
 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 202

Xen Hypervisor Type 1 Virtualization
Basheer AbdulMutalib Hassoon Haider Ali Mohammed

School of Computer Science and Technology, Hust

masenchina@yahoo.com haiderali8080@yahoo.com

Abstract

Virtualization has become a popular way to

make more efficient use of hardware resources

within both personal or cloud platforms. And it

has many advantages over non virtualized

solutions, e.g., flexibility, cost and energy

savings.

 In this paper I talk about Virtualization to give

some basic information about it, then I take Xen

Hypervisor Type 1 as an example to show how

it’s working. And Finally I put two test to show

the performance of different Kinds of hypervisor

Type 1.

Keywords: Hypervisor, Virtualization, Xen

Hypervisor.

1. Hypervisor

 A hypervisor or virtual machine monitor

(VMM) is a piece of computer software,

firmware or hardware that creates and runs

virtual machines[1].

1.1 Why call it a hypervisor

 Initially, the problem that the engineers were

trying to solve was one of resource allocation,

trying to utilize areas of memory that were not

normally accessible to programmers. The code

they produced successful and was dubbed a

hypervisor because, at the time, operating

systems were called supervisors and this code

cold supersede them.

1.2 Virtual machine

 Virtual machine (VM) is a software

implementation of machine that execute

programs like a physical machine. Virtual

machines separate into two major classes, based

on their use and degree of correspondence to any

real machine.

- A system virtual machine provides a

complete system platform which

supports the execution of complete

operating system (OS). These usually

emulate an existing architecture, and are

built with the purpose of either

providing a platform to run programs

where the real hardware is not available

for use (for example, executing on

otherwise obsolete platforms), or of

having multiple instances of virtual

machines leading to more efficient use

of computing resources, both in the

terms of energy consumption and cost

effectiveness (known as hardware

virtualization, the key to cloud

computing environment), or both.

- A process virtual machine (also,

language virtual machine) is designed to

run a single program, which means that

is supports a single process. Such virtual

machines are usually closely suited to

one or more programming languages

and built with the purpose of providing

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
mailto:masenchina@yahoo.com
mailto:haiderali8080@yahoo.com

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 203

program portability and flexibility

(amongst other things). An essentials

characteristic of a virtual machine is that

the resources and abstractions provided

by the virtual machine—it cannot break

out of its virtual environment.

 The hypervisor is a layer of software that

resides below the virtual machines and above the

hardware. Figure(1) illustrates where the

hypervisor resides.

Figure(1) where the hyperv is or res ides

 Without a hypervisor, an operating system

communicates directly with the hardware

beneath it. Disk operations go directly to the

disk subsystem, and memory calls are fetched

directly from the physical memory. Without a

hypervisor, more than one operating system

from multiple virtual machines would want

simultaneous control of the hardware, which

would result in chaos. The hypervisor manages

the interactions between each virtual machine

and the hardware that the guests all share.

 The first virtual machine monitors were used

for the development and debugging of operating

systems because they provided a sandbox for

programmers to test rapidly and repeatedly,

without using all the resources of the hardware.

Later the added the ability to run multiple

environments concurrently, carving the

hardware resources into virtual servers that

could each run its own operating system. This

model is what evolved into today’s hypervisors.

 There are two classes of hypervisors, and their

names, Type 1 and Type 2, give no clue at all to

their differences. The only item of note between

them is how they are deployed, but it is enough

of a variance to point out.

 Type 1 Hypervisors

 Type 1 hypervisor run directly on the server

hardware without an operating system beneath it.

Because there is no intervening layer between

the hypervisor and the physical hardware, this is

also referred to as a bare-metal implementation.

Figure (2) illustrate a simple architecture of a

Type 1 hypervisor.

Figure (2) A Type 1 hyperv is or

 Without an intermediary, the Type 1

hypervisor can directly communicate with the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 204

hardware resources in the stack below it, making

it much more efficient than the Type 2

hypervisor. And also considered to be more

secure than Type 2 hypervisors. Guest

operations are handled of and, such, a guest

cannot affect the hypervisor on which it is

supported. A virtual machine can damage only

itself, causing a single guest crash, but that event

does not escape the boundaries of the VM

container. Other guests continue processing, and

the hypervisor is unaffected as well. A malicious

guest, where code is deliberately trying to

interface with the hypervisor or the other guests,

would be unable to do so. Figure (3) illustrate a

guest failure in Type 1 hypervisor.

