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ABSTRACT: 

 The review analysis the complex analysis in algebraic geometry one reviews complex analytic and 

algebraic varieties, maps between such spaces (the easiest case being holomorphic and algebraic 

capacities) and analytic and algebraic items characterized on those spaces, as subvarieties, vector groups 

and bundles. There are numerous relations of complex analysis and algebraic geometry to different fields 

of science, for instance utilitarian analysis, algebraic topoplogy and commutative variable based math. An 

established use of complex analysis is analytic number hypothesis. As of late elliptic bends, a most loved 

subject of study in complex analysis and algebraic geometry, have turned into an essential apparatus in 

algorithmic number hypothesis and in cryptography. Different parts of complex analysis and algebraic 

geometry (e.g. misshapening hypothesis and the hypothesis of moduli spaces) have turned out to be 

important for hypothetical material science. 

INTRODUCTION: 

A ring is a set A with two operations (called addition and multiplication) that behave like those of the 

integers in the precise sense follows: 

A with addition is a commutative group multiplication is associative, distributive with respect to the 

addition, and it has a neutral element.In more detail, a ring A is a group wherein two laws are data internal 

composition, denoted by + and  satisfying the following properties: 

Whatever the elements a, b and c belonging to the group A: 

                 a b c a b c      

         a b b a    

      .       .  . a b c a b c  

 .            ( )a b c a b a c    

      .     b c a ba ca    

There is an element, denoted 0 and called neutral element of the internal composition law +, such that for 

any element belonging to the set A: 

   0   0       a a a     

Any element belonging to the set A has an opposite, denoted -a, which checks: 

                  0a a a a       

There is an element, denoted 1 and called neutral element of the internal composition law ∙ or unite 

element, such that for any element belonging to the set A: 

 .1    1   .     a a a   
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A commutative ring is a ring whose multiplication is also commutative. 

In explaining as above, this is a ring in which the following identity is verified regardless of the elements a 

and b of the set A: 

a ∙ b  =  b . a 

Examples of commutative rings 

(i) All single-element {0} provided operations 0  0  0   and 0  0.0  is a commutative ring, called 

zero ring, or ring trivial. 

(ii) The set of integers,  with addition and multiplication is a commutative ring. 

(iii) A commutative body is a commutative ring in which all non-zero elements are invertible for 

multiplication. 

(iv) Among many others, the set of rational numbers, , the set of real numbers , the set of complex 

numbers, , with addition and multiplication are commutative usual body, thus commutative rings. 

(v) The set of congruence classes modulo a positive integer n is a given commutative ring for the law 

from the congruence; it is noted Z / nZ. 

(vi) The set of polynomials with coefficients in a commutative ring is also a commutative ring. 

Examples of non-commutative rings 

(i) The endomorphism of a vector space form a ring where the first law is the addition function for the 

law + and the second composition. It is not commutative in general. 

(ii) Hamilton quaternions are a non-commutative body. 

(iii) The set N of natural numbers is not a ring, because it is not a group when we equip with the 

addition: the existence of opposites is lacking. It is a semi-ring.The whole set Z (relative) peers is not a 

ring, for its multiplication has no neutral element. It is a pseudo-ring. 

(iv) Alloctomoms is not a ring, for its multiplication is not associative. Some times called non-

associative ring. 

(v) Forany non-trivial group  ,G  ,the group  GG G applications in Gbecomes, when it provides 

with the ∘ composition, an almost-ring (in), but not even a ring g is commutative because the distributive 

left is nottrue: 

We do not have ( )         ( ) ( )     .f g h f g f h    

Homomorphism of rings. 

A ring homomorphism is a map fbetween two rings A and B is consistent   with their structure, the 

following precisesense: 

For all a, b in A: 

            f a b f a f b    

       .      .f a b f a f b  

In particular, if A and B are unitary, this morphism is said unitary if 

1  ( 1) .f A B  

The following applications are examples of morphisms of rings: The combination of the ring of complex 
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numbers to himself.This morphism is bijective (it is said that this is an auto morphism of C);For positive 

integer ,  n Z  projection on the ring  /  ;Z nZ Z / nZ; 

Theevaluationfunction,whichassociateswithapolynomialPwithrealcoefficients value P (c) a fixed real c. 

The rings consist morphisms between them, making the class of rings acategory. 

