
 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 03

March 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 138

A Study on Important Considerations for Designing Fault Tolerant Systems

Gouthami Sh irams het ty 1 Jos e Mary Golamari2 Srin ivas Rao Pu llu ri3

gou thami.s h irams het ty@gmail.com, go lamarijos emary@gmail.com s rithanrao@gmail.com

Department o f Computer Science and Engineering

Jayamukhi Ins t itu te o f Technolog ical Sciences , Nars ampet , W arangal (TS)

Abstract— All the embedded and s oftware s ys tems

s hould be reliable and should be operational even when the

s ystem is performing any tasks even in ext reme condit ions .

So , in order to make a system continues operational, we intend

the systems to be Fault Tolerant.Fault Tolerance is the ab ility

to detect and recover from a fault that is happen ing or has

already happened in either the software o r hardware in the

s ystem in which the software is running in o rder to p rov ide

s ervice in accordance with the s pecificat ion . In o rder to

adequately understand the Fault tolerance it is importan t to

understand the nature of the problem that software is supposed

to solve. Software faults are all design faults . The s ource o f

the problem being solely design faults is very d ifferen t than

almost any other system in which fault tolerance is a des ired

p roperty. The software faults are the result of human erro r. In

th is, paper will discuss about the Architectural design of Fault

To lerant system, Redundancy , Applicat ion requ irements

which mainly intends to Software des ign , Synchron izat ion

In terface, Fau lt Detect ion log ic and the modes o f

operation.Current software fault tolerance methods are bas ed

on traditional hardware fau lt to lerance . Firs t ly , we s hall

d is cuss the basic terminology which clearly explains about the

d ifferent terms used in Fault Tolerance. And go on to discus s

various fau lt to lerance des ign cons iderat ions

I. INT RODUCT ION

 Distributed Real-time Embedded (DRE) systems are a

evolving group of systems that combine the strict real-time

characteristics of embedded platforms with the dynamic,

unpredictable characteristics of distributed platforms. As these

DRE systems increasingly become part of critical domains,

such as defense, aerospace, telecommunications, and

healthcare, fault tolerance (FT) becomes a critical requirement

that must coexist with their real-time performance

requirements. DRE systems have several characteristics

affecting their fault tolerance: DRE systems typically consist

of many independently developed elements, with different

fault tolerance requirements. This means that any fault

tolerance approach must support mixed-mode fault tolerance

(i.e., the coexistence of different strategies) and the

coexistence of fault tolerance infrastructure (e.g., group

communication) and non-fault tolerance infrastructure (e.g.,

TCP/IP). DRE systems’ stringent real-time requirements mean

that any fault tolerance strategy must meet real-time

requirements with respect to recovery and availability of

elements and the overhead imposed by any specific fault

tolerance strategy on real-time elements must be weighed as

part of the selection of a fault tolerance strategy for those

elements. DRE applications are increasingly component-

oriented, so that fault tolerance solutions must support

component infrastructure and their patterns of interaction.

DRE applications are frequently long-lived and deployed in

highly dynamic environments. Fault tolerance solutions should

be evolvable at runtime to handle new elements. This paper

makes two major contributions. First, it describes the

particular characteristics and challenges of component-

oriented DRE systems and describes three advances we have

made in the state of the art in fault tolerance for DRE systems:

1) A new approach to communicating with replicas that

supports the coexistence of non-replicated and replicated

elements for DRE systems with varying FT requirements, with

no extra elements and no extra overhead on nonreplicated

elements that only communicate with other nonreplicated

elements. 2) An approach to self-configuration of replica

communication, which enables replicas, non-replicas, and

groups to discover one another automatically as the number of,

and fault tolerance requirements of, elements change

dynamically. 3) An approach to duplicate management that

supports replicated clients and replicated servers, necessary to

support the complicated calling patterns of DRE applications.

