
 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2863

Power Management Strategy in Linux
Kernel Environment

Haider Ali Mohammed Basheer Abdulmutalib Hassoon

Department of Computer Applied Technology, Hust
Email: haiderali8080@yahoo.com , masenchina@yahoo.com

ABSTRACT

 This paper looks to investigate how

Android operating system manages

power on a relatively small platform such

as a mobile phone or a tablet. The aim of

this document is to further find the

differences that exist in the design of

Android power management modules as

compared to the parent kernel from

Linux. We will investigate to check if

platforms with smaller batteries like

mobile phones require a lot of power

management or the same as larger and

power hungry devices likes desktop

computers. This paper will look deeper

into why Google decided to use Linux’s

kernel as opposed to developing one

from scratch.

Keywords

 Wakelock, Android, Power

Management, Advanced Power

Management, Advanced

 Configuration and Power Interface

1. Introduction

For normal desktop computer,

power management (PM) is used to

reduce power consumption and reduce

cooling requirements. Lower power

consumption means lower heat

dissipation, which increases system

stability, and less energy use, which

saves money and reduces the impact

on the environment. For mobile

device and embedded system device,

it’s much more important because the

battery power is very limited.

Nowadays, android phone and iPhone

are more and more pervasive. There

are more and more sensors and I/O in

mobile device that can be used to

improve the effectiveness of PM. The

PM needs to be tuned for new mobile

device’s need. In this survey, we want

to not only know the power

management system used before, but

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
mailto:haiderali8080@yahoo.com

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2864

also want to compare them with the

design of Android PM [1][2].

2. How does power management

system work?

 One power management

standard for computers is ACPI, which

supersedes APM. All recent

(consumer) computers have ACPI

support. Why ACPI has more

advantage than APM? We’ll write a

brief introduction for both of them and

compare their differences [3].

2.1 APM (Advanced Power
Management)

APM consists of one or more

layers of software that support power

management in computers with power

manageable hardware. APM defines

the hardware independent software

interface between hardware-specific

power management software and an

operating system power management

policy driver. It masks the details of

the hardware, allowing higher level

software to use APM without any

knowledge of the hardware interface.

The APM software interface

specification defines a layered

cooperative environment in which

applications, operating systems,

device drivers and the APM BIOS

work together to reduce power

consumption. In brief, APM can

extend the life of system batteries and

thereby increases productivity and

system availability [2][3].

2.2 ACPI (Advanced Configuration &
Power Interface)

The ACPI specification was

developed to establish industry

common interfaces enabling robust

operating system (OS)-directed

motherboard device configuration and

power management of both devices

and entire systems. Different from

APM, ACPI allows control of power

management from within the operating

system. The previous industry standard

for power management, APM, is

controlled at the BIOS level. APM is

activated when the system becomes

idle. The longer the system idles, the

less power it consumes (e.g. screen

saver vs. sleep vs. suspend). In APM,

the operating system has no

knowledge of when the system will

change power states.

There are several software components

that ACPI has:

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2865

 A subsystem which

controls hardware states

and functions that may

have previously been in

the BIOS configuration

These states include:

 Thermal control

 Motherboard configuration

 Power states (sleep, suspend)

 a policy manager, which is

software that sits on top of the

operating system and allows

user input on the system

policies

 The ACPI also has device

drivers those control/monitor devices

such as a laptop battery, SMBus

(communication/transmission path) and

EC (embedded controller) [3].

Figure 2.1 CPI Architecture.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2866

Figure 2.2 CPI power state transition diagram.

Figure 2.3 Comparison between APM and ACPI diagram.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2867

We can either use “acpi -V” or look in

each of the acpi files individually for

information about our system. Check in

the /proc/acpi directory for various

things of importance. If you want to

check your battery we can read the

following file like this:

cat/proc/acpi/battery/BAT1/ state [4].

 3. The Concept of Android

power management

First of all, Android OS design

is based on Linux kernel. Linux has

its own power management that we

have described in previous section.

The following diagram (Figure 3.1)

shows the main components of the

Android OS.

Figure 3.1 Android architecture [6].

Android inherits many kernel

components from Linux includ ing

power management component.

Original power management of Linux

is designed for personal computers, so

there are some power saving status

such as suspend and hibernat ion.

However, these mechanisms of Linux

PM do not satisfied and suitable for

mobile devices or embedded systems.

Mobile devices such as cell phones are

not as same as PCs that have

unlimited power supply. Because

mobile devices have a hard constraint

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2868

of limited battery power capacity, they

need a special power management

mechanism. Therefore, Android has

an additional methodology for power

saving.

The implementation of Android

power management was sitting on top

of Linux Power Management.

Nevertheless, Android has a more

aggressive Power Management policy

than Linux, in which app and services

must request CPU resource with

"wake locks" through the Android

application framework and native

Linux

Libraries in order to keep power on,
otherwise, Android will shut down the
CPU [5].

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2869

Figure 3.2 Android Power Management.

Refer to Figure 3.2 Android try

not to modify the Linux Implements an

applications framework on top of the

kernel called Kernel and it Android

Power Management Applicat ions

Framework. The Android PM

Framework is like a driver. It is written

by Java which connects to Android

power driver through JNI. However,

what is JNI? JNI (Java Native

Interface) is a framework that allows

Java code running in a Java Virtual

Machine (JVM) to call native C

applications and libraries. Through

JNI, the PM framework written by Java

can call function from libraries written

by C. Android PM has a simple and

aggressive mechanism called “Wake

locks”. The PM supports several types

of “Wake locks”. Applications and

components need to get “Wake lock”

to keep CPU on. If there is no active

wake locks, CPU will turn off. Android

supports different types of “Wake

locks” (Table 3.1) [6] ..