Figure (3) A gues t Failu re

 Less processing overhead is required for a type

1 hypervisor, which means that more virtual

machines can be run on each host. From a pure

financial standpoint, a Type 1 Hypervisor would

not require the cost of host operating system,

although from the practical standpoint, the

discussion would be much more complex and

involve all the components and facets that

comprise a total cost of ownership calculation.

Example of type 1 hypervisors include VMware

ESX, Microsoft Hyper-V, and the many Xen

variants.

 Type 2 Hypervisor

 A Type 2 hypervisor itself is an application

that runs atop a traditional operating system. The

first x86 offerings were Type 2 because that was

the quickest path to market—the actual

operating system already handled all the

hardware resources and the hypervisor would

leverage that capability. Figure (4) illustrate a

Type 2 hypervisor.

Figure (4) A Type 2 hyperv is or

 One benefit of this model is that it can support

a large range of hardware because that is

inherited from the operating system it uses.

Often Type 2 hypervisors are easy to install and

deploy because of the hardware configuration

work, such as networking and storage, has

already been covered by the operating system.

 Type 2 hypervisor are not as efficient as Type

1 hypervisors because of this extra layer

between the hypervisor itself and the hardware.

Every time a virtual machine performs a disk

read, a network operation, or any other hardware

interaction, it hands that request off to the

hypervisor, just as in Type 1 hypervisor

environment. Unlike that environment, the Type

2 hypervisor must then itself hand off the

request to the operating system, which handles

the I/O requests. The operating system passes

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 205

the information back to the hypervisor and then

back to the guest, adding two additional step,

time, and processing overhead, to every

transaction.

 Type 2 hypervisors are also less reliable

because there are more point of failure: anything

that affects the availability of the underlying

operating system also can impact the hypervisor

and the guests it supports. For example, standard

operating system patches that require a system

reboot would also force reboots of all the virtual

machines on that host.

 Example of Type 2 hypervisors is include

VMware Player, VMware Workstation, and

Microsoft Virtual Server are example of Type 2

Hypervisors.

2. Xen Hypervisor

 Xen hypervisor is an open-source Type 1 or

baremetal hypervisor, which makes it possible to

run many instances of an operating system or

indeed different operating systems in parallel in

a single machine (or host). It is used as the basis

for a number of different commercial and open

source applications, such as: server

virtualization, infrastructure as a Service (IaaS),

desktop virtualization, security applications,

embedded and hardware appliances. The Xen

hypervisor is powering the largest clouds in

production today[2].

Here are some of the Xen hypervisor key

features :

- Small footprint and interface (around

1MB in size). Because it use micro

kernel design, with a small memory

footprint and limited interface to the

guest, it is more robust and secure than

other hypervisors.

- Operating system agnostic: Most

installation run with Linux as the main

control stack (aka “domain0”). But

number of other operating systems can

be used instead, including NetBSD and

OpenSolaris.

- Driver isolation : The Xen hypervisor

has the capability to allow the main

device driver for a system to run inside

of a virtual machine. If the driver

crashes, or compromised, the VM

containing, the driver can be rebooted

and the driver restarted without affecting

the rest of the system.

- Paravirtualization: Fully Paravirtualized

guests have been optimized to run as a

virtual machine. This allows the guests

to run much faster than with hardware

extensions (HVM). Additionally, the

hypervisor can run on hardware that

doesn’t support virtualization extensions.

Key aspects of Xen architecture :

 Guest types: The Xen hypervisor can

run fully fully virtualized (HVM)

guests, or paravirtualized (PV) guests.

 Domian 0: the architecture employs a

special domain called domain0 which

contains drivers for the hardware, as

well as toolstack to control VMs.

 Toolstacks: This section covers various

toolstack front-ends available as part of

the Xen Project stack and the

implications of using each.