A second contribution of this paper is that we demonstrate

these advances in the context of an integrated fault tolerance

capability for a real-world DRE system with strict real-time

and fault tolerance requirements, a multi-layered resource

manager (MLRM) used in shipboard computing systems. The

fault tolerance we developed for this context utilizes off-the-

shelf fault tolerance and component middleware with the

above enhancements; and supports a mixture of fault tolerance

strategies and large numbers of inter-operating elements, with

varying degrees of fault tolerance. We then evaluate the

performance of the replicated MLRM to meet its real-time and

fault tolerance requirements and present analysis of the

performance overhead of our fault tolerance approach.

All the embedded and software systems should be reliable and

should be operational even when the system is performing any

tasks even in extreme conditions. So, in order to make a

system continues operational, we intend the systems to be

Fault Tolerant.

Fault Tolerance is the ability to detect and recover from a fault

that is happening or has already happened in either the

software or hardware in the system in which the software is

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 03

March 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 139

running in order to provide service in accordance with the

specification.

In order to adequately understand the Fault tolerance it is

important to understand the nature of the problem that

software is supposed to solve. Software faults are all design

faults. The source of the problem being solely design faults is

very different than almost any other system in which fault

tolerance is a desired property. The software faults are the

result of human error. In this, paper will discuss about the

Architectural design of Fault Tolerant system, Redundancy,

Application requirements which mainly intends to Software

design, Synchronization Interface, Fault Detection logic and

the modes of operation

Current software fault tolerance methods are based on

traditional hardware fault tolerance. Firstly, we shall discuss

the basic terminology which clearly explains about the

different terms used in Fault Tolerance. And go on to discuss

various fault tolerance design considerations.
Fault tolerance is an important design consideration for

distributed real-time and embedded systems, which combine the real-

time characteristics of embedded platforms with the dynamic

characteristics. Traditional Fault tolerance methods do not address

features that are common in distributed real-tme and embedded

systems. Most of the existing research in Fault tolerance aimed at

client-server object systems, whereas distributed real-time and

embedded systems are increasingly based on component-based

architectures, which support peer-to-peer interactions. This paper

describes various design considerations to develop Fault tolerance

technology for distributed real-time and embedded systems.

II. MAJOR COMPONENTS

Fault Definition
It is essential to define what/which system faults are severe

enough for the redundant/backup system to take over. We can

handle some kinds of application faults by just restarting the

application/task on the same system in case of non-critical

system which doesn’t need to investigate the failure. Like a

video streaming application failure causing it to restart the

process.

Fault Detection
The Fault Detection logic is the main heart for the fault

tolerance to succeed. It could be hardware fault, data fault,

logic fault or storage error, etc. The system should have sound

logic to detect which errors are severe and which are minor to

detect the faults. Heart beat miss is the most common of the

fault detection.

Recovery Logic
The recovery mechanism would/may need extra hardware

support based on the configuration of the system. IO recovery

may need extra connections be made or remade. On fault

detection to recover the task or sub-task is assigned to some

other process / component or hardware to complete the

operation.

III. FAULTS

It can be termed as “defect” at the lowest level of abstraction.

It can lead to erroneous system state. Faults may be classified

as transient, intermittent or permanent. They are of following

types:

A. Processor Faults (Node Faults):

 Processor faults occur when the processor behaves in

an unexpected manner. It may be of classified into three kinds:

1> Fail- Stop:

 Here a processor can both be active and

participate in distribute protocols or is totally

failed and will never respond. In this case the

neighboring processors can detect the failed

processor.

2> Slowdown:

 Here a processor might run in degraded

fashion or might totally fail.

3> Byzantine:

 Here a processor can fail, run in degraded

fashion for some time or executed at normal

speed but tries to fail the computation.

B. Network Faults (Link Faults):

 Network Faults occur when (live and working)

processors are prevented from communicating with each

other. Link faults causes the following type of problems:

1> One way Links:

Here one processor can send messages to

other is not able to receive messages. This

kind of problem is similar to that faced due

to processor slowdown.