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2870

Table 3.1 Different wake locks of Android PM

Wake Lock Type

ACQUIRE_CAUSES_WAKEUP

FULL_WAKE_LOCK

ON_AFTER_RELEASE

PARTIAL_WAKE_LOCK

SCREEN_BRIGHT_WAKE_LOCK

SCREEN_DIM_WAKE_LOCK

Currently Android only supports

screen, keyboard, buttons backlight,

and the brightness of screen. Because

of full usage of CPU capability, it does

not support suspend and standby

mode. The following diagram shows

how Android PM works. Through the

framework, user space applications

can use “Power Manger” class to

control the power state of the device.

We will introduce more details about

how to implement them in applications

later [7].

 Figure 3.3 Android Power Management Architecture with wake locks

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2871

Figure 3.4 A finite state machine of Android PM

Figure 3.4 shows that the full state

machine. There are three states:

“SLEEP”, “NOTIFICATION”, and

“AWAKE”. The scenario is: While a

user application acquire full wake lock

or touch screen/keyboard activity

event, the machine will enter or keep

in the “AWAKE”. If timeout happen

or power key pressing, the machine

will enter “NOTIFICATION”. While

partial wake locks acquiring, it will

keep in “NOTIFICATION”. While all

partial locks released, the machine will

go into “SLEEP”. In “SLEEP” mode,

it will transit if all resource awake.

This state machine make power saving

of Android more feasible for mobile

devices.

Finally, the main concept of

Android PM is through wake locks and

time out mechanism to switch state of

system power, so that system power

consumption will decrease. The

Android PM Framework provides a

software solution to accomplish power

saving for mobile devices. The

following diagram (Figure 3.5)

shows the overall architecture of

Android PM [8].

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2872

Figure 3.5 the overall architecture of Android PM

4.
Android PM Implementation

Android PM Framework provides a

service for user space applicat ions

through the class PowerManger to

achieve power saving. Hence, the app

must get an instance of PowerManger

in order to enforce its power

requirements. The flow of exploring

Wake locks are here:

1. Acquire handle to the

PowerManager service by

calling

Context.getSystemService().

2. Create a wake lock and specify

the power management flags

for screen, timeout, etc.

3. Acquire wake lock.

4. Perform operation such as play

MP3.

5. Release wake lock.

Here we provide an example code

of PM. We will put the wake locks code

on the function of onCreate() which

will initialize first while the program

start. And then release locks on the

function of onDestroy() method. Then,

we can control different type wake

locks to accept different timeout or

power saving mechanisms after

finishing the implement [9].

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2873

5.

Conclusion

Power saving is an important

issue for mobile devices, and there are

many ways to implement. How to

design a PM for mobile device need

is a good question. Android builds up

its user space level solution in order to

maintain Linux fundamental support

and increase flexibilities. Android PM

already supports some power saving

type for modern diverse embedded

systems.

The number of wake locks type

might be not enough for diverse power

consuming I/O devices. For example,

WiFi antenna is a main power

consumption device. Android doesn't

automatically turn off WiFi if user is

not using.

There are two main points that we

think PM can be improved. First,

Nowadays, CPU can enter into more

states for power saving and usability

purpose. There could be more types of

wake lock to set the power saving

mode specifically.

Second, the old PM system

usually sense the keyboard or touch

screen activity to judge whether should

enter power saving mode or not. We

purpose a new concept that sensors

can be used to shorten the length of

device timeout. For example, if the

mobile device has light sensor, we can

use it to tune the brightness of LCD

and keyboard. Furthermore, we can

use motion sensor to detect user's

behavior. To sum up, PM is very

important for mobile device but it still

have room for improvements.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348-6848
e-I SSN: 23 48-795X

Vol ume 0 4 I s s ue 02
Febr ua ry 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2874

References

1. Robin Kravets, P. Krishnan, Power
management techniques for mobile
communication, Internationa l

Conference on Mobile Computing
and Networking.

2. Dynamic power management for
embedded systems IBM and Monta
Vista Software Version 1.1,

November 19, 2002.
3. Robin Kravets, P. Krishnan,

Application-driven power
management for mobile
communication.

4. Andreas Weissel, Frank Bellosa,
Process cruise control: event-driven

clock scaling for dynamic power
management.

5. APM V1.2 , data sheet

specifications.
6. ACPI,

http://www.lesswatts.org/projects/a

cpi/index.php
7. Android Project - Power

Management,

http://www.netmite.com/android/

mydroid/development/pdk/docs/p

ower_manage ment.html

8. Steve Guo, Android Power

Management.
9. Matt Hsu, Jim Huang, Power

Management from Linux Kernel to

Android, 0xlab, 2009.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://www.lesswatts.org/projects/acpi/index.php
http://www.lesswatts.org/projects/acpi/index.php
http://www.netmite.com/android/mydroid/development/pdk/docs/power_manage%20ment.html
http://www.netmite.com/android/mydroid/development/pdk/docs/power_manage%20ment.html
http://www.netmite.com/android/mydroid/development/pdk/docs/power_manage%20ment.html

