing rates. When storing packet data,

it is necessary to delineate the packet boundaries. In the abso-

lute simplest case, each segment on the bus can be delineated

with a single EOP marker. The next valid segment is then

assumed to be the start of the following packet. In practice,

designers also use a SOP marker to explicitly mark the start of

packets. There are also many cases in packet processing where

a packet is in error and it must be dropped. To mark such errored

packets, an additional control signal (ERR) may be required [7].

As mentioned in the introduction, from an error protection

perspective, it is attractive to store the data and the markers in a

single wide memory, as shown in Fig. 1. In this way, relatively

fewer ECC bits are required. The problem with this approach is

when the data are read out. Typically, the markers feed into a

state machine that controls the reading of the subsequent data.

For example, the state machine may need to read out a single

packet (up to an EOP), or it may need to read out a fixed

number of bytes of data (e.g., deficit round robin scheduler).

The critical timing path then consists of the ECC correction

logic, followed by the state machine logic, as shown in red.

With a traditional Hamming SEC code, as the data bus increases

in width, the number of layers of logic required to decode

the syndrome and perform correction also increases. Circuit

designers frequently observe critical timing on the signal paths

related to the correction of the markers which feed downstream

state machines. For this reason, special ECC codes which can

provide a fast decode of the small number of marker bits are

extremely attractive.

In some cases, it is sufficient for the system to deal with the

packet data with a granularity of the block size. This would

be the case, for example, when the data are simply being

transferred from one location to another. However, in other

cases, it is important to know the packet data size with a byte

resolution. This would be the case when the bit rate is important

(scheduling and policing) or when maximum transfer unit

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6 8 4 8 e-ISSN: 2 3 4 8 -7 9 5 X

Volume 03 Issue 18 December 2 0 1 6

Available online: https://edupediapublications.org/journals/index.php/IJR/

Fig. 5. Proposed parity check matrix for a SEC code that protects 128 data and 3 control bits.

length checks are performed. The simple SOP and EOP markers

are not sufficient to know the exact packet size; thus, it may

be necessary to store additional marker bits called EOPSIZE,

which indicate how many of the bytes in the EOP transfer are

valid. Note that it is always assumed that all transfers prior to

the EOP are complete. Thus, on a 128-bit data bus, additional

4 bits of EOPSIZE may be required, bringing the total number

of marker bits to 7 (SOP, EOP, ERR, and EOPSIZE[3:0]).

III. PROPOSED METHOD TO DESIGN THE CODES

As discussed in the introduction, the goal is to design SEC

codes that can protect a data block plus a few control bits

such that the control bits can be decoded with low delay. As

mentioned before, the data blocks to be protected have a size

that is commonly a power of two, e.g., 64 or 128 bits. To protect

a 64-bit data block with a SEC code, 7 parity check bits are

needed, while 8 are enough to protect 128 bits. In the first case,

there are 27 = 128 possible syndromes, and therefore, the SEC

code can be extended to cover a few additional control bits. The

same is true for 128 bits and, in general, for a SEC code that

protects a data block that is a power of two. This means that

the control bits can also be protected with no additional parity

check bits. This is more efficient than using two separate SEC

codes (one for the data bits and the other for the control bits) as

this requires additional parity check bits. The main problem in

using an extended SEC code is that the decoding of the control

bits is more complex. To illustrate this issue, let us consider

a 128-bit data block and 3 control bits. The initial SEC code

for the 128-bit data block has the parity check matrix shown in

Fig. 2. This code has a parity check matrix with minimum total

weight and balanced row weights to minimize encoding and

decoding delay [4]. Three additional data columns can be easily

added to obtain a code that protects the additional control bits.

For example, the matrix in Fig. 3 can be used, in which three

additional columns (marked as control bits) have been added to

the left.

The problem is that now, to decode the 3 control bits, we

need to compute the 8 parity check bits and compare the results

against the columns of the control bits. This is significantly

more complex than the decoding of an independent SEC code

for the three control bits. The decoding of a bit in each case is

shown in Fig. 4, and the difference in complexity is apparent.

As discussed earlier, our goal is to simplify the decoding of

the control bits while using a single SEC code for both data and

control bits. To do so, the first step is to note that, in some cases,

SEC decoding can be simplified to check only some of the

syndrome bits. One example is the decoding of constant-weight

SEC codes proposed in [11]. In this case, only the syndrome

Fig. 6. Bit decoding of a control bit in the proposed SEC code.

TABLE I
MINIMUM NUMBER OF Pcd BITS FOR 128 AND 256 DATA BITS

bits that have a 1 in the column of the parity check matrix

need to be checked. This simplifies the decoding for all bits

but, in most cases, requires additional parity check bits. In our

case, the main focus is to simplify the decoding of the control

bits as those are commonly on the critical path. To do so, the

parity check bits can be divided in two groups: a first group

that is shared by both data and control bits and a second that

is used only for the data bits. Then, the decoding of the control

bits only requires the recomputation of the first group of parity

check bits. This scheme is better illustrated with an example.