Some elementary properties of an R −module M: 

(i) 0  0,  m m M   

(ii) 0  0,  a a R   

(iii)  ,( ) ( ) ,) ( ,a m am a m a R m M        

Where 0 on the right side of (i) and (ii) is the zero ofM, 0 on the left side of  (i)  is the zero ofR. 

To prove  (i) , consider      0      0 .( )am a m am m     

To prove (ii) , consider ( ) 0    0.am a m am a     

To prove (iii) consider  ( )0  0       ( )  m a a m am a m       ,andalso consider

( ( )) ( 0    0    ) a a m m am a m       . 

Throughout, all modules are left module unless otherwise stated. 

Examples ofmodules 

i. Let A be any additive abelian group. Then A is a left (also right ) Z −module,because 

1 2 1 2 1 2

1 2 1 2

1  2,      ( ) ( ) (

)

,        

, ( )

k a a ka ka k k a k a k a

k k a k k a

     


 

1a = a, 

For all integer 1 2, ,  k k k Z and for all 1 2, ,a a a A  

 Let R bearing.then R itselfcanberegardedasaleft R –module by defining , , .am m R a R  to be the 

product of aand mas elements of the ring R. Then the distributive laws and the associative law 

formultiplicationintheringRshowthatRisaleft R module . 

Similarly, Ris also a right R module . 

ii. Let M be the set of m n matrices over a ringR. 

Then M is a module over R , because M is an additive abelian group under the 

usualadditionofmatrices,andtheusualscalarmultiplication(  ijra j)ofthe matrices ( ) ija M (aij) ∈Mby the 

element r R satisfies axioms    i iv  for a module. 

In particular , the set of ( )1   1n or n  matrices –the set of n tuples , denoted by 
nR   is a module over 

R . 

Further , by choosing R R and ( ) 2 3n or , we obtain that the set of vector in a plane (or in space) forms 

a vector space over the field R . 

iii. Let M  and N  be R modules  . In the Cartesian product M N , define 

( ) ( ) (, , , )x y x y x x y y        , 
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,  ( ) ( , )r x y rx ry  

For all , , ,x x M y y N  , and  r R . Then M N becomes an R module  , called the direct product of 

the  R modules M and N . 

iv. thepolynomialring [ ] .R x overRisanR module . 

v. Let R be a ring and let S denote the set of all sequences       ,  ,)  (  i ia i N a R  Define 

( ) ( )    ( )  ii i ia b a b    

   ( ) ( )i ia b , 

Where ,  ,  .i ia a b R . Then S is a left R module . 

SUB MODULES AND DIRECT SUMS 

Definition 

A nonempty subset N of an R module ,   M is called an –  R sub module  (or simply submodule) of M

if 

(i)              ,      .a b N for all a b N    

 (ii)                   , ra N for all a N r R    

 

Clearly; (0) or simply 0 and M  are –  R sub modules , called trivial sub modules. In case R is a field, N is 

a –  R sub module  of M , then N  is also a 

R module  in its own right. 

Examples of Sub modules 

i. Each left ideal of a ring Ris a R module of the left R module  R, and conversely.  

This  follows from the definition of a leftideal. 

ii. Thesubset
3,0,0 \{( ) }    W F of F   isasubspaceofthevectorspace 3 F . 

iii. If M is an R module and x M , then theset 

/{ } Rx rx r R  is an R submodule  of M ,for 

1 2 1 2(   )r x r x r r x   Rx , 

1 2 1 2( ) ( ) xr r x r r x R  Rx , for all 1 2,   .r r R . 

iv. If M  is an R module  and x M , then theset 

 : ,{ }K rx nx r r n Z     

Is an R module  of M containing x. further , if R has unity , then 

K Rx . First , ( ),  K  is clearly an abelian subgroup of ( ), M  . 

Net , let , .a R rx nx K    Then  

( ) ( ) ( )a rx nx a rx a nx    

  . .    ( ) ( ) (( ) . ,( ))an x a x x or arx a x x         , 
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According to whether n is a positive or a negative integer. But then 

  . .     0( ) (( ) ) (( ) ( ) ( ) ,)a rx nx ar a a xor ar a a x           

 Since ( ) ( .)a x a x   Therefore , 

( )a rx nx ux  for some u R  

Hence , ( )a rx nx K  , for all ,a r in R  and for all n (inclusing 0) in Z. choosing 

 0r R  and  1n Z  in rx nx gives  x K . It is worth noting that if L is any other —R module of M 

containing x, then L contains all elements of the form 

, ,rx nx r R n Z   ; hence,   .K L . 