2.1 Xen Architecture

 Xen hypervisor runs directly on the

hardware and is responsible for handling

CPU, Memory, and interrupts. It’s the first

program running after exiting the bootloader.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 206

On top of the hypervisor run a number of

virtual machines. A running instance of a

virtual machine is called a domain or guest

A special domain called domain 0 contains

the driver for the devices for all the devices

in the system. Domain 0 also contains a

control stack to manage virtual machine

creation, destruction, and configuration.

Figure (5) illustrate Xen Project

Architecture.

Figure (5) Xen Pro ject Arch itectu re

Components in detail:

 The Xen Hypervisor is an exceptionally

lean (<150,000 lines of code) software

layer that runs directly on the hardware

and is responsible for managing CPU,

memory, and interrupts. It’s the first

program running after the bootloader

exits. The hypervisor itself has no

knowledge of I/O functions such as

networking and storage.

 Guest Domain/Virtual Machines are

virtualized environments, each running

their own operating system and

applications. The hypervisor supports

two different virtualization modes :

Paravirtualization (PV) and Hardware-

assisted or Full Virtualization (HVM).

Both guests types can be used at the

same time on a single hypervisor. It is

also possible to use techniques used for

Paravirtualization in an HVM guest:

essentially creating a continuum

between PV and HVM. This approach is

called PV on HVM. Guest VMs are

totally isolated from the hardware : in

other words: they have no privilege to

access hardware or I/O functionality.

Thus , they also called unprivileged

domain (or DomU).

 The Control Domian (or Domain 0) is

a specialized Virtual Machine that has

special privilege lie the capability to

access the hardware directly, handles all

the access to the system’s I/O functions

and interacts with other Virtual

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 207

Machines. It also exposes a control

interface to the outside world, through

which the system is controlled. The Xen

hypervisor is not usable without Domain

0, which is the first VM started by the

system.

 Toolstack and Console : Domain 0

contains a control stack (also called

Toolstack) that allows a user to manage

virtual machine creation, destruction,

and configuration. The toolstack

exposes an interface that is either driven

by a command line console, by a

graphical interface or by a cloud

orchestration stack such as OpenStack

or CloudStack.

 Xen enabled operating systems: Domain

0 requires a Xen enabled kernel.

Paravatualized guests require a PV-

enabled kernel. Linux distributions that

are based on recent Linux kernel are

Xen enable and usually include

packages that contain the hypervisor and

tools (the default Toolstack and

Console). All but legacy Linux kernels

are PV-enabled, capable of running PV

guests.

2.2 Guest Type

 The hypervisor supports running two different

types of guests: Paravirtualization (PV) and Full

or Hardware Virtualization (HVM). Both guest

types can be used at the same time on a single

hypervisor. It is also possible to use techniques

used for Paravirtualization in an HVM guest and

vice versa: essentially creating a continuum

between the capabilities of pure PV and HVM.

We use different abbreviations to refer to these

configuration, called HVM with PV drivers,

PVHVM and PVH.

 PV

Paravirtualization (PV) is an efficient

and lightweight virtualization technique

originally introduced by Xen Project,

later adopted by other virtualization

platforms. PV does not require

virtualization extensions from the host

CPU. However, paravitualized guests

require a PV-enabled kernel and PV

drivers, so the guests are aware of the

hypervisor and can run efficiently

without emulation or virtual emulated

hardware. PV-enabled kernels exist for

Linux, NetBSD, FreeBSD and

OpenSolaris. Linux kernels have been

PV-enabled From 2.6.24 using provps

famework. In practice this mean that PV

will work with most Linux distribution

(with the exceptions of very old versions

of distros). Figure (6) Show

Paravirtualization.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 208

Figure (6) an overview of how Parav irtualizat ion is implemented in the Xen Pro ject Hyperv is or

 HVM

Full Virtualization or Hardware-assisted

virtualization (HVM) uses virtualization

extensions from the host CPU to

virtualize guests. HVM requires IntelVT

or AMD-V hardware extensions. The

Xen software uses Qemu to emulate PC

hardware, including BIOS, IDE disk

control, VGA graphic adapter, USB

controller, network adapter etc.

Virtualization hardware extensions are

used to boost performance of the

emulation. Fully virtualized guests do

not require any kernel support. This

means that windows operating systems

can be used as a Xen HVM guest. Fully

virtualized guests are usually slower

than paravirtualized guests, because of

the required emulation. Figure(7) shows

the difference between HVM with and

without PV drivers.

