

P a g e | 839

 Pioneering Compiler Design | Nikhita Upreti; Divya Bali & Aabha Sharma

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Pioneering Compiler Design

NikhitaUpreti;Divya Bali&Aabha Sharma

CSE,Dronacharya College of Engineering, Gurgaon, Haryana, India

nikhita.upreti@gmail.comdivyabali16@gmail.com

aabha6@gmail.com

Abstract

Generally compiling is a term which is
often heard by everyone who is associated
with programming, even if remotely. This
paper enlightens the structure of compiler,
various phases and tools used for its
construction. Compiler is a program
which converts a high level language
program/code into binary instructions
(machine language) that our computer can
interpret, understand and take the
appropriate steps to execute the same.
In earlier time only machine dependent
programming languages were used and
hence any program which could be run on
one machine could not run on any other as
it was specific to that machine. When high
level languages that is machine
independent language were first invented
in the 40s and 50s no compilers had been
written. In fifties the first compiler was
written by Grace Hopper. The FORTRAN
team lead by John Backus at IBM
introduced the 1st complete compiler in
1957.
A compiler in real context takes a string
and outputs another string. This definition
covers all manner of software which
converts one string to anther such as text
formatters which convert an input
language into a printable output,
programs which tend to convert among
various file formats or different
programming languages and also web
browsers.

1. INTRODUCTION

A compiler is a computer program that
implements a programming language
specification to "translate" programs,
usually as a set of files which
constitute the source code written
insource language, into their
equivalent machine readable
instructions (the target language,
often having a binary form known as
object code). This translation process
is called compilation. We compile the
source program to create the compiled
program. The compiled program can
then be run (or executed) to do what
was specified in the original source
program. The source language is
always a higher-level language in
comparison to machine code, written
using some mixture of English words
and mathematical notation, assembly
language being the lowest compilable
language (an assembler being a special
case of a compiler that
translates assembly language into
machine code). Higher-level languages
are the most complex to support in a
compiler/interpreter, not only because
they increase the level of abstraction
between the source code and the
resulting machine code, but because
increased complexity is required to

P a g e | 840

 Pioneering Compiler Design | Nikhita Upreti; Divya Bali & Aabha Sharma

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

formalize those abstract structures.
The target language is normally a
low-level language such as assembly,
written with somewhat cryptic
abbreviations for machine instructions,
in this cases it will also run an
assembler to generate the final
machine code. But some compilers can
directly generate machine code for
some actual or virtual computer e.g.
byte-code for the Java Virtual
Machine. Another common approach
to the resulting compilation effort is to
target a virtual machine. That will do
just-in-time compilation and byte-code
interpretation and blur the traditional
categorizations of compilers and
interpreters. For example, C and C++
will generally be compiled for a target
`architecture'. The draw-back is that
because there are many types of
processor there will need to be as many
distinct compilations. In contrast Java
will target a Java Virtual Machine,
which is an independent layer above
the 'architecture'. The difference is that
the generated byte-code, not true
machine code, brings the possibility of
portability, but will need a Java Virtual
Machine (the byte-code interpreter) for
each platform. The extra overhead of
this byte-code interpreter means slower
execution speed.
A translator is a computer program
that translates a program written in a
given programming language into a
functionally equivalent program in a
different computer language, without
losing the functional or logical
structure of the original code (the
"essence" of each program). These
include translations between high-level
and human-readable computer

languages such as C++, Java and
COBOL, intermediate-level languages
such as Java bytecode, low-level
languages such as assembler and
machine code, and between similar
levels of language on different
computing platforms, as well as from
any of these to any other of these.
Arguably they also include translators
between software implementations and
hardware/ASIC microchip
implementations of the same program,
and from software descriptions of a
microchip to the logic gates needed to
build it. Examples of widely used types
of computer languages translators
include interpreters, compilers and
decompilers, and assemblers and
disassemblers.

2. Structure of a Compiler

The cousins of the compiler are

1. Preprocessor.
2. Assembler.
3. Loader and Link-editor.

P a g e | 841

 Pioneering Compiler Design | Nikhita Upreti; Divya Bali & Aabha Sharma

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Front End vs Back End of a Compilers.
The phases of a compiler are collected into
front end and back end.

The front end includes all analysis phases
end the intermediate code generator.

The back end includes the code
optimization phase and final code
generation phase.

The front end analyzes the source program
and produces intermediate code while the
back end synthesizes the target program
from the intermediate code.

A naive approach (front force) to that front
end might run the phases serially.

1. Lexical analyzer takes the source
program as an input and produces a
long string of tokens.

2. Syntax Analyzer takes an out of
lexical analyzer and produces a
large tree.

3. Semantic analyzer takes the output
of syntax analyzer and produces
another tree.

4. Similarly, intermediate code
generator takes a tree as an input
produced by semantic analyzer and
produces intermediate code.