Thus, K is the smallest    R sub module  of M  containing x , usually denoted  x . Suppose R has unity e. 

then, rx nx Rx  . Similarly, if  0n  , then 

rx nx Rx  . So K Rx . Trivially, .Rx K  

 

Theorem 

Let ( ) i iN bea family of R-submodules of anR-moduleM. Then∩i∈∧Niis also anR-submodule. 

Proof 

Let x,y∈∩i∈∧Ni,a∈R. Thenfor all∈∧,x−y∈Niand axNi, becauseNiare R-submodules. 

Then,x−y,xy∈∩i∈∧Ni,which provesthat ∩i∈∧Ni, is anR- module. 

Let S be a subset of an R-module M . let 𝒜 = {N\Nis an R-module of M containing S} . then 𝒜 ≠ 

∅because M∈𝒜. let K =∩𝑁∈𝒜N. Then K is the smallest R-module of M containing s and is denoted by (S). 

The smallest R-module of M containing a subset S is called the R-sub module 

generatedbyS.IfS={x
1
,…,x

n
}isafiniteset,then(S)isalsowrittenas (x

1
,…,x

m
). 

Definition  

An R-module M is called a finite generated module ifM = (x
1
, . . , x

k
) for some 

x
i
∈M, 1 ≤ 𝑖 ≤ k. The elements x1, … x

k
are said to be generate M. 

Example 

The cyclic module generated by xis precisely {rx + nx\r∈R, n∈Z},and R has unity then it is implies to 

{rx\r∈R 

Theorem 

If an R-module M is generated by a set {x
1
, x

2
, … , x

n
} and 1∈R, then 

M = {r
1
x

1
+ r

2
x

2
+ …… . +r

n
x

n
\r

i
∈R }. The right side is symbolically written as 

 Rxi
𝑛

𝑖=1
 

Proof 

Clearly , if m, m
1
, m

2
∈ Rxi

𝑛
𝑖=1     and   r  ∈R , then :         

m
1
− m

2
∈ 𝑛

𝑖=1 Rxi .  

Thus , all   xi∈ 𝑛
𝑖=1 Rxi 
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But since M is the smallest sub module of M containing all xi, the sub module   

 𝑛
𝑖=1 Rxi   must be equal to M . 

If an element m∈Mcan be expressed as m = a
1
x

1
+ ….. + a

n
x

n
, a

i
∈ R 

xi∈M, 𝑖 = 1, . . , nthen we say that m is a linear combination of the elements 

x1, … xn∈R. 

  we remark that the set of generators of a module need not be unique. 

For example , let S be the set of all polynomials in x over a field F of degree ≤ n. 

Then S is a vector space over F with {1, x, x
2
, x

3
, … , x

n
} and 

{1,1 + x, x
2
, x

3
, … , x

3
} as two distinct sets of generators. 

7 Definition  

Let (Ni),1≤𝑖≤k, bea family of R–submodules of amoduleM.thenthe sub module generatedby ∪k
𝑖=1Ni   

that is , the smallestsub-modulecontainingthe submodulesNi,1≤𝑖≤k, is calledthesumof sub modulesNi,1≤𝑖≤ 

k, andis 

denotedby Ni𝑘
𝑖=1  

Theorem 

If(Ni),1≤𝑖≤k, is afamily of R-modules of amoduleM,then 

 𝑁𝑖𝑘
𝑖=1 ={x

1
+…..+x

k
\x

i
∈N

i
}. 

 

Proof 

LetS={x1+……+xk\xi∈Ni}. Ifx1+……+xkand y1+….+ ykbelong to Sthen 

(x1+. . +xk) − (y1+ …. + yk) = (x1− y1) + ….. + (xk− yk) 

lso belongto S, becausexi−yi∈Ni,1≤𝑖≤k. Also ,ifr∈R,then 

 

r(x1+ ….. + xk) = rx1 + ….. . +rxk∈S, 

Becauseeach rxi ,1≤𝑖≤k, is in Ni . Thus ,S is aleftR-submodule. 

Further , if K is any left R-sub module that contains each sub module Ni, then K contains all elements of 

the form x1+ ….. + xk, xi∈Ni. Thus , kcontains S . 

Hence,S is thesmallest submodulecontainingeachNi,1≤𝑖≤k. 

