

P a g e | 817

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

File Handling | Nonika Sharma, Priyanka Sahni

File Handling
Nonika Sharma, Priyanka Sahni

Information Technology, Dronacharya College Of Engineering, Gurgaon, India

nonikasharma1@gmail.com,Priyanka.sahni@yahoo.com

ABSTRACT-
The Stack tool provides a raw data
reader. Stereo and Mono tools perform
generic file handling and display for stereo
and mono processing respectively.
The Sequence tool also provides readers
for medical image data sets. Files can be
flexibly converted directly or by
interchanging data via the stack. See
appendix for file formats.

The simplest image handler is the Raw
Input Tool which provides direct access to
the data stack within Tina. It allows the
user to specify all of the parameters
necessary to locate and read a raw binary
(or ascii) data block within a file. The
parameters of this tool should be quite self
explanatory. Typical use involves a trial
and error process to select the best
parameters while viewing the resulting
data in the Imcalc Tool's TV. This should
be the method of last resort for loading
proprietary data sets. The other data input
tools support formats which contain useful
supplemental header information.
The Sequence Tool in particular supports
common medical volume data sets. Once
an data set has been loaded it is possible to
write out to any of the supported formats,
thus achieving image conversion.

Introduction

File is a collection of bytes stored in
secondary storage device i.e. disk. Thus,

File handling is used to read, write, append
or update a file without directly opening it.

Types of File:

• Text File
• Binary File

Text File contains only textual data. Text
files may be saved in either a plain text
(.TXT) format and rich text (.RTF) format
like files in our Notepad while Binary
Files contains both textual data and custom
binary data like font size, text color and
text style etc.

Why we use File Handling?

The input and output operation that we
have performed so far were done through
screen and keyboard only. After the
termination of program all the entered data
is lost because primary memory is volatile.
If the data has to be used later, then it
becomes necessary to keep it in permanent
storage device. So the Java language
provides the concept of file through which
data can be stored on the disk or secondary
storage device. The stored data can be read
whenever required.

Note: For handling files in java we have to
import package named as java.io which
contains all the required classes needed to
perform input and output (I/O) in Java.

P a g e | 818

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

File Handling | Nonika Sharma, Priyanka Sahni

File Class in Java:

Files and directories are accessed and
manipulated by the File class. The File
class does not actually provide for input
and output to files. It simply provides an
identifier of files and directories.

Note: Always remember that just because
a File object is created, it does not mean
there actually exists on the disk a file with
the identifier held by that File object.

For Defining a file in a File Class there are
several types of constructors.

File Class constructors:

Constructor Description

File(File parent, String
child)

This method creates a new File instance from a parent abstract
pathname and a child pathname string.

File(String pathname)
This method creates a new File instance by converting the given
pathname string into an abstract pathname

File(String parent,
String child)

This method creates a new File instance from a parent pathname
string and a child pathname string.

File(String parent,
String child)

This method Creates a new File instance by converting the given
file: URI into an abstract pathname.

File class methods:

Method Description

Boolean canExecute()
This method tests whether the application can execute the file
denoted by this abstract pathname.

Boolean canRead()
This method tests whether the application can read the file denoted
by this abstract pathname.

Boolean canWrite()
This method tests whether the application can modify the file
denoted by this abstract pathname.

int compareTo (File
pathname)

This method compares two abstract pathnames.

Boolean
createNewFile()

This method atomically creates a new, empty file named by this
abstract pathname if and only if a file with this name does not yet
exist.

P a g e | 819

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

File Handling | Nonika Sharma, Priyanka Sahni

Boolean delete()
This method deletes the file or directory denoted by this abstract
pathname.

long getFreeSpace()
This method returns the number of unallocated bytes in the partition
named by this abstract path name.

String getName()
This method returns the name of the file or directory denoted by this
abstract pathname.

String getParent()
This method returns the pathname string of this abstract pathname's
parent, or null if this pathname does not name a parent directory.

File getParentFile()
This method returns the abstract pathname of this abstract
pathname's parent, or null if this pathname does not name a parent
directory.

String getPath() This method converts this abstract pathname into a pathname string.

String toString() This method returns the pathname string of this abstract pathname.

Boolean mkdir() This method creates the directory named by this abstract pathname.

long getTotalSpace()
This method returns the size of the partition named by this abstract
pathname.

long getUsableSpace()
This method returns the number of bytes available to this virtual
machine on the partition named by this abstract pathname.

int hashCode() This method computes a hash code for this abstract pathname.

Boolean isAbsolute() This method tests whether this abstract pathname is absolute.

Boolean isDirectory()
This method tests whether the file denoted by this abstract pathname
is a directory.

Boolean isFile()
This method tests whether the file denoted by this abstract pathname
is a normal file.

Boolean isHidden()
This method tests whether the file named by this abstract pathname
is a hidden file.

long lastModified()
This method returns the time that the file denoted by this abstract
pathname was last modified

P a g e | 820

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

File Handling | Nonika Sharma, Priyanka Sahni

long length()
This method returns the length of the file denoted by this abstract
pathname.

String[] list()
This method returns an array of strings naming the files and
directories in the directory denoted by this abstract pathname

String[] list(Filename
Filter filter)

This method returns an array of strings naming the files and
directories in the directory denoted by this abstract pathname that
satisfy the specified filter.

File[] listFiles()
This method returns an array of abstract pathnames denoting the
files in the directory denoted by this abstract pathname.

