
 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1266

1 Dr. K. Praveen Kumar, 2 K. Sree Ranganayaki
 1 Associate Professor, School of Electrical Engineering & Computing, Department of Computing, Adama

Science &Technology University, Adama, Ethiopia
2 M.Tech Student, Chaitanya Institute of Technology and Science, Warangal, India

Abstract: Due to the cumulative admiration of cloud

computing, more and more data owners are interested

to outsource their data to cloud servers for great

expediency and condensed cost in data management.

Nonetheless, sensitive data should be encrypted

before outsourcing for privacy requirements, which

obsoletes data utilization like keyword-based

document retrieval. We use security as a parameter to

create trust. Cryptography is one way of forming

trust. Searchable encryption is a cryptographic

method to provide security. In literature numerous

researchers have been working on developing

efficient searchable encryption schemes. In this paper

we discover some of the operative cryptographic

techniques based on data structures like CRSA and

B-Tree to enhance the level of security, henceforth

trust. We tried to contrivance the search on encrypted

data using Azure cloud platform.

Keywords - Searchable encryption, multi-keyword

ranked search, dynamic update, cloud computing.

I. INTRODUCTION

Cloud computing is a conversational phrase used to

express a variety of dissimilar types of computing

ideas that occupy large number of computers that are

connected through a real-time communication

network i.e Internet. In science, cloud computing is

the capability to run a program on many linked

computers at the same time. The fame of the term can

be recognized to its use in advertising to sell hosted

services in the sense of application service

provisioning that run client server software on a

remote location. Cloud computing relies on sharing

of resources to attain consistency and financial

system alike to a utility (like the electricity grid) over

a network. The cloud also centres on maximize the

effectiveness of the shared resources. Cloud

resources are typically not only shared by multiple

users but as well as dynamically re-allocated as per

demand. This can perform for assigning resources to

users in dissimilar time zones. For example, a cloud

computing service which serves American users

during American business timings with a specific

application (e.g. email) while the same resources are

getting reallocated and serve Indian users during

Indian business timings with another application (e.g.

web server). This mechanism must take full

advantage of the use of computing powers thus

decreasing environmental damage as well, since less

power, air conditioning and so on, is necessary for

the same functions. The expression "moving to

cloud" also explains to an organization moving away

from a traditional CAPEX model i.e buy the devoted

hardware and decrease in value it over a period of

time to the OPEX model i.e use a shared cloud

infrastructure and pay as you use it. Proponents

maintain that cloud computing Permit Corporation to

avoid direct infrastructure costs, and focus on

projects that distinguish their businesses as an

alternative of infrastructure.

Fig. 1. Architecture of the search over encrypted

cloud data

An approach for Secure and Dynamic Multi-keyword Ranked Search

Scheme over Encrypted Cloud Data

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1267

Proponents also maintains that cloud computing

permit schemes to get their applications should run

faster, with better manageability and less

maintenance, and enable IT to more quickly adjust

resources to meet random and changeable business

demand.

II. RELATED W ORKS

Kui Ren, Cong Wang, and Qian Wang, In this paper,

Cloud computing speaks to today's most energizing

figuring outlook change in data innovation. Not

withstanding, security also, security are seen as

essential difficulties to its wide appropriation. Here,

the creators diagram a few basic security challenges

and influence promote examination of security

solutions for a dependable open cloud condition.

cloud computing is the most up to date term for the

since quite a while ago imagined vision of registering

as an utility. The cloud provides advantageous, on

demand network access to a centralized pool of

configurable processing assets that can be quickly

sent with incredible productivity and insignificant

administration overhead. With its unprecedence

favorable circumstances, distributed computing

empowers a principal outlook change in how To

convey and convey processing administrations that is,

it makes conceivable registering outsourcing with the

end goal that both people and undertakings can

abstain from conferring extensive capital expenses

when buying and overseeing programming and

equipment, as Toll as dealing the operational

overhead therein.[1]

S. Kamara and K. Lauter, In this paper, To consider

the problem of building a secure cloud storage

service on top of a public cloud infrastructure where

the service provider is not completely trusted by the

customer. To describe, at a high level, several

architectures that combine recent and nonstandard

cryptographic primitives in order to achieve our goal.