Therefore, bydefinitionof 𝑁𝑖𝑘
𝑖=1  

Problem 2.  

Prove that if Mis an R-module, then Z(M) is a submodule of M and Z(R)is a proper two-sided ideal of R. 

In particular, if R is a simple ring, then Z(R) = {0}. 
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Solution. First note that 0∈ 𝑍(𝑀)because ann(0) = R⊆𝑒 𝑅 . Now suppose that 𝑥1, 𝑥2  ∈ 𝑍 𝑀 . Then 

ann( 𝑥1 + 𝑥2 ) ⊇ 𝑎𝑛𝑛 𝑥1 ∩ 𝑎𝑛𝑛 𝑥2 ⊆𝑒  𝑀 by Problem 1. Therefore 𝑎𝑛𝑛 𝑥1 + 𝑥2 ⊆𝑒  𝑀 and hence 

 𝑥1 + 𝑥2 ∈ 𝑍(𝑀)Now letr∈ R and x∈ 𝑍(𝑀).We need to show that rx∈ 𝑍(𝑀). Let Jbe a nonzero left 

ideal of R. Then Jris also a left ideal of R. If Jr = {0}thenJ ⊆ 𝑎𝑛𝑛(𝑟𝑥)and thus ann(rx) ∩ 𝐽 = 𝐽 ≠ {0}. 

IfJr≠ {0}. Thenann(rx) ∩Jr≠{0}becausex∈ 𝑍(𝑀). So there exists𝑠 ∈ 𝐽 such that sr ≠ 0and srx = 0. Hence 

0 ≠ s ∈ ann rx  J.So rx∈ 𝑍(𝑀)and thus 𝑍(𝑀)is a submodule of M. Now, considering R as a left R-

module, Z(R)is a left ideal of R, by what we have just proved. To see why Z(M) is a right ideal, let r ∈ 

Randx∈ 𝑍(𝑅) . Then ann(xr) ⊇ 𝑎𝑛𝑛 𝑥 ⊆𝑒 𝑅 and so𝑎𝑛𝑛 𝑥 ⊆𝑒 𝑅 i.e. x𝑟 ∈ 𝑍(𝑅). Finally, Z(R) is proper 

because ann(1) = {0}and so 1 ∉ (R). 

Problem 3. Prove that if 𝑀𝑖 , 𝑖 ∈ 1are R-modules, then𝑍 ⊕𝑖∈1 𝑀𝑖 = ⊕𝑖∈1 𝑍(𝑀𝑖). Conclude that if R is a 

semisimple ring, then Z(R) = {0}. 

Solution. The first part is a trivial result of Problem 1 and this fact that if x = x1 + x2+ ……+ xnwhere the 

sum is direct, then𝑎𝑛𝑛 𝑥 = ∩𝑖=1
𝑛 𝑎𝑛𝑛 𝑥𝑖 . The second now follows trivially from the first part, Problem 

2 and the Wedderburn-Artin theorem.  

Problem 4. Suppose that R is commutative and let N(R) be the nilradical of R. Prove that 

1) N(R)⊆ 𝑍 𝑅 ; 

2) it is possible to have N(R)∉ Z(R) 

3) ifZ R ≠ {0} thenN(R)⊆𝑒  Z(R) as R-modules or  Z(R)-modules. 

Solution. 1) Let a∈N(R). Then 𝑎𝑛 = 0for some integer𝑛 ≥ 1. Now suppose that 0 ≠ 𝑟 ∈ 𝑅Then𝑟𝑎𝑛 = 0. 

Let𝑚 ≥ 1  be the smallest integer such that𝑟𝑎𝑚 = 0 . Then 0 ≠ 𝑟𝑎𝑚−1 ∈ 𝑎𝑛𝑛 𝑎  𝑅𝑟and hence a ∈

Z(R). 

2) Let and put For every i, let 𝑎𝑖 = 2 + 2𝑖 ℤ and consider a= (a1, 

a2,…..)∈ 𝑅 It is easy to see thata ∈ N R \N(R). 

3) Let 𝑎 ∈ 𝑍 𝑅 \𝑁(𝑅). Then ann(a)∩ 𝑅𝑎 ≠ {0}and thus there exists r∈Rsuch that ra≠0and𝑟𝑎2 = 0 

Hence and so ra ∈ 𝑁(𝑅). Thus 0 ≠ 𝑟𝑎 ∈ 𝑁 𝑅 ∩ 𝑅𝑎implying that N(R)is an essential R-submodule of 

Z(R). Now, we view Z(R) as a ring and we want to prove that N(R) as an essential ideal of Z(R). 

