

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Exception Handling Jaiveer Singh & Raju Singh

P a g e | 978

Exception Handling

Jaiveer Singh & Raju Singh

Department of Information and Technology Dronacharya College of Engineering Gurgaon,
India

Raju.16930@ggnindia.dronacharya.info; Jaiveer.16915@ggnindia.dronacharya.info

Abstract-

-In this paper, we address a new feature
added to ANSI (American National
Standard Institute) C++ named
Exception Handling. We often come
across some peculiar problems other
than logic or syntax error, these
anomalies or unusual condition that a
program may encounter while executing
is termed as exception. This paper will
guide you to a procedural way or
mechanism in order to deal with the
exceptions. Beyond that it elaborates the
two kinds of exceptions, namely,
synchronousexceptions and
asynchronous exceptions. The purpose of
the exception handling mechanism is to
provide means to detect and report an
“exceptional circumstance” so that
appropriate action can be taken.

Keywords –

Syntax error; exception; anomalies;
catch; try; throw; rethrow

1. Introduction

Exceptions are an important error
handling aspect of many programming
languages, especially object-oriented
languages such as C++ and Java. This
paper is written to stimulate discussion of
exception handling in C++. The primary
purpose of the exception handling
mechanism described here is to cope with
this problem for C++ programs; other
uses of what has been called exception
handling in the literature are considered

secondary. Exceptions are often used to
indicate unusual error conditions during
the execution of an application (resource
exhaustion, for instance) and provide a
way to transfer control to special-purpose
exception handling code [9]. The
mechanism described is designed to
handle only synchronous exceptions,
such as array range checks.
Asynchronous exceptions, such as
keyboard interrupts, are not handled
directly by this mechanism. A guiding
principle is that exceptions are rare
compared [10] to function calls and that
exception handlers are rare compared to
function definitions. The exception
handling code deals with the unusual
circumstance and either terminates the
program or re- turns control to the non-
exceptional part of the program, if
possible. Therefore, exceptions introduce
additional, and often complex,
interprocedural control flow into the
program, in addition to the standard non-
exceptional control flow. When a
program encounters an exception
condition, it is important that it is
identified and dealt with effectively.
ANSI C++ provides built-in language
features to detect and handle exceptions
which are basically run time errors.

Exceptions handling was not a part of the
original C++. It is a new feature added to
ANSI C++. Today, almost all compliers
support this feature. C++ exception
handling provides a type-safe, integrated
approach, coping with the unusual
predictable problems that arise while
executing a program.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Exception Handling Jaiveer Singh & Raju Singh

P a g e | 979

2.1 Basics of Exception Handling

Exceptions are of two kinds, namely,
synchronous and asynchronous
exceptions. Errors such as “out-of-range
index” and “over-flow” belong [3] to the
synchronous type exceptions. The errors
that are caused by events beyond the
control of the program (such as keyboard
interrupts) are called asynchronous
exceptions. The proposed exception
handling mechanism in C++ is designed
to handle only synchronous exceptions.

The purpose of the exception handling
mechanism is to provide means to detect
and report an “exceptional circumstance”
so that appropriate action can be taken.
The mechanism suggests a separate error
handling code that performs the
following tasks:

1. Find the problem (Hit the
exceptions).

2. Inform that an error has occurred
(Throw the exception).

3. Receive the error information
(Catch the exception).

4. Take corrective actions (Handle
the exception).

The error handling code basically
consists of two segments, one to detect
errors and to throw exceptions, and the
other to catch the exceptions and to take
appropriate actions.

2.2 Exception Handling Mechanism

C++ exceptions handling mechanism is
basically built upon three keywords,
namely, try, throw, catch. The keyword
try is used to preface a bock of statements
(surrounded by braces) which may
generate exceptions. This bock of
statements is known as try bock. When
an exception is detected, it is thrown
using a throw statement [4] in the try
bock. A catch block defined by the
keyword catch ‘catches’ the exceptions
‘thrown’ by the throw statement in the try
bock, and handles it appropriatey. The
relationship is shown in Fig. 2.2.(a)

 Exception

 object

 Fig.2.2.(a) The block throwing exception

2.2 An example

 try block

Detects and throws an

exception

 catch block

Catches and handles the

exceptions

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Exception Handling Jaiveer Singh & Raju Singh