Minus Points

• Requires enormous amount of
space to store tokens and trees.

• Very slow since each phase would
have to input and output to and
from temporary disk

Remedy

• Use syntax directed translation to
inter leaves the actions of phases.

• Compiler construction tools.

Parser Generators:
The specification of input based on
regular expression. The
organization is based on finite
automation.

Scanner Generator:
The specification of input based on
regular expression. The
organization is based on finite
automation.

Syntax-Directed Translation:
It walks the parse tee and as a
result generate intermediate code.

Automatic Code Generators:
Translates intermediate
rampage into machine language.

Data-Flow Engines:
It does code optimization using
data-flow analysis.

3.Phases of Compiler

 3.1 Lexical Analyzer

• The main task is to read the input
characters and produce as output
sequence of tokens that the parser
uses for syntax analysis.

P a g e | 842

 Pioneering Compiler Design | Nikhita Upreti; Divya Bali & Aabha Sharma

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Fig 2.1 role of the lexical analyzer diagram

• Up on receiving a “get next token”
command from the parser, the
lexical analyzer reads input
characters until it can identify the
next token.

• Its secondary tasks are,
• One task is stripping out from the

source program comments and
white space is in the form of blank,
tab, new line characters.

• Another task is correlating error
messages from the compiler with
the source program.

• Sometimes lexical analyzer is
divided in to cascade of two
phases.
1) Scanning 2) lexical
analysis.

• The scanner is responsible for
doing simple tasks, while the
lexical analyzer proper does the
more complex operations.

• Lexical Analyzer reads the source
program character by character and
returns the tokens of the source
program.

• A token describes a pattern of
characters having same meaning in
the source program. (such as
identifiers, operators, keywords,
numbers, delimeters and so on)

Ex: newval :=oldval +
12 => tokens:

newval identifier

:=assignment operator

oldval identifier

+ add operator

12 a number

• Puts information about identifiers
into the symbol table.

• Regular expressions are used to
describe tokens (lexical constructs).

• A (Deterministic) Finite State
Automaton can be used in the
implementation of a lexical
analyzer.

3.2. Syntax Analyzer

A Syntax Analyzer creates the syntactic
structure (generally a parse tree) of the

P a g e | 843

 Pioneering Compiler Design | Nikhita Upreti; Divya Bali & Aabha Sharma

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

given program.A parse tree describes a
syntactic structure.

This is alternatively known as parsing. It is
roughly the equivalent of checking that
some ordinary text written in a natural
language (e.g. English) is grammatically
correct (without worrying about meaning).

The purpose of syntax analysis or parsing

is to check that we have a valid sequence

of tokens. Tokens are valid sequence of

symbols, keywords, identifiers etc. Note

that this sequence need not be meaningful;

as far as syntax goes, a phrase such as

"true + 3" is valid but it doesn't make any

sense in most programming languages.

The parser takes the tokens produced

during the lexical analysis stage, and

attempts to build some kind of in-memory

structure to represent that input.

Frequently, that structure is an 'abstract

syntax tree' (AST).

The parser needs to be able to handle the

infinite number of possible valid programs

that may be presented to it. The usual way

to define the language is to specify

a grammar. A grammar is a set of rules

(or productions) that specifies the syntax

of the language (i.e. what is a valid

sentence in the language).

3.3Syntax Analyzer versus Lexical
Analyzer

Which constructs of a program should be

recognized by the lexical analyzer, and
which ones by the syntax analyzer?

– Both of them do similar

things; But the lexical

analyzer deals with simple

non-recursive constructs of

the language.

– The syntax analyzer deals

with recursive constructs of

the language.

– The lexical analyzer

simplifies the job of the

syntax analyzer.

– The lexical analyzer

recognizes the smallest

meaningful units (tokens) in

a source program.

– The syntax analyzer works

on the smallest meaningful

units (tokens) in a source

program to recognize

meaningful structures in our
programming language.

3.4 Semantic Analysis

� Semantic analysis is applied by a

compiler to discover the meaning

of a program by analyzing its parse

tree or abstract syntax tree.

� A program without grammatical

errors may not always be correct

program.

� pos = init + rate * 60

� What if pos is a class while

init and rate are integers?

P a g e | 844

 Pioneering Compiler Design | Nikhita Upreti; Divya Bali & Aabha Sharma

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

� This kind of errors cannot

be found by the parser

� Semantic analysis finds this

type of error and ensure that

the program has a meaning.

� Static semantic checks (done by

the compiler) are performed at

compile time

� Type checking

� Every variable is declared

before used

� Identifiers are used in

appropriate contexts

� Check subroutine call

arguments

� Check labels

� Dynamic semantic checks are

performed at run time, and the

compiler produces code that

performs these checks

� Array subscript values are

within bounds

� Arithmetic errors, e.g.

division by zero

� Pointers are not

dereferenced unless

pointing to valid object

� A variable is used but hasn't

been initialized

� When a check fails at run
time, an exception is raised

3.5 Intermediate Code Generation:

• The syntax and semantic
analysis generate a explicit
intermediate representation of
the source program.