Figure (7) the d ifference between HVM with and withou t PV drivers

 PVHVM

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 209

To boost performance, fully virtualized

HVM guests can use special

paravirtualized device drivers (PVHVM

or PV-on-HVM drivers). These drivers

are optimized PV drivers for HVM and

bypass the emulation for disk and

network IO, thus giving you PV like (or

better) performance on HVM systems.

This means that you can get optimal

performance on guests operating

systems such as windows. Figure (8)

shows the difference between HVM

with and without PV and PVHVM

drivers.

Figure (8) the d ifference between HVM with and withou t PV and PVHVM drivers

 PVH

Xen project 4.4 introduced a

virtualization mode called PVH for

DomU’s. Xen Project 4.5 introduced

PVH for Dom0 (both Linux and some

BSD’s). This is essentially a PV guest

using PV drivers for boot and I/O.

Otherwise it uses HW virtualization

extensions, without the need for

emulation. PVH is considered

experimental in 4.4 and 4.5. It works

pretty well, but additional tuning is

needed before it should be used in

production. PVH has the potential to

combine the best trade-offs of all

virtualization modes, while simplifying

the Xen architecture.

In a nutshell, PVH means less code and

fewer Interface in Linux/FreeBSD:

consequently it has a smaller TCB and

attack surface, and thus fewer possible

exploits. Once hardened and optimized,

it should It also have better performance

and lower latency, in particular on 64 bit

hosts. Figure(9) shows the difference

between HVM (and its variants), PV

and PVH.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 210

Figure (9) the d ifference between HVM (and it s varian ts), PV and PVH

3. Performance test 1

 They compare the performance of KVM,

VMware and XenServer, for two different

scenarios: when no VM is migrated and when a

VM is migrated from one physical server to

another. The work load is for both scenarios, a

large real-time telecommunication application.

In the case when no VM migrated, they

measure the CPU utilization, the disk utilization

(the number of write operations), and the

average application response time. When a VM

migrated they measure the CPU utilization, the

disk utilization (the number of write operations),

and the down time due to live migration[3].

3.1 Test Setup

 Two HP DL380 G6x86 hosts have been used

to test the performance of KVM and VMware

ESXi 5.0. on top of the VMware ESXi 5.0,

RedHat Enterprise Linux, Version 6.2 has been

installed as a guest OS. The same hardware was

used to test the performance of Xen for Linux

Kernel 3.0.13 running as part of the SUSE Linux

Enterprise Server 11 Service Pack 2. Each server

is equipped with 24GB RAM, two 4-core CPUs

with hyper threading enabled in each core (i.e., a

total of 16 logical cores) and four 146 GB disk.

Both servers are connected via 1 Gbit Fiber

Channel (FC) to twelve 400 GB Serial Attached

SCSI (SAS) storage units. All devices are

located in a local area network (LAN) as shown

in Figure (10).

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 211

Figure (10) Network Plan

3.2 Test cases

A- Performance tests 1

 In these tests, They vary the number of

CPU cores (logical cores) in the VMs

as well as the load towards the

application.

 They have three different core

configurations: 6, 12 and 16 cores. For

test cases with 12 cores and 16 cores the

RAM for the VM is set to 24 GB, but

for test case with 6 cores, the RAM size

set to 14 GB for each of the VMs. This

is an application specific setting that is

recommended by the manufacturer. A

single cluster is used for the case with

12 and 16 cores, respectively. Both

clusters are used when testing the 6

cores configuration in order to assess the

performance of two 6-core systems

versus the performance a single 12-core

system.

 There are five load levels used in this

test: 500, 1500, 3000, 4300, and 5300

incoming requests per second (req/s).

 For each setup the following metrics

are measured: CPU utilization, disk

utilization and response time.

 CPU utilization and disk utilization

are measured inside the hypervisor on

both servers. For disk utilization, they

consider only write operations to the

shared storage shown in Figure (10).

The response time is measured inside

the simulator as the duration from the

instant a request is sent from the

simulator to the application until the

simulator receives the corresponding

reply.

