

P a g e | 789

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler design for Fuzzy Classifier Systems | Ankit Gahlot, Virender Gupta & Vijay
Gupta

Compiler	design	for	Fuzzy	Classifier	Systems	
																																																					Ankit	Gahlot,	Virender	Gupta	&	Vijay	Gupta	

 ankitgahlot51@gmail.com,Virendergupta93@gmail.com, vjgupta25@gmail.com
 Department of Computer Science and Engineering

 Dronacharya CollegeOf Engineering,Gurgoan

Abstract:-
A Rule Compiler design for Fuzzy Classifier Systems is described in this paper. The design of the
compiler is based on the building of Grammars described like predicates, which represent the system
rules. The ANTLR tool (Another Tool for Language Recognition) is used for the implementation of the
compiler. We propose also an interface that makes easier to the user the task of writing, compiling and
administering the rules stored in the Knowledge Base.
Key Words:-
Fuzzy Classifier; Systems; Fuzzy Logic; Expert Systems; Compiler

1 Introduction

In our life we find several complex situations
commanded by rules: control systems, safety
systems, bank transactions, etc. Rule-based
systems are an efficient tool to deal with these
specific problems. The Knowledge Base contains
the variables and the rules defining the problem,
ant the inference engine obtains the conclusions
through the application of classic logic to these
rules. A rule is defined –in our field of work- as a
“If premise, then conclusion” structure, where
premise and conclusion are expressions which
can be based on fuzzy logic, with one or more
affirmative statements, connected via logic
operators like “AND”, “OR” or “NOT”.

Since its appearance in the sixties, Fuzzy
Logic applications have earned consolidation [3,
4]. They are found in solutions for industrial
control problems, time series prediction, Operative
Research, maintenance strategies, search
methods in databases, and so on. Probably, the
main reasons to such vast array of applications
are the conceptual simplicity of the fuzzy systems,
their ability to combine in a unified manner the
linguistic expressions with numeric data, and their
implementation without sophisticated algorithms.
Particularly, it is possible to use Fuzzy Classifier
Systems (FCS) in situations that imply uncertainty
and incomplete or complex information
management [2]. The FCS are a type of learning
machine that uses rules based on Fuzzy Logic for
modeling a problem.

The main objective of this paper is to develop a

rule compiler that can be used by Expert Systems
and FCS. This is achieved through the utilization of
the ANTLR language (Another Tool for Language
Recognition) [2], which generates compilers from a
grammar specification of the language to be
recognized. Hence, one of the main contributions of
this paper is the proposal of a grammatical structure
that defines how the rules should be. Our system is
developed using Java [9], and defines an interactive
interface, which allows the user, in a comfortable and
practical way, to use the system. This paper is a part
of the project named “Computational Platform for the
development of Expert Systems and Fuzzy Systems”
[8].

This paper presents only the rule compiler’s
design for the FCS. In order to study the Expert
System please refer to [7]. This article is
organized as follows: section 2 introduces the
Theoretical Framework, section 3 describes the
System Design, section 4 presents a Study
Case, and finally in section 5, we present the
Conclusions and Limitations found, as well as
the possible eventual further works.

2 Theoretical Framework

2.1 Fuzzy Logic

Fuzzy Logic is, essentially, the incorporation of
the concept of multivalued logic [2, 3, 4]. Human
reasoning uses truth values that are not necessarily
determining (statements with just true or false
values). For instance, when it is said that “The sky

P a g e | 790

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler design for Fuzzy Classifier Systems | Ankit Gahlot, Virender Gupta & Vijay
Gupta

is blue”, it could be possible to think how blue
the sky is indeed. Likewise, it would be possible
to think “if a vehicle moves fast”, it would be
possible to think how fast it moves, since this
last observation does not imply necessarily the
quantification of speed with the accuracy
required.

The adjective “fuzzy” is due to the fact
that the non-determining truth values used in
them have, generally, an uncertainty
meaning. A half-full glass, notwithstanding
the fact that it is also half-empty, is not totally
full nor totally empty. This is the type of
indeterminate properties that we can manage
with fuzzy theory.