Again,  let 𝑎 ∈ 𝑍 𝑅 \𝑁(𝑅) . Then ann(a) ∩ 𝑅𝑎2  ≠ {0} and thus there exists r∈ 𝑅  such that 𝑟𝑎2 ≠ 0 

and𝑟𝑎3 = 0. Let 𝑠 = 𝑟𝑎 ∈ 𝑍(𝑅). Then(𝑠𝑎)2 = 0 and thus0 ≠ 𝑠𝑎 ∈ 𝑁 𝑅 ∩ 𝑍(𝑅)implying that N(R) is 

an essential ideal of Z(R). 
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Problem 1. (Richard Brauer) Let be a negligible left perfect of a ring . At that point either I=Re or for 

some non-zero idempotent e∈I  

Arrangement. Assume that I^2≠{0}. At that point there exists some x ∈Isuch thatIx ≠{0}. In this manner 

Ix= I, in light of the fact that Ix⊆I is a non-zero remaining perfect of and is an insignificant left perfect of 

Hence there exists 0 ≠e∈Isuch that ex = x thus  

(e2 - e)x = 0 (1)  

Then again, J = {r∈I;rx=0} is clearly a left perfect of R which is contained in I. SinceIx≠{0}we have J ≠1 

and in this manner, by the insignificance of I, we should have J = 0. In this manner e2 – e = 0, by (1). So 

e∈Iis a non-zero idempotent. Presently Re is a left perfect of R which is contained in I. Also0≠e=e^2∈Re 

thus Re≠{0}.Therefore Re = I, by the negligibility of I.  

Take note of that we didn't require R to have 1. Likewise, a comparable outcome holds for negligible right 

standards of R, i.e. in the event that I is a negligible right perfect of R, then either I2 ={0} or I = eRfor 

some non-zero idempotent e∈I. In the event that R is a semisimple ring (with 1), for instance full lattice 

rings over division algebras, then every left (resp. right) perfect of is created by some idempotent, as the 

following issue appears. 

Problem 2. Give R a chance to be a semisimple ring and I any left (resp. right) perfect of R. At that point 

there exists some idempotent e∈I. to such an extent that I = Re (resp. I = Re). 

Solution: We'll just demonstrate the claim for left beliefs of R. The evidence for right standards is 

comparable. Since R is semisimple, there exists a left perfect J of R with the end goal that R= I⊕J. So 1 = 

e+ffor some e∈Iand f ∈J. Thus e = e2+ef thus e2 = eand ef = 0, in light of the fact that e,e^2∈Iand ef∈Jand 

the entirety is immediate. So is an idempotent. It is clear thatRe⊆I. Presently if x ∈I, then x = xe+xf and 

along these lines x = xe. In this way I⊆Re and we're finished. 

JACOBSON SEMI-SIMPLE OR PRIMITIVE SEMI-SIMPLERING 

A ring is called semi primitive or Jacobson semi basic if its Jacobson radical is the zero perfect. A ring is 

semi primitive if and just on the off chance that it has an unwavering semi straightforward left module. 

The semi primitive property is left-right symmetric, thus a ring is semi primitive if and just in the event 

that it has a reliable semi straightforward right module. A ring is semi primitive if and just in the event 

that it is a sub coordinate result of left primitive rings. A commutative ring is semi primitive if and just on 

the off chance that it is a sub coordinate result of fields, A left artinian ring is semi primitive if and just in 

the event that it is semi straightforward, Such rings are here and there called semi basic Artinian 

Examples 
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The ring of whole numbers is semi primitive, yet not semi basic. Each primitive ring is semi primitive.The 

result of two fields is semi primitive however not primitive. Each von Neumann customary ring is semi 

primitive. 

Theorem. Let M  be a semisimple R module  and N M  a submodule. Then we can find simple 

submodules iM M (indexed by i I ) such that 

( )i I iM N M    

The ―direct sum‖ ⊕ means that every element m of M is uniquely writable as a sum 
i

i

n m where 

, i in N m M  and only finitely many terms are non-zero. 