To survey the benefits such an architecture would

provide to both customers and service providers and

give an overview of recent advances in cryptography

motivated specifically by cloud storage. [2]

C. Gentry, In this paper, To propose the first fully

homomorphic encryption scheme, solving a central

open problem in cryptography. Such a scheme allows

one to compute arbitrary functions over encrypted

data without the decryption key { i.e., given

encryptions E(m1); … ; E() of m1;… ; mt, one can

efficiently compute a compact cipher text that

encrypts f(m1;… ; m) for any efficiently computable

function f. This problem was posed by Rivest et al. in

1978. Fully homomorphic encryption has numerous

applications. For example, it enables private queries

to a search engine { the user submits an encrypted

query and the search engine computes a succinct

encrypted answer without ever looking at the query

in the clear. It also enables searching on encrypted

data { a user stores encrypted files on a remote file

server and can later have the server retrieve only files

that (when decrypted) satisfy some Boolean

constraint, even though the server cannot decrypt the

files on its own. More broadly, fully homomorphic

encryption improves the efficiency of secure

multiparty computation. Our construction begins with

a somewhat homomorphic boostrappable" encryption

scheme that works when the function f is the

scheme’s own decryption function. To then show

how, through recursive self-embedding,

bootstrappable encryption gives fully homomorphic

encryption. The construction makes use of hard

problems on ideal lattices.[3]

O. Goldreich and R. Ostrovsky, In this paper, To

present a theoretical treatment of software protection.

In particular, To distill and formulate the key

problem of learning about a program from its

execution, and reduce this problem to the problem of

on-line simulation of an arbitrary program on an

oblivious RAM. To then present our main result: an

efficient simulation of an arbitrary (RAM) program

on a probabilistic oblivious RAM. Assuming that

one-way functions exists, To show how one can

make our software protection scheme robust against a

polynomial-time adversary who is allotted to alter

memory contents during execution in a dynamic

fashion. To begin by discussing software

protection.[4]

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1268

D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G.

Persiano, In this paper, To study the problem of

searching on data that is encrypted using a public key

system. Consider user Bob who sends email to user

Alice encrypted under Alice’s public key. An email

gateway wants to test whether the email contains the

keyword \urgent" so that it could route the email

accordingly. Alice, on the other hand does not wish

to give the gateway the ability to decrypt all her

messages. To define and construct a mechanism that

enables Alice to provide a key to the gateway that

enables the gateway to test whether the word urgent"

is a keyword in the email without learning anything

else about the email. To refer to this mechanism as

Public Key Encryption with keyword Search. As

another example, consider a mail server that stores

various messages publicly encrypted for Alice by

others. Using our mechanism Alice can send the mail

server a key that will enable the server to identify all

messages containing some specific keyword, but

learn nothing else. To define the concept of public

key encryption with keyword search and give several

constructions.[5]

III. SEARCHABLE ENCRYPTION

SCHEME

To design an efficient multi-keyword searchable

encryption scheme based on public key cryptography,

we included the following modules.

Encryp t ion Module: By using CRSA, data in a file

can be updated dynamically without affecting the

overall performance of searching on B-tree. If the

encrypted indexed data is modified, re-indexing for

the whole data is not needed. Similarly there is no

need of re-encrypting the files in the database

whenever the file is modified. This is a desirable

feature as it reduces the computation time.

Data owner first generates secret and public key pair

(EK, DK) using a standard public-key encryption

scheme ie CRSA. Then owner makes the public key

DK public and keeps the secret keys EK private.

Documents {D | D1, D2,…, Dn} are encrypted using

EK resulting in a ciphertexts {C | C1,C2,….Cn}. The

generated C is stored in cloud database.

The constructed index based on B tree is also

encrypted using CRSA, i.e each derived keywords

{W| w1,w2,….wn}from a document is indexed in a

tree and encrypted using CRSA. This results in a set

of encryptions {e| e1,e2,..en} where each ej (for) is

defined as E_wj = CRSA_Enc (EK, wj), where E_wj

denotes encrypted keyword.