2> Network Partition:

Here a portion of network is completely

isolated with the other.

a. Failure:

Faults due to unintentional intrusions and hardware

faults (RAM bit flip, etc).

b. Error:

Undesirable system state or data state that may lead to

failure of the system or inconsistent results.

c. Recovery:

Recovery is a passive approach in which the state of the

system is maintained and is used to roll back the

execution to a predefined checkpoint.

d. Fault Tolerance:

Ability of system to behave in a well-defined manner

upon occurrence of faults.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 03

March 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 140

e. Redundancy

With respect to fault tolerance it is replication of

hardware, software components or computation.

f. Security:

Robustness of the system characterized by secrecy,

integrity, availability, reliability and safety during its

operation.

IV. DESIGN CONSIDERATIONS

 How Real Time is your application?

A system is said to be real-time if the total correctness of an

operation depends not only upon its logical correctness, but

also upon the time in which it is performed.[4] Real-time

systems, as well as their deadlines, are classified by the

consequence of missing a deadline:

Hard – missing a deadline is a total system failure.

Firm – infrequent deadline misses are tolerable, but may

degrade the system's quality of service. The usefulness of a

result is zero after its deadline.

Soft – the usefulness of a result degrades after its deadline,

thereby degrading the system's quality of service.

Thus, the goal of a hard real-time system is to ensure that all

deadlines are met, but for soft real-time systems the goal

becomes meeting a certain subset of deadlines in order to

optimize some application-specific criteria. The particular

criteria optimized depend on the application, but some typical

examples include maximizing the number of deadlines met,

minimizing the lateness of tasks and maximizing the number

of high priority tasks meeting their deadlines.

Also non-real time application can also be running on the

system.

 How distributed is your application?

Distributed applications (distributed apps) are applications or

software that runs on multiple computers within a network at

the same time and can be stored on servers or with cloud

computing.

A system which does a single algorithm computation or IO

operation like fetch and send would not be much benefitted if

the application is sub-divided into smaller tasks because it

doesn’t optimize anything if we further divide the application

task(s). Now fault tolerance for these kind of systems versus a

system which caters to an application which is very distributed

in nature would vary. For example simple distributed storage

would need fault tolerant storage. If a storage operation fails

we retry on another.

 Let’s take the application is very distributed in

nature. It has to do N sub-tasks to complete a request/task. So

now the sub-tasks could be running in a distributed computing

environment and distributed data. Here if a sub-task fail the

system has to detect the failure and schedule somebody else to

do the same operation.

 How much data your application is processing and its

read/write latency?

Let’s take the case of an old conventional application which

operates on a large data. So in case of a s ignificant fault we

may have to do a lot of data copy to the redundant/back up

system which would cause the failover time to be high because

of the data copy involved. It would always help if the

application logic or database is designed such that whenever

the data is operated upon the synchronization happens across.

Also the distributed database latency would also play a major

factor especially when the application/service has to process

the data in real time and respond with results. In these cases it

calls for use of faster data synchronization mechanisms across

peers.

Read/write database latencies can be improved by using in-

memory databases and faster memory access technologies.

 Is the application Connection Oriented?

In connection oriented application(s)/services(s) the failure of

connected node/station can cause the service to pause/not

available for quite some time. The detection of network failure

or node failure in case of connection oriented network

application needs to be sound. Mechanism to notify the task

scheduler in-case of network prolonged/multiple connection

disruption(s) would need to be defined properly. Also the heart

beat mechanism between the task scheduler and task listener

needs to be optimized for the faster fault detection and

recovery.

 The time taken for the other application to reconnect

and provide the same connection oriented service should be as

minimal as possible. Even in case of connection-less

communication we would have to take care of the QoS and

service not available scenario(s) detection.

 What type of redundancy is desired?

Standby redundancy is also known as Backup

Redundancy i.e., when you have an identical secondary unit

(Shadow) to back up the primary unit. The secondary unit

typically does not process/monitor the system, but it’s just

there as a spare. Standby unit is not usually kept in sync with

the primary unit, so it must reconcile its input and output

signals.

 We need a third party called watchdog, which monitors

the system to decide when a switchover condition is met and

command the system to switch control to the standby unit. The

system cost increase for this type of redundancy is usually

about 2X or less depending on your software development

costs. In Standby redundancy there are two basic types, they

are as follows: Cold Standby and Hot Standby.