Let us consider a 128-bit data block and 3 control bits protected

with 8 parity check bits. Those 8 bits are divided in a group

of 3 shared between data and control bits and a second group

of 5 that is used only for the data bits. To protect the control bits,

the first three parity check bits can be assigned different values

for each control bit, and the remaining parity check bits are not

used to protect the control bits. The rest of the values are used to

protect the data bits, and for each value, different values of the

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6 8 4 8 e-ISSN: 2 3 4 8 -7 9 5 X

Volume 03 Issue 18 December 2 0 1 6

Available online: https://edupediapublications.org/journals/index.php/IJR/

Fig. 7. Proposed parity check matrix for a SEC code that protects 128 data and 7 control bits.

remaining five parity check bits can be used. In this example,

the first group has 3 bits that can take 8 values, and three of

them are used for the columns that correspond to the control

bits. This leaves 5 values that can be used to protect the data

bits. The second group of parity check bits has 5 bits that can

be used to code 32 values for each of the 5 values on the first

group. Therefore, a maximum of 5× 32 = 160 data bits can be

protected. In fact, the number is lower as the zero value on the

first group cannot be combined with a zero or a single one on the

second group as the corresponding column would have weight

of zero or one. In any case, 128 data bits can be easily protected.

An example of the parity check matrix of a SEC code derived

using this method is shown in Fig. 5. The three first columns

correspond to the added control bits. The two groups of parity

check bits are also separated, and the first three rows are shared

for data and control bits, while the last five only protect the data

bits. It can be observed that the control bits can be decoded by

simply recomputing the first three parity check bits. In addition,

the zero value on these three bits is also used for some data bits.

This means that those bits are not needed to recompute the first

three parity check bits.

The decoding of one of the control bits is illustrated in Fig. 6.

It can be observed that the circuitry is significantly simpler than

that of a traditional SEC code (see left part of Fig. 4). This will

be confirmed by the experimental results presented in the next

section.

The method can also be used to protect more than three

control bits. In a general case, let us consider that we need

to protect d data bits and c control bits using p parity check

bits. Then, p is divided in two groups pcd and pd. The first

group is shared between control and data bits, and the second is

used only for the data bits. The number of data bits that can

be protected with this scheme can be calculated as follows.

The number of combinations of the first group available to be

used to protect the data bits is 2Pcd
− c. For each of those, up

to 2Pd values can be used, giving a total of (2Pcd
− c) · 2Pd.

However, for the zero value, the combinations of the second

group with weight zero or one cannot be used, so pd + 1
should be subtracted. Similarly, for the pcd values with weight

one on the first group, the zero value on the second group

cannot be used as the resulting column would have weight

one. Therefore, pcd should also be subtracted, giving a total of

(2Pcd
− c) · 2Pd

− (pd + 1)− pcd. This is the number of data

bits that can be protected in addition to the control bits. As the

number of control bits increases, pcd must also be increased to

be able to protect the block of data bits with the same number

of parity check bits. This is illustrated in Table I for 128 and

256 data bits. Increasing pcd makes the decoding of control bits

more complex; therefore, the minimum value should be used.

TABLE II
ASIC CIRCUIT AREA (µM2) FOR 3 ADDITIONAL CONTROL BITS

TABLE III
ASIC CIRCUIT DELAY (NS) FOR 3 ADDITIONAL CONTROL BITS

As an example, the parity check matrix to protect 128 data

and 7 control bits is shown in Fig. 7. It can be observed that,

in this case, more bits are needed in the first group, making the

decoding of the control bits slightly more complex. However,

the control bits can still be decoded using only four syndrome

bits instead of the eight bits required in a traditional SEC code.

Finally, it should be noted that the proposed scheme increases

the miscorrection probability for control bits in case of double

errors. This is due to the use of only a subset of bits for the

decoding of the control bits.

IV. EVALUATION

To assess the benefits of the proposed scheme, it has been

implemented for 64, 128, and 256 data bits considering both

3 and 7 additional control bits. The codes implemented for the

case of 128 data bits correspond to the ones in Figs. 5 and 7.

The encoders and decoders are compared with minimum-

weight SEC codes that have balanced row weight (given in

Fig. 3 for the case of 128 data bits and 3 control bits). These

SEC codes should provide the minimum decoding delay for a

traditional SEC code.

To evaluate the proposed codes for an ASIC implementation,

all of the designs have been implemented in HDL and then

mapped using Synopsis DC to a 45-nm ASIC library [12].

For the decoders, the synthesis was configured to allocate the

majority of the effort to the minimization of delay on the

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6 8 4 8 e-ISSN: 2 3 4 8 -7 9 5 X

Volume 03 Issue 18 December 2 0 1 6

Available online: https://edupediapublications.org/journals/index.php/IJR/

TABLE IV
ASIC CIRCUIT AREA (µM2) FOR 7 ADDITIONAL CONTROL BITS

TABLE V
ASIC CIRCUIT DELAY (NS) FOR 7 ADDITIONAL CONTROL BITS

control bits as that is the main design goal. For the encoders,

the tool was configured to minimize delay on all bits. In all

cases, identical synthesis constraints were applied to both the

proposed codes and the minimum-weight codes. The circuit

area and delay have been evaluated.