Proof 

This will be by Zorn‘s lemma. Consider collections ∑ of simple submodules S of M such that: 

: ( )sM N S     

is a direct sum. Note that at least one ∑ exists, i.e. ∑ = ∅ is valid (in which case we get M N  ). [ For 

those who worry about set-theoretic validity, note that the collection of all such ∑ forms a bona fide set. ] 

To apply Zorn‘s, we need to prove that every chain of ∑‘s has an upper bound. 

Suppose  
 is a chain: i.e. for any , ,   either     or ,    Let U    let us show that 

( )sM N S    is a direct sum. 

 If not, then 0s sn m  for some , sn N m S  .But this is a finite sum, so the equality 

already holds in some 
 (since the 

 ‗s form a chain), which is a contradiction. 

Thus, the chain   
  has an upper bound. Zorn‘s lemma tells us there is a maximal ∑. If M M


, 

pick m M M 


Since M is a sum of simple submodules, write 

1 2 .... rm m m m    , k km M  where each Mk is simple. 
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Since m M


we have 
kM M 

for some k. But this means k JM M is a proper submodule of Mk, 

and must be zero (since Mk is simple). Hence kM M is a direct sum, so we could have added the 

simple module Mk to the collection ∑, contradicting its maximality. Thus, M M  and we‘re done. ♦ 

Now we‘re ready to prove all the necessary properties of semisimple modules. 

Corollary 1. Every semisimple module M is a direct sum of simple modules. 

Proof. Pick N = 0 in the theorem. ♦ 

Corollary 2. If each iN M is a semisimple submodule of a module M, then so is : iN N  

Proof. Each iN is a sum of simple modules; by definition so is N. ♦ 

Corollary 3. If N is a submodule of a semisimple M, then there is a submodule P of M such that

M N P  . 

Proof. Apply the theorem and let : i I iP M . ♦ 

Corollary 4. A submodule and quotient of a semisimple module M is semisimple. 

Proof. Submodule follows from the definition of semisimplicity; quotient follows from the theorem, since 

i I i

M
M

N
   is a direct sum of simple modules. ♦ 

Theorem. Any module over a semisimple ring R is semisimple. 

Proof 

Let M be a module. If m is a non-zero element of M, take the homomorphism f : R → M, which 

takes r → rm. Then Rm is a submodule of M isomorphic to R/ker(f), which is a semisimple R-module 

since R is. Thus Rm is semisimple. Since M is a sum of semisimple submodules, M is also semisimple. ♦ 

Let us look at some ways to create semisimple rings. 

Proposition. (i) If I is a (two-sided) ideal of semisimple ring R, then R/I is a semisimple ring. 

(ii) If R and S are semisimple rings, so is R × S. 
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Pr(i) Any left ideal of R/I corresponds to a left ideal of R containing I, which is a sum of 

simple submodules J. The image of J in R/I, i.e. (J + I)/I≅J / (J ∩ I), is thus either 0 or J. Either way, R/I 

is a sum of simple submodules. 

(ii) Any left ideal M of R × S is of the form I × J, for left ideal I of R and J of S. [ To see why, multiply 

elements of M by (1, 0) and (0, 1). ] Since I and J are both sums of simple submodules, so is I × J. ♦ 

Finally, decomposing R gives us a complete list of simple R-modules. 

Proposition. Give R a chance to be a semisimple ring; compose as an immediate total of straightforward 

left standards. At that point any straightforward module M is isomorphic to some . Specifically, there are 

just limitedly numerous straightforward R-modules up to isomorphism.  

Proof 

We know that any simple module M is isomorphic to quotient R/I for a maximal left ideal I of R. For 

each i, consider 

( )
: i i

i i i i

N
f N N M

I


    

Since ,iN M are both simple, 0if  or an isomorphism. If all 0if  , then so is :i i ii
f R N M 

which is absurd. Hence some if is an isomorphism, which proves the first statement. 

The second statement follows from the following lemma. ♦ 

Lemma. Writing the base ring as a direct sum of submodules i iR N  only finitely many of the modules 

are non-zero.  

Proof 

Indeed, write 1 as a finite sum 1 2 ..... kx x x   where i ix N  For an iN not in this list, any iy N gives: 

1 2 1 2.1 ....... ........k Ky y yx yx yx N N N          

So y = 0 since iN does not lie in the list of 1,......, kN N  

THEOREM (SIMPLE STATEMENT) 

let M be a simple R-module . then ( , )HomR M M is a divisionring. 