 Cold Standby:

 In cold standby, the secondary unit is

powered off, thus preserving the reliability of the unit. The

drawback of this design is that the downtime is greater than in

hot standby, because you have to power up the standby unit

and bring it online into a known state. This makes it more

challenging to reconcile synchronization issues, but due to the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
https://en.wikipedia.org/wiki/Real-time_computing#cite_note-4

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 03

March 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 141

length of the time it takes to bring the standby unit on line, you

will usually suffer a big bump on switchover.

V. RUNNING MODE

A. Only 1 Active (single Module Up):

 Here the Control Processor running as

standalone one where it will be monitoring the complete

processing i.e.., only one CP is active.

B. Simultaneous Active Modules (Both Modules Up)

Here the control Processor runs with one more extra module.

Where the first module and the second Module performs the

same operations. Here the both modules are said to be in

simultaneously active state where both will be running the

same operation at a time.

The advantage is the concept of Fault Tolerance (i.e.

Redundant Modules) if suddenly the first active goes wrong,

the second module now will behave as First Active (Main

Module) which is helpful in running any critical operations

without any interrupt.

VI. SYNCHRONIZATION INTERFACE

 The following are some of the synchronization

interfaces possible for the fault tolerant system to operate:

A. Over the Network
Ethernet using fibre or tradional RJ45 connection over internet

or private TCP/IP network.

B. Serial Interface (HDLC)
Serial cable running HDLC protocol in many to many

operations.

C. USB interlink
We can run customized USB based connection protocols.

D. Hardware protocols
We can use many customized fault detection and link up

detection and communication protocols. The automotive

industry has quite a few hardware interlink / synchronization

interface.

VII. LOCATION OF BACKUP/REDUNDANT SYSTEMS

If the redundant system or backup module is also in the same

chassis or machine then the data copy would be faster and save

network bandwidth as well.

If it outside the chassis or switch network then the fail over

would consume lot of bandwidth and could affect other

communication happening on the network if we are using the

Ethernet for the synchronization as well.

VIII LAT ENCIES

Real Time: Low Latency service

Soft Real Time: Latency service is provided in A, B and in

some part of C.

Non Real Time: Web, Mobile Applications etc.., it is provided

in all A, B, C, D.

A. Hardware Dependency:
We can run fault tolerance in homogenous system like in the

cloud similar virtual machine would behave as backups or

redundant machines.

It would be difficult to run fault tolerance on heterogeneous

systems and would need to employ hardware and operating

system (platform) specific backup identification and fault

detection.

Let’s say our application requirement is it can be deployed on

any hardware cloud VM, private VM or customized/standard

embedded boards available on the web (like raspberry pi).

Then we would have to find a cluster/cloud computing

platform which is portable, easily deployable on any hardware

or platform.

B. Application level or Cloud/Cluster level fault
tolerance:

Application level fault tolerance is needed for the application

to detect the application faults on its own. This would be our

final detection barrier for faults. User would have to program

the application recovery mechanism in case of fault.

If we employ cloud/clustering based software level fault

tolerance like OpenStack, Hadoop (for big data computing),

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 03

March 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 142

Apache Spark and Storm the framework itself would provide

the fault tolerance detection logic and recovery plan for it.

CONCLUSIONS

This paper has described advances we have made in software

support for fault tolerance for DRE systems. Our approach –

very successful in this project – was to utilize off-the-shelf

fault tolerance software where it was applicable for our needs,

customize it where necessary, and develop new reusable

capabilities where none existed. The three techniques that we

presented in this paper – the Replica Communicator, self-

configuration for replica communication, and client- and

server-side duplicate management – extend existing fault

tolerance techniques to make them suitable for

componentoriented DRE applications. Yet, they are

complementary to, and interoperable with, other existing fault

tolerance services. To illustrate this, we have instantiated them

and applied them to a real-world DRE example application.