A Fuzzy System can be developed based
on a set of heuristic rules, in which the inputs
and outputs linguistic variables are
represented by fuzzy sets. The following
figure shows the main components [3]:

 Knowledge Base

x Fuzzification Defuzzification y

Mechanism

Mechanism

 Reasoning Mechanism

Figure 1. Fuzzy Logic System Scheme

A Fuzzy System is composed of a
mechanism that transforms discreet data into
Fuzzy data (fuzzification mechanism),
another mechanism that makes the inverse
process based on one of the classic
techniques of defuzzification, such as the
centroid method, a knowledge base that
stores the Fuzzy rules, and the mechanism of
Fuzzy reasoning.

2.2. Fuzzy Classifier System

One of the most important challenges in
the Intelligent Computing area consists of
modelling intelligent behavior through the use
of Intelligent Techniques (Artificial Neural
Networks, Genetic Algorithms, etc.). The
systems that attempt to model intelligent
behaviors similar to the humans’ belong to
the area known as Learning Machines [2, 8].
The FCSs are a type of Learning Machine
based on Fuzzy Logic.

The FCSs try to imitate the way in which

human beings make decisions. These systems are
generally robust and tolerant to imprecision and
noises in the input data. The FCSs apply the
Fuzzy Logic with the aim of imitating human
reasoning in computers. In order to achieve this
goal, mathematic theory based on fuzzy set is
used to map subjective notions, such as hot,
warm, cold, to concrete values that can be
manipulated by computers. A FCS is composed
of the following elements (see Figure 2):

Reasoning Mechanism
Detector Actuator

Fuzzy Rules

Credit Assignation Adaptation System

Figure 2. Fuzzy Classifier System Scheme

A message detector system is the responsible
of the information fuzzification. An actuator system
generates the commands derived from the
reasoning process of the system. It also performs
defuzzification tasks, in case of being required. The
Fuzzy Rules System has a Fuzzy reasoning
mechanism that takes such rules and the messages
provenient from the exterior to perform the inference
process. The Adaptative System allows the
generation or removal of rules in the rules system,
in accordance with their quality. Those rules that are
not suitable for the environment where the FCS is
operating must be discarded and the combination of
the best rules generates new rules. In order to
determine the non-suitable rules and the best ones,
the Credit Assignment System is used. This system
gives points to each rule, taking into account if it is
activated or activates others rules when a
requirement (message) arrives to the FCS.

2.3. Compiler

A translator is any program that takes as input
a text written in a language –called source- and
gives as output a different text in a language
called object. The translator is called a compiler if
the language is of programming high level, and
the object is a low level language (assembler or
machine code) [5, 6].

The compiler, besides translating, performs
other series of operations that, mostly, are
focused on the errors detection in the source
program. A compilation is constituted by the
following phases [5, 6].
Lexical Analyzer: The Lexical Analyzer, also called

P a g e | 791

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler design for Fuzzy Classifier Systems | Ankit Gahlot, Virender Gupta & Vijay
Gupta

scanner, detects basic units of information in the
source program that belong to the language. These
units are called tokens or lexic units. A token is an
element of the source language that has its own
meaning. It can be the reserved words of a
language, identifiers, operators, etc. Some examples
of lexical errors can be the reserved words spelled in
a wrong way, not allowed identifiers, etc.

Syntax Analyzer: The Syntax Analyzer or parser
takes the tokens received from the scanner and
searches in it the possible syntax errors that
could appear.

Semantic Analyzer: The Semantic Analyzer
completes the two previous phases, incorporating
certain proofs that can not be assimilated to the
simple recognition of a chain. For example, not
declared variables or an operator applied to a
non-compatible operating agent.