Proof 

Let N be the kernel of 𝜑. The subspace E is not entirely because 𝜑is not zero.  It is stable by any 

application u ofU 

( ), ( ) ( ) ( )u U vL F u N v N v N        

Therefore ( )u N is included in N . For Toughness ,U N is reduced to  0 . 

Let M theimageof . The subspace F is not reduced to{0} because𝜑 is not zero. It is stable by any 
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application𝑣 of𝑉 

∀ 𝑣 ∈ V∃ 𝑢 ∈ 𝐿 𝐹  ,   𝑣 ∘  ∅ 𝐸 =  ∅ ∘ 𝑢 𝐸  ⊂  ∅(𝐸) 

Therefore 𝑣 (𝑀)is included in 𝑀. For irreducibility of𝑉, 𝑀is equal to𝐹. 

 

4.3 CROLLARIES: 

Corollary 1 

LetEbeavectorspaceoffinitedimensionoveranalgebraicallyclosedfieldKand U an irreducible part of L (E). If 

an endomorphism φ of E commutes with every element of U, then φ is ascaling. 

Proof 

If Id is the application identity, we have: 

∀𝜆 ∈ 𝐾 , ∀𝑢 ∈ 𝑈   ∅ − 𝜆𝐼𝑑 ∘ 𝑢 = 𝑢 ∘  ∅ − 𝜆𝐼𝑑  

 

It is deduced by applying the Schur lemma that φ - λ Id is an auto morphism or is 

zero. * Λ is an eigenvalue of φ, then φ - λ * Id is not an auto morphism, so is the null application, which 

proves the corollary. 

In the case of the representation of a group of finite exponent e, then any auto morphism of the image has 

to annihilator polynomial  𝑋𝑒−  1. Therefore, if    the polynomial is split over ,, the corollary stillapplies. 

Corollary 2 

Any irreducible representation of an Abelian group in a finite-dimensional space over an algebraically 

closed field is 1 degree. 

For let (E, ρ) such representation and D a straight E. whatever the element s of the group, 𝜌𝑠commutes 

with all endomorphism of representation. By Corollary 1,𝑠 is a dilation. Thus, D is therefore invariant 

equal to E. 

For finite groups  

Corollary 3 

Let (E, ρE) and (F, ρF) two irreducible representations of G over a field K whose characteristic does not 

divide the order of the group g and where the polynomial Xg - 1 split, and a linear mapping of ψ E to F, we 

define the linear map φ from E to F by: 

φ =
1

𝑔
 ρF(s) ∘ ψ ∘ ρE(s)−1

s∈G

 

If the representations are not isomorphic, then φ is zero. 

If representations are equal, then φ is a scaling ratio (1 / n) Tr (ψ). 

 

Proof 

Check at first that φ satisfies the following property: 

 

∀𝑡 ∈ 𝐺     𝜑 ∘ 𝜌𝐸 𝑡 = 𝜌𝐹 𝑡 ∘ 𝜑   ou encore    𝜑 = 𝜌𝐹 𝑡 ∘ 𝜑 ∘ 𝜌𝐸 𝑡 −1 
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Note first that if t is an element of G, the application of G in G which associates to ts s is a permutation of 

G. We deduce that: 

∀𝑡 ∈ 𝐺𝜌𝐹 𝑡 ∘ 𝜑 ∘ 𝜌𝐸 𝑡 −1 =
1

𝑔
  𝜌𝐹 (𝑡) ∘ 

𝑠∈𝐺

𝜌𝐹 𝑠 −1 ∘ 𝜌𝐸 𝑡 −1 =
1

𝑔
   𝜌𝐹 (𝑡𝑠) ∘ 

𝑠∈𝐺

ψ ∘ 𝜌𝐸 𝑡𝑠 −1 =  𝜑 

 

1. As the performances are not isomorphic, φ cannot be both one and onto. Schur's lemma shows that, as φ 

is not an auto morphism φ is the nullapplication. 

2. If (E, ρE) = (F, ρF), the assumptions of Corollary 1 hold, which shows that φ is a scaling. In this case, 

the expression defining φ is the average of all similar applications ψ g and thus having the same record as 

ψ. The traces of ψ and φ are equal.Notingλtheratioofhomotheticφwehave:nλ=Tr(φ)=Tr(ψ).Applyingall this 

to an arbitrary ψ trace 1, there are more than n is invertible inK. 