Index Module: Index structures for huge datasets

cannot be stored in main memory. Disk is a possible

alternative. Storing it on disk requires different

approach. The solution is to use more branches to

reduce the height of the tree. For this we used B-tree

data structure for each document. B-tree is a data

structure of order n. The nodes are filled from n to 2n

keys. Nodes are always at least half full of keys. The

keys are within each node. A list of pointers is

inserted between keys. These pointers help to

navigate through tree.

In general, a node with k keys has (k+1) pointers.

The design for creating and querying the index tree

can be given by Algorithm-1, Algorithm-2 and

Algorithm-3. Algorithm-1 and Algorithm-2 are used

to create an index tree and Algorithm-3 describes

how search can be performed on index tree.

A lgorithm-1

Btree_insert (root, Key, Object_value)

Inpu t : root pageID of a B-tree, the key and the value

of an object.

//Inserts when Object_value doesn’t exist in a B-tree

1. NODE = Disk_Read (root).

2. if NODE_x is full

(a) y = Allocate_Page(), z = Allocate_Page().

(b) Locate the middle object o stored in NODE_x.

o Move the objects to the left of object o into

NODE_y.

o Move the objects to the right of o into

NODE_z.

o If NODE_x is an index page,

o Then move the child pointers of NODE_x

accordingly.

(c) NODE_ x: child [1] = NODE_y, NODE_x: child

[2] = NODE_z.

(d) Disk_Write (NODE_x); Disk_Write (NODE_y);

Disk_Write (NODE_z).

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1269

3. end if

4. Insert_Not_Full (NODE_x; Key; Object_value).

A lgorithm-2

Insert_Not_Full (NODE_x, key, Object_value)

Inpu t : an in-memory page NODE_x of a B-tree, the

key and the value Object_value of a new object.

// This algorithm inserts when page of NODE_ x is

not full.

// Insert the new Object_value into the sub-tree

rooted by NODE_x.

1. if NODE_ x is a leaf page

(a) Insert the new Object_value into NODE_x,

keeping Object_values in sorted order.

(b) Disk_Write (NODE_x).

2. else

(a) Find the child pointer NODE_x: child[i] whose

key range contains Key.

(b) NODE_w = Disk_Read (NODE_x: child [i]).

(c) if NODE_w is full

o NODE_y = Allocate_Page ().

o Locate the middle object o stored in

NODE_w.

Move the objects to the right of o into NODE_y.

o If NODE_w is an index page, move the

child pointers accordingly.

o Move o into NODE_x. Add a right child

pointer in NODE_x pointing to NODE_y

o Disk_Write (NODE_x); Disk_Write

(NODE_y); Disk_Write (NODE_w).

o If (Key < o. key), call

Insert_Not_Full(NODE_w; KEY;

Object_value); else, call

Insert_Not_Full(NODE_y; Key; Object_value).

(d) else Insert_Not_Full(NODE_w; Key;

Object_value).

(e) end if

3. end if

A lgorithm-3

Search_Query (root, trapdoor)

Inpu t : root, trapdoor containing keyword to be

searched.

Output: pointer to the documents containing the

keywords; NULL if non-exist.

1. NODE_x = Disk_Read (root).

2. if NODE_x is an index node

(a) If there is an object o in NODE_x such that o: key

= keyword, return o: value.

(b) Find the child pointer x: child [i] whose key range

contains key.

(c) Return Search_Query(NODE_x:child[i], key).

3. else If there is an object o in NODE_x such that

o:key = keyword, return o:value.

Otherwise, return NULL.

4.end if.

Search Module: Searching a B-tree is like searching a

binary tree. Here instead of making a binary

branching decision at each node, we make a

multiway branching decision according to the

number of the node's children. Let’s suppose cloud

server has received n encrypted documents of this

form, so that it now holds a set of encrypted

documents {C|c1,C2,…,Cn}. Now, if user wants to

retrieve the documents with keyword , he just needs

to generate a secret trapdoor encrypted using CRSA

i.e Enc_CRSA (w1, w2, ..). The trapdoor containing

the encrypted keywords is sent as token to the server.