Error-Handle: its mission is to try to correct the errors
found in the different phases of the compilation. The
types of errors that a program can have are the
following: lexical, syntax, semantic and logic errors
(those due to the performance of something wrong
for the problem to be solved), execution errors
(Examples of this type of errors are: division by zero
(0), reading from a not open file, or without any
information, etc.).

Compiler and the Rule Editor; the Rule Performance
and Adaptation Sub-systems, which contain,
respectively, the Inference Engine and the Adaptative
System. Finally, the Information Storage contains the
Knowledge Base and the Fact Base.

The Inference Engine starts the Fuzzy
reasoning process taking the system input
variables and verifying the rules that are activated
(Knowledge Base). The Fuzzy reasoning
mechanism used is the classic “Modus Ponens”
[8]. The Adaptative System updates automatically
the set of rules, in accordance with the usage they
have during the functioning of the system.

The Edition Sub-system is composed by the
following components [7]:

1. A compiler, it performs the Lexic, Syntax

and Semantic Analyses of the rules.

2. A Rule Editor, the interface used to write the

rules.

The Knowledge and Rules Bases are used
either by the compiler and the Rule Editor.
3.1 Compiler

It has the following architecture:

LEXIC STRUCTURE

LEXICAL ANALYSIS

GRAMMAR SYNTAX ANALYSIS

STRUCTURE

3 System Design

The Computational Platform for the
Fuzzy Classifier is shown below (See figure 3).

COMPILER

ENVIRONMENT

RULE EDITOR

KNOWLEDGE FACT
BASE BASE

INFERENCE ENGINE

ADAPTATIVE SYSTEM

Figure 3 Fuzzy Classifier System Modular Design

The system is composed of various sub-systems
[8]: the Rule Edition Sub-system, composed by the

SEMANTIC SEMANTIC ANALYSIS

STRUCTURE

Figure 4. Compiler Architecture

This paper explains the Fuzzy Classifier

System compiler design. The compiler of the
Expert Systems is simpler (See [7]).
a) LEXIC STRUCTURE

It is composed by lexic components. An
example is shown below:

id → letter(letter|digit)*

letter → ['A'-'Z''a'-'z''_']

digit → ['0'-'9']
b) GRAMMAR STRUCTURE

The language used for specifying the Fuzzy
Classifier System follows the Grammar shown next
(the grammar is described by a set of production
rules, whose initial production is sd_rule.

P a g e | 792

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler design for Fuzzy Classifier Systems | Ankit Gahlot, Virender Gupta & Vijay
Gupta

sd_rule → IF fuzzy_prop_list

 THEN

 fuzzy_prop_list EOF

fuzzy_prop_list → fuzzy_prop((OP_Y|OP_O|OP
 _Ym| OP_Om) fuzzy_prop)*

Fuzzy_Proa → (OP_NO|OP_NOm)? frase

Frase → Fuzzy_atribute IS value

Fuzzy_atribute → ID

Value → ID

c) SEMANTIC STRUCTURE

In this system, variables are Fuzzy and each
one of them has a linguistic value set associated.
Our system has input variables (that can be used
only in the premises side), or input/output
variables (they can be used in both sides). The
semantic verifications performed allow the
compiler to be sure about the following aspects:
o Variables should exist in the Knowledge
Base.

o The linguistic values correspondent to the

Fuzzy Sets used.

o The premise of a rule should not be

equivalent to the consequent of it.

o The input variables should not appear in

the consequent nor the output variables in
the premises side.

In order to make the compiler, the ANTLR tool

was used. This tool uses the LL(k) algorithm for the
lexic, syntax and semantic analyses [1]. Hence, this
tool integrates the generation of lexic, syntax and
semantic analyses. The LL(k) algorithm works with
grammar. That is, the structures previously shown
should be given to the tool. This algorithm
examines the input from left to right. The LL(k)
algorithm is implemented through the definition of a
function for each rules of production.