Note. 

If the characteristic of K p is nonzero, the proof of this corollary shows that the prime p does not divide n. 

As it was assumed that p does not divide g, this is not surprising when you consider that the degree n of an 

irreducible representation g always divides the order of the group. 

 

Corollary 4 

It is a fourth corollary that is used in the character theory. It is the translation in terms of matrices of the 

previous corollary. Use the following notations: 

A and B are two matrix representations of a finite group G of order g on the same field K whose 

characteristic does not divide g and where the polynomial 

Xg-1 is cleaved. The respective dimensions of E and F are shown as n and m. The image of an element s G 

to A (resp. B) is denoted ij (s) (resp. Bij (s)). 

We have then under the assumptions of Corollary: 

 

1. If the representations A and B are not isomorphic,then: 

 

∀𝑖, 𝑗 ∈  1, 𝑛   ∀𝑘, 𝑙 ∈  1, 𝑚  𝑎𝑖𝑗  𝑠 𝑏𝑘𝑖  𝑠
−1 = 0

𝑠∈𝐺

 

2. Noting δij the Kronecker symbol,then: 

∀𝑖, 𝑗, 𝑘, 𝑙 ∈  1, 𝑛 
1

𝑔
 𝑎𝑖𝑗  𝑠 𝑏𝑘𝑖  𝑠

−1 =
1

𝑛
𝑠∈𝐺

𝛿𝑖𝑙𝛿𝑗𝑘  

Proof 

1. If C a matrix size 𝑚 × 𝑛coefficients (cjk), translation of point 1 of the previous corollary showsthat: 

 𝐴 𝑠 𝐶𝐵(𝑠)−1 = 0

𝑠∈𝐺
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Therefore 

∀𝑖 ∈  1, 𝑛 ,∀𝑙 ∈  1, 𝑚   𝑎𝑖𝑗 (𝑠)𝑐𝑗𝑘 𝑏𝑘𝑙

𝑠∈𝐺𝑗𝑘

(𝑠)−1 =     𝑎𝑖𝑗 (𝑠)𝑏𝑘𝑙 (𝑠)−1

𝑠∈𝐺

 𝑐𝑗𝑘 = 0

𝑗𝑘

 

 

This equality is true for any matrix C, so for any value of Cjk, demonstrating the point 1. 

2. With the same notation (now A and B = m = n), we get from point 2 of the previouscorollary: 

1

𝑔
 𝐴 𝑠 𝐶𝐴 𝑠 −1 =

1

𝑛
𝑠∈𝐺

𝑇𝑟 𝐶 𝐼𝑑 

Therefore 

∀𝑖, 𝑗 ∈  1, 𝑛 
1

𝑔
  𝑎𝑖𝑗 (𝑠)𝑐𝑗𝑘 𝑏𝑘𝑙

𝑠∈𝐺𝑗𝑘

(𝑠)−1 =  
1

𝑛
 𝑐𝑘𝑘𝛿𝑖𝑙

𝑘

 

We can deduce: 

∀𝑖, 𝑗, 𝑘, 𝑙 ∈  1,𝑛 
1

𝑔
 𝑎𝑖𝑗

𝑗𝑘

 𝑠 𝑎𝑘𝑙 𝑠 
−1 =  

1

𝑛
𝛿𝑖𝑙𝛿𝑗𝑘  , 

And point 2 is proved. 

CONCLUSIONS 

The review finishes up the range of abstract 

algebra based math known as module hypothesis 

also known as module theory, a semisimple 

module or totally reducible module is a kind of 

module that can be seen effectively from its parts. 

A ring that is a semisimple module over itself is 

known as an Artinian semisimple ring. Some vital 

rings, for example, amass rings of limited 

gatherings over fields of trademark zero, are 

semisimple rings. An Artinian ring is at first 

comprehended by means of its biggest semisimple 

remainder. The structure of Artinian semi-simple 

rings is surely knew by the Artin–Wedderburn 

hypothesis, which displays these rings as limited 

direct results of framework rings. The 

straightforward modules over a ring R are the (left 

or right) modules over R that have no non-zero 

appropriate submodules. Comparably, a module M 

is straightforward if and just if each cyclic 

submodule produced by a non-zero component of 

M equivalents M. Straightforward modules shape 

building hinders for the modules of limited length, 

and they are closely resembling the basic 

gatherings in group theory. 
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