Our experiments show that these solutions provide suitable

real-time performance in both failure recovery and fault-free

cases

 References

[1] Y. Amir and J. Stanton. The Spread Wide

Area Group Communication System. Technical Report CNDS

98-4, Center for Networking and Distributed Systems, Johns

Hopkins University, 1998.

 [2] R. Baldoni, C. Marchetti, and A. Virgillito. Design of an

Interoperable FT-CORBA Compliant Infrastructure. In Proc.

of the 4th European Research Seminar on Advances in

Distributed Systems (ERSADS’01), 5 2001.

[3] N. Budhiraja, K. Marzullo, F. Scneider, and S. Toueg. The

Primary-Backup Approach, chapter 8. ACM Press, Frontier

Series. (S.J. Mullender Ed.), 1993.

[4] M. Cukier, J. Ren, C. Sabnis, W.H. Sanders, D.E. Bakken,

M.E. Berman, D.A. Karr, and R.E. Schantz. AQuA: An

Adaptive Architecture that provides Dependable Distributed

Objects. In Proc. of the IEEE Symposium on Reliable and

Distributed Systems (SRDS), pages 245–253, West Lafayette,

IN, October 1998.

[5] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt, and

A. Gokhale. DAnCE: A QoS-enabled Component Deployment

and Configuration Engine. In Proceedings of the 3rd Working

Conference on Component Deployment, Grenoble, France,

November 2005.

[6] P. Felber. Lightweight Fault Tolerance in CORBA. In

Proc. of the International Conference on Distributed Objects

and Applications, pages 239–250, Rome, Italy, September

2001.

[7] C. D. Gill, D. L. Levine, and D. C. Schmidt. Towards

Real-time Adaptive QoS Management in Middleware for

Embedded Computing Systems. In Proc. of the 4th Annual

Workshop on High Performance Embedded Computing,

Lexington, MA, September 2000. MIT Lincoln Laboratory.

[8] B. Kemme, M. Patino-Martinez, R. Jimenez-Peris, and J.

Salas. Exactly-once interaction in a multi-tier architecture. In

Proc. of the VLDB Workshop on Design, Implementation, and

Deployment of Database Replication, August 2005.

 [9] O. Marin, M. Bertier, and P. Sens. Darx - a framework for

the fault-tolerant support of agent software. In Proc. of the

14th. IEEE International Symposium on Software Reliability

Engineering (ISSRE 2003), pages 406–417, November 2003.

[10] P. Narasimhan. Transparent Fault Tolerance for CORBA.

PhD thesis, Department of Electrical and Computer

Engineering, University of California, Santa Barbara,

December 1999.

[11] P. Narasimhan, T. Dumitras, A. Paulos, S. Pertet, C.

Reverte, J. Slember, and D. Srivastava. MEAD: Support for

Real-time Fault-Tolerant CORBA. Concurrency and

Computation: Practice and Experience, 2005.

[12] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.

Gateways for Accessing Fault Tolerance Domains. In

Middleware 2000, LNCS 1795, pages 88–103, New York,

NY, April 2000.

[13] H. P. Reiser, R. Kapitza, J. Domaschka, and F. J. Hauck.

Fault-Tolerant Replication Based on Fragmented Objects. In

Proc. of the 6th IFIP WG 6.1 International Conference on

Distributed Applications and Interoperable Systems - DAIS

2006, pages 256–271, June 2006.

[14] P. Rubel, J. Loyall, R. Schantz, and M. Gillen. Fault

Tolerance in a Multi-layered DRE System: a Case Study.

Journal of Computers (JCP), 1(6):43–52, 2006.

 [15] F. B. Schneider. Implementing fault-tolerant services

using the state machine approach: A tutorial. ACM Computing

Surveys, 22(4):299–319, 1990.

[16] A. Vaysburd and S. Yajnik. Exactly-once End-to-end

Semantics in CORBA invocations across heterogeneous

faulttolerant ORBs. In IEEE Symposium on Reliable

Distributed Systems, pages 296–297, Lausanne, Switzerland,

October 1999. 8

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

