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Abstract—Finite Impulse Response (FIR) 
filters are widely applied in multistandard 
wireless communications. A novel efficient 
algorithms and architectures have been 
introduced for the design of low complexity 
bit-parallel multiple constant multiplications 
(MCM) operation which dominates the 
complexity of many digital signal 
processing systems. In digit-serial MCM 
design that offers low complexity MCM 
operations that offers a low delay. In this 
previous design a MCM operations 
performed by CSE algorithm but it occupies 
large and delay area. In MCM design based 
Graph algorithmprovides low area and 
delay. In this we proposed a graph based 
multipliers i.e CSD, MSD,MAG based on 
graph architecture for implementing low 
complexity higher order FIR filters. 
 
Keywords: FIR-finite impulse response  
filters, CSD – Canonic Signed-Digit 

multiplier ,CSE- common subexpression 
elimination  algorithms, MSD – Minimum 

Signed-Digit multiplier,MAG-Minimum 
added Graph Multiplier. 
 

 
I. INTRODUCTION 
 

FINITE impulse response (FIR) filters are of 
greatimportance in digital signal processing 

(DSP) systemssince their characteristics in 
linear-phase and feed-

forwardimplementations make them very 
useful for building stablehigh-performance 
filters. The direct and transposed-form 

FIRfilter implementations are illustrated in 
Fig. 1(a) and (b),respectively. Although both 

architectures have similar complexityin 
hardware, the transposed form is generally 
preferredbecause of its higher performance 

and power efficiency [1]. 
The multiplier block of the digital FIR filter 

in its transposedform [Fig. 1(b)], where the 
multiplication of filter coefficientswith the 
filter input is realized, has significant impact 

onthe complexity and performance of the 
design because alarge number of constant 

multiplications are required. Thisis generally 
known as the multiple constant 
multiplications(MCM) operation and is also 

a central operation and 
performancebottleneck in many other DSP 

systems such as fastFourier transforms, 
discrete cosine transforms (DCTs), anderror-
correcting codes. 

 
Although area-, delay-, and power-efficient 

multiplier architectures, such as Wallace [2] 
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and modified Booth [3] multipliers, have 
been proposed, the full flexibility 

ofmultiplier is not necessary for the constant 
multiplications, since filter coefficients are 
fixed and determined beforehand by the 

DSP algorithms [4]. Hence, the 
multiplication of filter coefficients with the 

input data is generally implemented under a 
shift-adds architecture [5], where each 
constant multiplication is realized using 

addition/subtraction and shift operations in 
an MCM operation [Fig. 1(c)]. 

 

 
Fig. 1. FIR Filter implementations (a)Direct form. 

(b)Transposed form. (c)Transposed form with an 

MCM block 

 
 

For the shift-adds implementation of 
constant multiplications,a straightforward 

method, generally known as 
digitbasedrecoding [6], initially defines the 
constants in binary. 

Then, for each “1” in the binary 
representation of the constant,according to 

its bit position, it shifts the variable and 
addsup the shifted variables to obtain the 
result. As a simpleexample, consider the 

constant multiplications 29x and 43x.Their 
decompositions in binary are listed as 

follows: 
29x = (11101) binx= x <<4 + x <<3 + x <<2 
+ x 
43x = (101011) binx= x <<5 + x <<3 + x 
<<1 + x 
which requires six addition operations as 
illustratedin Fig. 2(a). 

 
Fig.2.Shift-adds implementations of 29x and 43x 

 (a) Without partial product sharing [6] and with 

partial product sharing. (b) Without CSE algorithm 

[9]. (c) Exact GB algorithm 

 
However, the digit-based recoding technique 

does notexploit the sharing of common 
partial products, which allowsgreat 
reductions in the number of operations and, 

consequently,in area and power dissipation 
of the MCM design atthe gate level. Hence, 

the fundamental optimization problem,called 
the MCM problem, is defined as finding the 
minimumnumber of addition and subtraction 

operations that implementthe constant 
multiplications. Note that, in bit-parallel 

designof constant multiplications, shifts can 
be realized using onlywires in hardware 
without representing any area cost.The 

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/


 International Journal  of Research 
Available at 

https://edupediapublications.org/journals  

p-I SSN: 2348 -6848  
e-I SSN: 23 48-795X 

Vol ume 04  I s s ue 0 5  
Apr i l  2017  

 