The ANTLR receives files with the .g extension,

which describe the grammar of the language to be
compiled. This tool uses these files to generate new
ones, written in Java language, which contain
classes to perform each one of the compiler’s
phases [1]. Hence, the compiler is composed by
classes generated through the use of the ANTLR,
which are: RuleParserSD, RuleLexerSD,
RecontreeSD, RuleParserSD and RecontreeSD.
They are stored in the GraGeneralSD.g and
GraDSem.g files. It is also done similarly for
the compiler of Expert Systems (See [7]).

3.2. Rules Editor

The Rules Editor is part of the general
system interface. It contains the rules stored to
be modified, delete, allows building the new
one for the Fuzzy Classifier System. We
access to the Rules Editor through the
Designer’s panel, which, at the same time, can
be accessed from the System’s main panel.

Figure 5 shows the Main Panel. The left side
presents all the Knowledge Bases, either for the
Expert Systems or Fuzzy Classifier Systems.

Figure 5. Main Panel.

In order to open the Designer’s panel a

Knowledge Base is selected from the main panel,
then, the login and the password of a Designer
user is required. At the moment of pressing the
“Enter into the system” key, the designer’s panel
appears, as it is shown in the following figure.

Figure 6. Designer´s Panel

The Designer’s panel in the lower- right side,

shows a key called ”Rule Editor”. This key opens
the Rules Editor window for the construction of
the rules, and the report of the possible mistakes
that can appear or the successful compilation of
them.
3.3. Description of the Computational Platform

The Java language was used for developing the
system. For our rule editor, we have built the
following packages: Expert-Master Package, Antlr
Package, Compiler Package and Interface Package.

The Knowledge Base is implemented using
Mysql. The compiler and the Rule Editor access it by
the class mysql-connector-Java. It is used through
the standard API of Java. In order to obtain the
connection, it is used the Drive Manager class of the
Standard API, which locates the class
com.mysql.jdbc. This connection is used through an
object that implements the connection interface.

P a g e | 793

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler design for Fuzzy Classifier Systems | Ankit Gahlot, Virender Gupta & Vijay
Gupta

4 Study Case for a Fuzzy System

4.1. Problem definition:

We like the construction of a Fuzzy system to
determine the percentage of opening or closure of
a control valve destined to maintain the pressure
inside a tank under normal levels (see Figure 7).
At the inside of the tank is generated a chemical
reaction fed through pipes that transport
components. These pipes do not have valves.

Figure 7. Physical system to be modeled.

The only way of maintaining the levels of
pressure around an operation point is allowing the
escape of gasses generated by the reaction, if
pressure is high; or retaining these gasses inside
the tank, if pressure is low, using the control valve
for this purpose. There are two sensors in the
tank: one that measures the temperature and the
other that measures the pressure.
4.2. Modelling the problem using FCSs:

The process was previously modelled based
on the temperature and the pressure inside the
tank (input variables to the system) and the
percentage of opening and closure of the control
valve (output variable of the system). Some of the
Rules that characterize this system are:

1. If Temperature is High AND Pressure is

High Then Valve_aperture is Open

2. If Temperature is High AND Pressure is

Low Then Valve_aperture is Close

3. If Temperature is High AND Pressure is

Medium Then Valve_aperture is Maintained

We will take only one of them to perform the
tests to the Rules Editor Sub-system. The rule
chosen is the number 3.

Figure 8. Compilation errors Example detected by
the compiler

As it is shown in Figure 8, it was given a

linguistic value to the temperature variable that
it does not have (it is not in the Database). It is
detected by the compiler, which sends an
“error” message.

Figure 9. Compilation errors Example detected by
the compiler

Figure 9 shows that there is no “IS”, the word
that separates the Fuzzy variable from its
associated linguistic value (fuzzy set). That is
why the error message indicates that was
expected an “IS” before the linguistic value.

Figure 10. Compilation errors Example detected by

the compiler

Figure 10 shows the expectation of a blank
between the “IS” and the linguistic value. As a
consequence, it indicates an error, since
“ishigh” is not a linguistic value.