Listing 1: Check Permission on a File

import java.io.File;

public class FileDemo {
 public static void main(String[] args) {

 File f = null;
 String[] strs = {"test.txt", "/test.txt"};
 try{
 // for each string in string array
 for(String s:strs)
 {
 // create new file
 f= new File(s);

 // true if the file is executable
 Boolean bool = f.canExecute();

 // find the absolute path
 String a = f.getAbsolutePath();

 // prints absolute path
 System.out.println(a);

 // prints
 System.out.println(" is executable: "+ bool);

P a g e | 821

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

File Handling | Nonika Sharma, Priyanka Sahni

 // returns true if the file can be read
 Boolean w = f.canWrite();

 // print
 System.out.println("File can be writing: "+w);

 // returns true if the file can be read
 Boolean r = f.canRead();

 // print
 System.out.println("File can be read: "+r);

 }
 }catch(Exception e){
 // if any I/O error occurs
 e.printStackTrace();
 }
 }
}

Output of the program is:

C:\test.txt is executable: True
File can be writing: False
File can be read: True

Listing 2: Program to Create and Delete a file

import java.io.File;

Public class FileDemo {
 Public static void main (String[] args) {

 File f = null;
 Boolean bool = false;

 try {
 // create new file
 f = new File ("test.txt");

 // tries to delete a non-existing file
 bool = f.delete();

P a g e | 822

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

File Handling | Nonika Sharma, Priyanka Sahni

 // prints
 System.out.println ("File deleted: "+bool);

 // creates file in the system
 f.createNewFile ();

 // createNewFile () is invoked
 System.out.println ("createNewFile() method is invoked");

 // tries to delete the newly created file
 bool = f.delete();

 // print
 System.out.println ("File deleted: "+bool);

 }
 catch(Exception e){
 // if any error occurs
 e.printStackTrace ();
 }
 }
}

Output of the Program is:

File deleted: false
createNewFile() method is invoked
File deleted: true

Listing 3: Program to Compare Two Files

import java.io.File;

public class FileDemo {
 public static void main(String[] args) {

 File f = null;
 File f1 = null;

 try{
 // create new files
 f = new File("test.txt");
 f1 = new File("File/test1.txt");

P a g e | 823

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

File Handling | Nonika Sharma, Priyanka Sahni

 // returns integer value
 int value = f.compareTo(f1);

 // argument = abstract path name
 if(value == 0)
 {
 System.out.println (" Both Files are Equal. ");
 }

 // argument < abstract path name
 else if(value > 0)
 {
 System.out.println ("First file is greater.");
 }

 // the argument > abstract path name
 else
 {
 System.out.println ("Second file is greater.");
 }

 // prints the value returned by compareTo()
 System.out.println("Value returned: "+value);

 }catch(Exception e){
 e.printStackTrace();
 }
 }
}

Output of the Program is:

First file is greater.
Value returned: 14

Listing 4: Program to check whether it is a File or a Directory and check it is a hidden file

import java.io.File;

public class FileDemo {
 public static void main(String[] args) {

P a g e | 824

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

File Handling | Nonika Sharma, Priyanka Sahni

 File f = null;
 String path;
 boolean bool = false;

 try{
 // create new file
 f = new File("c.txt");

 // true if the file path is a file, else false
 bool = f.isFile();

 // get the path
 path = f.getPath();

 // prints
 System.out.println (path+" is file? "+ bool);

 // create new file
 f = new File("c:/test.txt");

 // true if the file path is a file, else false
 p = f.isDirectory();

 // get the path
 path = f.getPath();

 // prints
 System.out.println (path+" is Directory? "+p);

 // create new file
 f = new File("c:/test.txt");

 // true if the file path is a file, else false
 h = f.isHidden();

 // get the path
 path = f.getPath();

 // prints
 System.out.println (path+" is Hidden? "+h);

P a g e | 825

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

File Handling | Nonika Sharma, Priyanka Sahni

 }catch(Exception e){
 // if any error occurs
 e.printStackTrace();
 }
 }

Output of the Program is:

C.txt is File? False
c:\test.txt is Directory? True
C:\test.txt is hidden? False

Conclusion

The java.io package contains many classes
that our programs can use to read and write
data. The java.io.File package provides
extensive support for file and file system
I/O. This is a very comprehensive API, but
the key entry points are as follows:

• The Path class has methods for
manipulating a path.

• The Files class has methods for file
operations, such as moving, copy,
deleting, and also methods for
retrieving and setting file attributes.

• The File System class has a variety
of methods for obtaining
information about the file system.

References:
[1] McIlroy, M. D., & Reeds, J. A.

(1991). U.S. Patent No. 4,984,272.
Washington, DC: U.S. Patent and
Trademark Office.

[2] Barron, D. W., Fraser, A. G.,

Hartley, D. F., Landy, B., &
Needham, R. M. (1967, April). File
handling at cambridge university.
In Proceedings of the April 18-20,
1967, spring joint computer
conference (pp. 163-167). ACM.

[3] Yagi, T., & Takahashi, O. (2002).

U.S. Patent No. 6,393,429.

Washington, DC: U.S. Patent and
Trademark Office.

[4] Hogg, S. (1996). A review of the

validity and variability of the
elevated plus-maze as an animal
model of anxiety. Pharmacology
Biochemistry and Behavior, 54(1),
21-30.

[5] File, S. E., Andrews, N., Wu, P. Y.,

Zharkovsky, A., & Zangrossi Jr, H.
(1992). Modification of
chlordiazepoxide's behavioural and
neurochemical effects by handling
and plus-maze experience.
European journal of
pharmacology, 218(1), 9-14.