 Live Migration tests

 In these tests, we measure CPU and

disk utilization during live migration.

Four VMs with 6 cores CPU and 14 GB

of RAM were created. For each

configuration, a single VM (active

server, e.g., VM1 on Hypervisor1 in

Figure (10)) is migrated from the source

host to the destination host while the

simulator creates a load of 100req/s for

the VM. At the same time the other VM

(e.g.VM2 on Hypervisor1 in Figure (10))

on the source host is receiving 1500

req/s. The other VMs (VM1 and VM2

on Hypervisor2 in Figure (10)) on the

destination host receive negligible

traffic in the form of 100req/s and thus

are not completely idle.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 212

 In addition to CPU and disk utilization,

They measure the downtime and the

total migration time. The total migration

time is obtained from the hypervisor for

KVM and XenServer, and from vCenter

for VMware. Downtime is defined as

the time from the instant when the VM

is suspended on the source host

(Hypervisor1 in Figure (10)) until the

VM is restarted on the destination host

(Hypervisor2 in Figure 1). We measured

the downtime inside the simulator and

our results indicate that it corresponds to

the maximum response time of the

application.

 Test Result

 The results of the performance tests

for different configurations of number of

CPU cores show that KVM and

VMware CPU utilization is almost

identical and similar to CPU utilization

on the target machine (non-virtualized)

while XenServer has the highest CPU

utilization with a maximum around 80%.

In terms of disk utilization, the results

indicate that KVM and Xen have similar

disk utilization while VMware has the

highest disk utilization (around 30000

KB/s for the highest load). The response

time of the application is the highest

when using Xen as hypervisor showing

around 25 ms at the highest point. For

KVM and VMware, the response time is

almost

similar (around 20 ms).

 In general, KVM and VMware

perform better in terms of CPU

utilization while Xen CPU utilization is

the highest. In terms of disk utilization

KVM and Xen have similar

performance while VMware has the

highest disk utilization. Further, in terms

of response time Xen has the longest

response times compared to KVM and

VMware.

 As the results have shown, the CPU

utilization during live migration is lower

for KVM than for VMware while Xen

had the highest CPU utilization during

live migration. The disk utilization when

KVM is used is 1000 KB/s lower

compared to VMware during the

migration.

 For VMware, the downtime is

measured to 3 seconds during live

migration. For KVM and Xen the

measured downtime are only 0.7

seconds and 0.3 seconds, respectively.

 In general, the results presented in this

test show that both VMware and KVM

perform better in terms of application

response time and CPU utilization for a

configuration of two VMs with 6 cores

each, compared to a configuration with a

single VM with 16 or 12 cores. Xen’s

performance is below that of the two

other virtualization systems tested.

However, Xen’s live migration

technology, XenMotion, performs better

than VMware’s vMotion and KVM live

migration technology in terms of

downtime.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 213

 Figure (11) KVM, VMware and Xen CPU utilization for 16cores Figure (12) KVM, VMware and Xen CPU utilization for12 cores

 Figure(13) KVM, VMware and Xen CPU utilization for 6 cores Figure(14) KVM, VMware and Xen disk utilizatio n for 16cores

 Figure(15) KVM, VMware and Xen disk utilization for 12 cores Figure(16) KVM, VMware and Xen disk utilization for 6 cores

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 214

 Figure(17) KVM, VMware and Xen response time for 16 cores Figure(18) KVM, VMware and Xen response time for 12 cores

 Figure(19) KVM, VMware and Xen response time for 6cores Figure(20) KVM, VMware and Xen response time during live migration

Figure(2 1) KVM, VMware an d Xen CP U ut ilizat io n dur in g liv e m igrat io n

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 215

Figure(2 2) KVM, VMware an d Xen disk ut ilizat io n dur in g liv e m igrat io n

B-

Performance Test 2

 The methodology for our performance

comparison of hypervisors is to drill

down each resource component one by

one with a specific benchmark workload.

The components include CPU, memory,

disk I/O, and network I/O. Each

component has different virtualization

requirements that need to be tested with

different workloads[5].