Figure 11. Compilation errors Example detected
by the compiler

Figure 11 attempts to save a rule without

finishing it (only the premises side has been
described). At this moment, it asks if we want to
save the rule. When saying “yes” the compiler
displays a message that says: Unexpected end
of rule.

P a g e | 794

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler design for Fuzzy Classifier Systems | Ankit Gahlot, Virender Gupta & Vijay
Gupta

Figure 12. Example of a rule deletion

The rule highlighted with blue is the one that
is expected to be deleted, as it is shown in
Figure 12, the system demands: Are you sure
you want to eliminate the rule?

Figure 13. Successful Compilation

Figure 13 shows a message that says:
“Successful Compilation”. This happens when
the rules are well built. At the moment of
pressing this choice, the rule is immediately
saved in the Knowledge Base and added to the
left panel located in the Rule Editor.

5 Conclusions

This paper has developed a Fuzzy Classifier
Systems Compiler, which would make easier its use
by those who are interested in them. This compiler
works with rules such as “If a Then b”, where “a”
represents the condition and “b” the action. For
instance, a Fuzzy Classifier System rule could be:

“If level is very high and pressure is medium,

then level is medium”.

The only operators used are “AND”, “OR”
and the unary operator “NOT”.

An advantage offered by the implementation
of this system is that it uses an interface done in
Java; based on a Rules Editor that presents to
the user the possibility of editing any rule. This
editor uses a menu bar where is possible to find
all the components and Fuzzy variables needed
to construct rules.

The interface is helpful for the user at the
moment of building rules. When editing rule through
the menus, the possibility of mistakes is reduced,
due to the fact that the interface adjusts continually
the status of the menus. It is based on a lexical and
syntax analysis of the rule that is being written. On
the contrary, if the rules are written without

using the menus, it is possible to commit
mistakes. These are detected by the compiler
when the rule is intended to save.

Two types of grammars were built for the
construction of rules, one for the Expert Systems
and the other one the Fuzzy Classifier Systems.
The ANTLR language was used for the
programming of these grammars. This language is
written in Java and generates Java, C++ and C#.

The developed compiler only works with a very
simplified format of rules. In the further works of the
system, it could be proposed the enrichment of the
grammar. Among these improvements could be
included the following: the variables used should
take diverse values in determined times (it is to say,
introducing the temporal concept). In addition, it
should be permitted that rules should not only use
Fuzzy proportions of the type: “Fuzzy variable is
linguistic value”, but also the use of the form: “The
Fuzzy variable from the object is linguistic value”. For
example, they could have the following shape: “The
humidity of soil is high”.

6 References

[1] T. Parr, ANTLR: Parser Generator and

Translator Generator. http://www.antlr.org.
[2] J. Aguilar, F. Rivas, Introducción a las

Técnicas de Computación Inteligente.
MERITEC. Venezuela. 2001.

[3] D. Sáez, Fundamentos de Lógica Difusa.
Univ. Quilmes, Argentina, 2002.

[4] S. Kartalopoulos, Understanding Neural
Networks and Fuzzy Logic: Based concepts,
IEEE Press, USA, 1996.

[5] A. Aho, V. Sethi, R. Ullman, Compiladores,
Principios, técnicas y herramientas. Addison-
Wesley, Iberoamericana, 1990.

[6] J. Tremblay, P. Sorenson. The theory and
practice of Compiler Writing. Mc-Graw-Hill,
USA, 1985.

[7] Y. Menolascina, J. Aguilar, F. Rivas, Diseño
de un Compilador en java para Sistemas
Expertos, to be Publicated, Conferencia
Iberoamericana en Sistemas, Cibernética e
Informática, Orlando, USA, July 2005.

[8] J. Sanchez, J. Aguilar, F Rivas, Knowledge
Base and Inference Motor for an Automated
Management System for Developing Expert
Systems and Fuzzy Classifiers, WSEAS
Transactions on Systems Journal, No. 2,
Vol, 3, pp. 682-687, 2004.

[9] Bruce, Eckel. Thinking in Java Second.
Edition. Pearson Education. 2000