Available online:  https://edupediapublications.org/journals/index.php/IJR/  P a g e  | 39  
 

algorithms designed for the MCM problem 
can becategorized in two classes: common 

subexpression elimination(CSE) algorithms 
[7]–[9] and graph-based (GB) 
techniques[10]–[12]. The CSE algorithms 

initially extract all possiblesubexpressions 
from the representations of the 

constantswhen they are defined under 
binary, canonical signed digit (CSD) [7], or 
minimal signed digit (MSD) [8]. Then, they 

findthe “best” subexpression, generally the 
most common, to beshared among the 

constant multiplications. The GB methods 
are not limited to any particular number 
representation andconsider a larger number 

of alternative implementations of aconstant, 
yielding better solutions than the CSE 

algorithms, asshown in [11] and [12]. 
Returning to our example in Fig. 2, the exact 
CSE algorithmof [9] gives a solution with 

four operations by finding the mostcommon 
partial products 3x = (11)binxand 5x = 

(101)binxwhen constants are defined under 
binary, as illustrated inFig. 2(b). On the 
other hand, the exact GB algorithm 

[12]finds a solution with the minimum 
number of operations bysharing the common 

partial product 7x in both multiplications,as 
shown in Fig. 2(c). Note that the partial 
product 7x =(111) binxcannot be extracted 

from the binary representationof 43x in the 
exact CSE algorithm [9].However, all these 

algorithms assume that the input datax is 
processed in parallel. On the other hand, in 
digit-serialarithmetic, the data words are 

divided into digit sets, consistingof d bits 
that are processed one at a time [13]. Since 

digitserialoperators occupy less area and are 
independent of thedata wordlength, digit-
serial architectures offer alternative 

lowcomplexitydesigns when compared to 
bit-parallel architectures.However, the shifts 

require the use of D flip-flops, asopposed to 
the bit-parallel MCM design where they are 
freein terms of hardware. Hence, the high-

level algorithms shouldtake into account the 
sharing of shift operations as well as 

thesharing of addition/subtraction operations 
in digit-serial MCMdesign. Furthermore, 
finding the minimum number of 

operationsrealizing an MCM operation does 
not always yield anMCM design with 

optimal area at the gate level [14]. Hence,the 
high-level algorithms should consider the 
implementationcost of each digit-serial 

operation at the gate level. 
In this paper, we initially determine the gate-

level implementationcosts of digit-serial 
addition, subtraction, and leftshift operations 
used in the shift-adds design of digit-

serialMCM operations. Then, we introduce 
the exact CSE algorithm[15] that formalizes 

the gate-level area optimizationproblem as a 
0–1 integer linear programming (ILP) 
problemwhen constants are defined under a 

particular numberrepresentation. We also 
present a new optimization modelthat 

reduces the 0–1 ILP problem size 
significantly and,consequently, the runtime 
of a generic 0–1 ILP solver. Sincethere are 

still instances which the exact CSE 
algorithm cannot handle, we describe the 

approximate GB algorithm [16] 
thatiteratively finds the “best” partial 
product which leads to theoptimal area in 

digit-serial MCM design at the gate level. 
In this proposed different graph based 

multipliers types i.e. CSD – canonic signed-
digit multiplier, MSD – minimum signed-
digit multiplier MAG – minimum adder 

graph multiplier,CSDAG – csd adder graph 
multiplier. Theyare used for low complexity, 

low power and low area applications.  
 
The section II explains the complexity of 

serial constant multipliers. Section III 
explains graph based multipliers. Section IV 

explains results and analysis. 
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II.COMPLEXITYOF SERIALCONSTANT 
MULTIPLIERS 

In this chapter, the possibilities to minimize 
the complexity of bit-serialsingle-constant 
multipliers are investigated [57]. This is 

done in terms ofthe required number of 
building blocks, which includes adders and 

shifts.The multipliers are described using a 
graph representation. It is shownthat a 
minimum set of graphs, required to obtain 

optimal results given certainrestrictions, can 
be found.In the case of single-constant 

multipliers, the number of possible 
solutionscan be limitedbecause of the finite 
number of graph topologies.However, if a 

shift-and-add network realizing several 
coefficients isrequired, a multiple-constant 

multiplication (MCM) problem is obtained. 
Different heuristic algorithms can then be 
used to reduce the complexity,by utilizing 

the redundancy between the coefficients. 
Two algorithms suitableto achieve efficient 

realization of MCM using serial arithmetic 
arepresented [56],[62],[66]. It is shown that 
the new algorithms reduce thetotal 

complexity significantly.Furthermore, we 
study the trade-offs in implementations of 

FIR filtersusing MCM and digit-serial 
arithmetic. Comparisons considering 
area,speed, and energy consumption, with 

respect to the digit-size, are 
performed[61],[67]. 