The server then uses this trapdoor to match the

encrypted keywords in index tree node. If match

found stores the pointer to that document in

encrypted database. The search continues for other

encrypted keywords. The following Algorithm-3

gives the stepwise information about how search will

be done on B-Tree.

Ranking Module: In large databases, it is quite likely

that the keyword might be matching with more

number of documents. It is cumbersome for a user to

decrypt and go through all the documents. Therefore

there is a need for ranking the documents based on

their relevance to the keywords. In our scheme we

used (TF * IDF) to rank the documents. TF is the

term frequency i.e. occurrence of keywords in a

document and IDF is inverse document frequency i.e.

total number of documents divided by number of

documents containing the keyword. Similarity

measure is used to find the rank based on relevance.

For this, we maintain two vectors one for storing TF

weight and other to store IDF weight.

Plat fo rm Us ed : Microsoft Azure is a cloud service

provider. It provides storage as a service to the

customers. Azure architecture contains roles, i.e. the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1270

worker role and the web role as shown in Figure 3.

The web role is used for designing UI, whereas

worker role is used to run background asynchronous

applications. The workers in the B-tree provide

search encryption services which support the multi-

keyword search application.

Figure 3: Architecture of searchable encryption

scheme in Azure

IV. CONCLUSION

In this paper, a secure, efficient and dynamic search

scheme is proposed, which supports now not simplest

the correct multi-keyword ranked search but

additionally the dynamic deletion and insertion of

documents.Using CRSA, information in a document

may be updated dynamically without affecting the

overall performance of searching on B-tree. In our

proposed system, if encrypted records is changed, re-

encrypting for the entire data isn't always desired.

This is a proper task because it reduces the

computation time.

REFERENCES

1] K. Ren, C. Wang, Q. Wang et al., “Security

challenges for the public cloud,” IEEE Internet

Computing, vol. 16, no. 1, pp. 69–73, 2012.

[2] S. Kamara and K. Lauter, “Cryptographic cloud

storage,” in Financial Cryptography and Data

Security. Springer, 2010, pp. 136–149.

 [3] C. Gentry, “A fully homomorphic encryption

scheme,” Ph.D. dissertation, StanfordUniversity,

2009.

[4] O. Goldreich and R. Ostrovsky, “Software

protection and simulation on oblivious rams,” Journal

of the ACM (JACM), vol. 43, no. 3, pp.431–

473,1996.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G.

Persiano, “Public key encryption with keyword

search,” in Advances in Cryptology Eurocrypt 2004.

Springer,2004, pp.506–522.

[6] I.H. Witten, A. Moffat, and T.C. Bell, Managing

Gigabytes: Compressing and Indexing Documents

and Images. Morgan Kaufmann Publishing, May

1999.

[7] D. Song, D. Wagner, and A. Perrig, “Practical

Techniques for Searches on Encrypted Data,” Proc.

IEEE Symp. Security and Privacy, 2000.

[8] E.-J. Goh, “Secure Indexes,” Cryptology ePrint

Archive, http:// eprint.iacr.org/2003/216. 2003.

[9] Y.-C. Chang and M. Mitzenmacher, “Privacy

Preserving Keyword Searches on Remote Encrypted

Data,” Proc. Third Int’l Conf. Applied Cryptography

and Network Security, 2005.

[10] R. Curtmola, J.A. Garay, S. Kamara, and R.

Ostrovsky, “Searchable Symmetric Encryption:

Improved Definitions and Efficient Constructions,”

Proc. 13th ACM Conf. Computer and Comm.

Security (CCS ’06), 2006.

BIOGRAPHY

Dr.K.Praveen Kumar received the PhD in Computer

Science & Engineering in 2015, M.Tech in Software

Engineering from Kakatiya Institute of Technology

& Science Warangal, Telangana, India in 2010 and

B.Tech in Information Technology from Kakatiya

Institute of Technology & Science Warangal,

Telangana, India 2007. Presently working as

Assistant Professor in Computer Science Department

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 03
Ma rc h 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1271

at Adama Science and Technology University,

Adama, Ethiopia.

K Sree Ranganayaki pursuing M.Tech in Computer

Science & Engineering at Chaitanya Institute of

Technology and Science. Her Area of Interest is

Network Science and Cloud Computing.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