For a fair comparison, the hardware

settings are exactly the same for all the

hypervisors by using one server machine,

which has two 147GB disks that are

divided into three partitions. Hyper-V

occupies one partition, VMware

vSphere occupies one partition, and

KVM and Xen share the same Linux

installation that can be booted using

either Xen or the KVM kernel. The

machine has Intel(R) Xeon (R) 5160

3.00GHz/800MHz four core CPU, 8GB

memory, and shared 3MB L2 cache per

core (12MB). The disk has LSI logic

1064ESAS 3GBps controller IBM-

ESXS model, and the network is dual

Broadcom 5708S gigabit Ethernet.

The base guest VM OS is Ubuntu 10.04

LTS Lucid Lynx (Linux kernel 2.6.32),

10GB size disk image, and has 2048MB

memory assigned. Each hypervisor has

this base guest VM with exactly the

same environment setup. Interference

generator VMs use the same setting with

the base guest VM, but it is assigned

only 1024MB of memory.

 Test Result

Our experimental results paint a

complicated picture about the relative

performance of different hypervisors.

Clearly, there is no perfect hypervisor

that is always the best choice; different

applications will benefit from different

hypervisors depending on their

performance needs and the precise

features they require. Overall, vSphere

performs the best in our tests, not

surprisingly since VMware’s products

have been the longest in development

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 216

and have the largest group of dedicated

developers behind them. However, the

other three hypervisors all perform

respectably, and each of the tested

hypervisors has at least one benchmark

for which it outperforms all of the others.

In general, we find that CPU and

memory related tasks experience the

lowest levels of overhead, although

KVM experiences higher memory

overheads when all of the system’s

cores are active. Performance diverges

more strongly for IO activities, where

Xen exhibits high overheads when

performing small disk operations.

Hyper-V also experiences a dramatic

slowdown when multiple cores are

dedicated to running small, sequential

reads and writes. Xen also suffers in

network throughput. It is worth noting

that we test Xen using hardware-assisted

full virtualization, whereas the

hypervisor was originally developed for

paravirtualization. In practice, public

clouds such as Amazon EC2 use Xen in

paravirtualized mode for all but their

high-end instance types.

 F igure(23) Bytemark Benchmark Figure(24) Ramspeed Benchmark

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 217

 F igure(25) Bonnie++ Benchmark Figure(26) Filebench Benchmark

Figure(27) Interface Impact for Web Requests: 4 VMs (1 web server, 3 workload generators) are used. 3 VMs run the same

workload at the same time. The workloads run in the sequence of CPU, memory, disk, and network workloads over time span.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 218

Conclusion

 Virtualization technology become again one of

the most technology we need in our new world

because of its benefits and the solution that

provide by this technology to fix many kind of

problems. Virtualization technology benefit is

(Save energy, reduce the data center footprint,

QA/lab environments, Faster server provisioning,

Reduce Hardware vendor lock-in, Increase

uptime, Improve disaster recovery, Isolate

applications, Extended the life of older

applications, Help move things to cloud, and

Hardware Utilization).

 Xen hypervisor is one of the best hypervisor

type 1 and have good features Fast, simple code,

support almost all new hardware and the most

important its open source so it give the

developer more space to develop their own

hypervisor.

 According to the two test I show hypervisor

performance differences and similarities in a

variety of situation. The results indicate that Xen

hypervisor has better performance than other

type 1 hypervisor but there is no perfect

hypervisor, and that different workloads may be

best suited for different hypervisors.

Reference

[1] Mathew Potnoy, Virtualization

Essentials, John Wiley & Sons,Inc, 2012.

[2] Xen Project,

“http://wiki.xenproject.org/wiki/Xen_O

verview”.

[3] Sogand Shirinbab, Lars Lundberg,

Dragos llie, Performance Comparison of

KVM, VMware and XenServer using a

Large Telecommunication Application,

The Fifth International Conference on

Cloud Computing GRIDS and

Virtualization, CLOUD COMPUTING

2014.

[4] Roberto Morabito, Jimmy Kjallman,

Miika Komu, Hypervisors vs.

Lightweight Virtualization: a

Performance Comparison, 2015.

[5] Jinho Hwang, Sai Zeng and Frederick y

Wu, Timothy Wood, A Component-

Based Performance Comparison of Four

Hypervisors, 2-013.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