The results for the case of three additional control bits are

shown in Tables II and III. The tables also show the results

for the minimum-weight SEC codes. In this case, the reduction

of the decoding delay of the control bits is in the range of

12%–18%. This shows the potential of the proposed scheme

to reduce the critical path. The circuit area is similar to that of

the minimum-weight SEC codes, in some cases slightly lower

and in some slightly higher.

The proposed codes do have an impact on the decoding delay

for the data bits. For the decoders, the added delay on data bits

is significant for most word sizes. However, as discussed in the

introduction, the major design goal is to reduce the decoding

delay of the control bits as these typically determine the critical

timing path.

The results for the case of seven control bits are shown in

Tables IV and V. The proposed codes require a circuit area

for both the encoder and the decoder similar to that of the

minimum-weight codes. In terms of delay, decoding of the

data bits is slower. On the other hand, the proposed codes

are able to reduce the decoding delay of the control bits by

approximately 9%–11%. This reduction is smaller than that for

the three control bits case. This is expected as the number of

parity bits (pcd) used to decode the control bit increases (from

three to four) and so does the decoder complexity. Therefore,

the benefits of the proposed scheme decrease as the number of

control bits increases.

In summary, the proposed method can be used to reduce the

decoding delay of the control bits, especially when the number

of control bits is small.

V. CONCLUSION AND FUTURE WORK

In this brief, a method to construct SEC codes that can

protect a block of data and some additional control bits has

been presented. The derived codes are designed to enable fast

decoding of the control bits. The derived codes have the same

number of parity check bits as existing SEC codes and therefore

do not require additional cost in terms of memory or registers.

To evaluate the benefits of the proposed scheme, several codes

have been implemented and compared with minimum-weight

SEC codes.

The proposed codes are useful in applications, where a few

control bits are added to each data block and the control bits

have to be decoded with low delay. This is the case on some

networking circuits. The scheme can also be useful in other

applications where the critical delay affects some specific bits

such as in some finite-state machines. Another example is

arithmetic circuits where the critical path is commonly on the

least significant bits. Therefore, reducing the delay on those bits

can increase the overall circuit speed. The use of the proposed

scheme for those applications beyond networking is an interest-

ing topic for future work. It may be possible to apply the idea

of modifying the matrix of the code to enable fast decoding of

a few bits to more advanced ECCs that can correct multiple

bit errors. Finally, the scheme can also be extended to support

more control bits by using one or two additional parity check

bits. This would provide a solution to achieve fast decoding

without using two separate codes for data and control bits.

REFERENCES

[1] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in Proc. SIGCOMM,
2013, pp. 99–110.

[2] J. W. Lockwood et al., “NetFPGA—An open platform for gigabit-rate
network switching and routing,” in Proc. IEEE Int. Conf. Microelectron.

Syst. Educ., Jun. 2007, pp. 160–161.
[3] A. L. Silburt, A. Evans, I. Perryman, S.-J. Wen, and D. Alexandrescu,

“Design for soft error resiliency in Internet core routers,” IEEE Trans.

Nucl. Sci., vol. 56, no. 6, pp. 3551–3555, Dec. 2009.
[4] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical

Application. Hoboken, NJ, USA: Wiley, 2006.
[5] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor

memory applications: A state-of-the-art review,” IBM J. Res. Develop.,
vol. 28, no. 2, pp. 124–134, Mar. 1984.

[6] V. Gherman, S. Evain, N. Seymour, and Y. Bonhomme, “Generalized
parity-check matrices for SEC-DED codes with fixed parity,” in Proc.

IEEE On-Line Test. Symp., 2011, pp. 198–20.
[7] Ten Gigabit Ethernet Medium Access Controller, OpenCores. [Online].

Available: http://opencores.org/project/ethmac
[8] P. Zabinski, B. Gilbert, and E. Daniel, “Coming challenges with terabit-

per-second data communication,” IEEE Circuits Syst. Mag., vol. 13,
no. 3, pp. 10–20, 3rd Quart. 2013.

[9] UltraScale Architecture Integrated Block for 100 G Ethernet v.14.
LigCOREIP Product Guide. PG165, Xilinx, San Jose, CA, USA.
Jan. 22, 2015.

[10] OpenSilicon Interlaken ASIC IP Core. [Online]. Available: www.open-
silicon.com/open-silicon-ips/interlaken-controller-ip/

[11] P. Reviriego, S. Pontarelli, J. A. Maestro, and M. Ottavi, “A method to
construct low delay single error correction (SEC) codes for protecting
data bits only,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 32, no. 3, pp. 479–483, Mar. 2013.

[12] J. E. Stine et al. “FreePDK: An open-source variation-aware design
kit,” in Proc. IEEE Int. Conf. Microelectron. Syst. Educ., Jun. 2007,
pp. 173–174.

International Journal of Research
 Available at https://edupediapublications.org/journals

p-ISSN: 2348-6 8 4 8 e-ISSN: 2 3 4 8 -7 9 5 X

Volume 03 Issue 18 December 2 0 1 6

Available online: https://edupediapublications.org/journals/index.php/IJR/