• The intermediate representation
should have two important
properties:

• It should be easy to produce,

• And easy to translate into target
program.

• Intermediate representation can
have a variety of forms.

• One of the forms is: three
address code; which is like the
assembly language for a
machine in which every
location can act like a register.

• Three address code consists of
a sequence of instructions, each
of which has at most three
operands.

3.6 Code Optimization and Code
Generation:

• Code optimization phase attempts
to improve the intermediate code,
so that faster-running machine code
will result.

• The final phase of the compiler is
the generation of target code,
consisting normally of relocatable
machine code or assembly code.

• Memory locations are selected for
each of the variables used by the
program.

• Then, the each intermediate
instruction is translated into a
sequence of machine instructions
that perform the same task.

4. Compiler Construction
Tools

• Lex&Yacc- The classic Unix tools

for compiler construction.Lex is a
"tokenizer," helping to generate
programs whose control flow is
directed by instances of regular
expressions in the input stream. It
is often used to segment input in
preparation for further parsing (as
with Yacc).

P a g e | 845

 Pioneering Compiler Design | Nikhita Upreti; Divya Bali & Aabha Sharma

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Yaccprovides a more general
parsing tool for describing the
input to a computer program. The
Yacc user specifies the grammar of
the input along with code to be
invoked as each structure in that
grammar is recognized. Yacc turns
that specification into a subroutine
to process the input.

If you are writing a compiler,
that "process" involves generating
code to be assembled to generate
the object code. Alternatively, if
you are writing an interpreter,
the "code to be invoked" will be
code controlling flow of the user's
application.

• Lemon - A LALR(1) parser
generator that claims to be faster
and easier to program than Bison
or Yacc.

• GCC - RTL Representation-Most
of the work of the compiler is done
on an intermediate representation
called register transfer language. In
this language, the instructions to be
output are described, pretty much
one by one, in an algebraic form
that describes what the instruction
does.

People frequently have the idea of
using RTL stored as text in a file as
an interface between a language
front end and the bulk of GNU CC.
This idea is not feasible. GNU CC
was designed to use RTL internally
only. Correct RTL for a given
program is very dependent on the
particular target machine. And the
RTL does not contain all the
information about the program.

• Zephyr Compiler Infrastructure

• The National Compiler
Infrastructure Project

• The SUIF Compiler - Software
Distribution

• TENDRA / ANDF -compilation
tools

5. Applications of compiler
techniques

• Compiler technology is useful for a
more general class of applications

• Many programs share the basic
properties of compilers: they read
textual input,organize it into a
hierarchical structure and then
process the structure

• An understanding how
programming language compilers
are designed andorganized can
make it easier to implement these
compiler like applications aswell

• More importantly, tools designed
for compiler writing such as lexical
analyser generators and parser
generators can make it vastly easier
to implement such applications

• Thus, compiler techniques - An
important knowledge for computer
scienceengineers

• Examples:
� Document processing:

Latex, HTML, XML
� User interfaces: interactive

applications, file systems,
databases

� Natural language treatment

6. Conclusion

P a g e | 846

 Pioneering Compiler Design | Nikhita Upreti; Divya Bali & Aabha Sharma

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Compiler is language processor used to
translate program written in high level
language into the machine level language.
It is also use to cover the "GAP" between
Humans and the computer language. A
program written in high level
programming language is called the source
program. The source program is stored on
the disk in a file. The compiler translates
the source program into machine codes
and makes another program file is called
the object file. The object file contains the
translated program. Files, source and
object are saved on the diskpermanently.

The object programs translated by
compiler can executed a number of times
without translating it again. If there are any
errors in the source program the compiler
specifies the errors at the end of
compilation. The errors must be removed
before the compiler can successfully
compile the source program.

Computer understands only two words 0
and 1. Machine language or binary
languages were used to write compilers.
But it is very difficult to write complex
code in form of 0 and 1. So we use high
level programming languages are used to
write compiler. Compiler is also used to
communicate with hardware.

References

[1] Kaur, A., &Manhas, R. (2008). Use
of internet services and resources
in the engineering colleges of
Punjab and Haryana (India): a
study. The International
Information & Library Review,
40(1), 10-20.

[2] Goswami, P., Bhatia, P. K.,
&Hooda, V. (2009). Effort
estimation in Component Based
Software Engineering.
International Journal of
Information Technology and
Knowledge Management, 2(2),
437-440.

[3] Khan, S. A., Harish, R., Shokat
Ali, R., Jain, V., & Raj, N.
Distributed shared memory-an
overview.

[4] Yadav, Y., &Yadav, P. Virtual
Local Area Network.