 
III. Graph Multipliers 
 

In this section, different types of single-
constant graph multipliers will bedefined, 

with respect to constraints on adder cost and 
throughput. Furthermore,the possibilities to 
exclude some graphs from the search space 

areexamined.The investigation covers all 
coefficients up to 4095 and all types ofgraph 

multipliers containing up to four adders. All 
possible graphs, usingthe representation 
discussed in Section 3.1, for adder costs 

from 1 to 4are presented in Fig. 2.1 
[24].Note that although bit-serial arithmetic 

will be assumed for the multipliers,results 
considering adder and flip-flop costs are 
generally also validfor any digit-serial 

implementation. However, the numbers of 
registers thatare required to perform 

pipelining depend on the digit-size. 
Furthermore,the cost difference between 
adders and shifts becomes higher for 

largerdigit-sizes, since the number of full 
adders increases linearly while thenumber of 

flip-flops is constant. Hence, such trade-offs 
are mainly ofinterest for small digit-sizes. 
 

3.1 Multiplier Types 
Different multiplier types can be defined 

based on the requirements consideringadder 
cost, flip-flop cost, and pipelining. The types 
that will bediscussed here are described in 

the following. 
• CSD – Canonic Signed-Digit multiplier 

Multiplier based on the CSD representation, 
as discussed inSection 4.1, with an adder 
cost equal to one less than the number 

ofnonzero digits. 
• MSD – Minimum Signed-Digit multiplier 

Similar to the CSD multiplier and requires 
the same number of adders,but can in some 
cases decrease the flip-flop cost by using 

other MSDrepresentations, which were 
discussed in Section 3.1. 

• MAG – Minimum Adder Graph multiplier 
Graph multiplier that is based on any of the 
topologies in Fig. 4.1 and,for any given 

coefficient, has the lowest possible adder 
cost. 

Example 
 
To describe the difference between the 

defined multiplier types, corresponding 
realizations of the coefficient 2813, which 

has the CSD representation 1010100000101, 
are shown in Fig. 4(a). There are other 
possible solutions for all types except the 
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CSD multiplier. However, note that the 
values corresponding to the nonzero digits in 

the CSD representation can be added in 
different orders, resulting in other structures. 
Since this may eliminate the pipeline 

feature, the basic structure used in Fig. 4 (b) 
will be assumed for CSD multipliers. The 

adder costs for the multipliers in figs. 4 (a), 
(b), (c), and are 4, 4, and 3 respectively. 

 

Figure.3. Possible graph topologies for an adder cost 

up to four. 
 
 This implies that it is possible to save either 

two shifts, or one adder and oneShift 
compared to the CSD multiplier.4 (b) and 

(c) with an extra cost of 0 and 1 register, 
respectively. Note that the flip-flop cost will 
include both shifts and pipelining 

registers,since both correspond to a single 
flip-flop in bit-serial arithmetic. 
 

 

Figure.4.Differentrealizations of the coefficient 2813. 

(a) CSD, (b) MSD, (c) MA G 
 

IV.RESULTS AND ANALYSIS  

 

Fig.5.Waveform Results of GB Algorithm. 

TABLE 1 

The comparison Result of CSE and BE 

Algorithm 

 
Algorithm 

name 

 
Delay(ns) 

 
Area(%) 

CSE 2.780 33 

GB 2.58 30 
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Fig.6. Waveform Results of CSDAG Algorithm 

 

TABLE 2 

The Comparison Result of CSD and MAG 

 
Graph based 
Multipliers 

 
Delay(ns) 

 
Area (%) 

CSD 2.58 24 

MAG 2.58 19 

 

The comparison tables and waveforms show 

the analysis of different algorithms and 

different graph based multipliers.in this BE 

algorithm shows an efficient results compare 

to CSE algorithms. Again analyses in graph 

based multipliers i.e. CSD, MSD, and 

MAG.the MAG shows good area in table 2. 

V.CONCLUSION  

The proposed new approach is MAG for 

implementing reconfigurable higher order 

filters with low complexity. The proposed 

MAGmethod make use of architecture with 

fixed number of multiplexers and the 

reduction in complexity is achieved by 

applying the graph based algorithm. The 

MAG architecture results in high speed 

filters and low area and thus low power filter 

implementations. The MAG also provides 

the flexibility of changing the filter 

coefficient word lengths dynamically. The 

proposed reconfigurable architectures can be 

easily modified to employ any graph based 

(GB) method, which results in architectures 

that offers good area and power reductions 

and speed improvement reconfigurable FIR 

filter implementations. 
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