P a g e | 980

Suppose that an exception called xxii can
occur in a function g() called by a
function f(). How can the programmer
off() gain control in that case? The wish
to ‘catch’ the exception xxii when it
occurs and g() doesn’t handle it can be
expressed like this:

Int f ()

 { Try {return g();}

Catch (xxii) {// we get here only if ‘xxii’
occurs error ("g () goofed: xxii return 22;
") ;}

The text from catch to the next close
brace is called a handler for the kind of
exception named xxii. A single try-block
can have handlers for several distinct
exceptions; a handler marked by the
ellipsis, picks up every exception not
previously mentioned. For example:

int f() { try {return g();}catch (xx)

{// we get here only if ‘xx’ occurs
error("g() goofed: xx"); return 20;}

catch (xxii) { // we get here only if ‘xxii’
occurs error("g() goofed: xxii");return
22; }

catch (...) {// we get here only if an
exception // that isn’t ‘xxii’ or ‘xx’ occurs
error("g() goofed"); return 0; } }

The series of handlers is rather like a
switch statement. The handler marked
(...) is rather like a default. Note,
however, that there is no ‘fall through’
from one handler to another as there is
from one case to another. An alternative
and more accurate analogy is that the set
of handlers looks very much like a set of
overloaded functions. However, unlike a
set of overloaded functions, the try
clauses [5] are checked in the sequence in
which they appear. An exception handler
is associated with a try-block and is

invoked whenever its exception occurs in
that block or in any function called
directly or indirectly from it. For
example, say in the example above that
xxii didn’t actually occur in g() but in a
function h() called by g():

In t g(){ return h();}in t h(){ throw xxii();
// make exception ‘xxii’ occur }

The handler in f() would still handle the
exception xxii. We will use the phrase
‘throwing an exception’ to denote the
operation of causing an exception to
occur. The reason we don’t use the more
common phrase ‘raising an exception’ is
that raise() is a C standard library
function and therefore not available [6]
for our purpose. The word signal is
similarly unavailable. Similarly, we
chose catch in preference to handle
because handle is a commonly used C
identifier. A handler looks a lot like a
function definition. A throw-expression
looks somewhat like both a func- tion call
and a return statement. We will see below
that neither similarity is superficial.
Because g() might be written in C or
some other language that does not know
about C++ exceptions, a fully general
implementation of the C++ exception
mechanism cannot rely on decorations of
the stack frame, passing of hidden
arguments to functions not in C++, or
other techniques that require compiler
coop- eration for every function called.
Once a handler has caught an exception,
that exception has been dealt with and
other handlers thatmight exist for it
become irrelevant. In other words, only
the active handler most recently
encountered by the thread of control will
be invoked. For example, here xxii will
still be caught by the handler in f ():

In t e()

 { Try {return f(); // f() handles xxii }

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Exception Handling Jaiveer Singh & Raju Singh

P a g e | 981

catch (xxii) {// so we will not get here //...
} }

Another way to look at it is that if a
statement or function handles a particular
exception, then the fact that the exception
[1] has been thrown and caught is
invisible in the surrounding context –
unless, of course, the exception handler
itself notifies something in the
surrounding context that the exception
occurred.

3. Throwing mechanism

When a exception that is desired to be
handled is detected, it is thrown using the
throw statement in one of the following
forms:

Throw (exception) ;

throw exception ;

throw;
// used for rethrowing an exception

The operand object exception may be of
any type, including constants. It is also
possible to throw objects not intended for
error handling.

When an exception is thrown, it will be
caught by the catch statement associated
with try block. That is, the control exits
[7] the current try block, and is
transferred to the catch block after that
try block.

Throw point can be in a deeply nested
scope within a try block or in a deeply
nested function call. In case, control is
transferred to the catch statement.

4. Catching Mechanism

Code for handling exceptions is included
in the catch blocks. A catch block looks
like a function definition and is of the
form

catch(type arg)

 { // statements for // managing
exceptions }

The type indicates the type of exceptions
that catch block handles. The parameter
arg is an optional parameter name. Note
that the exception-handling code is
palced between two braces. The catch
statement catches an exception whose
type matches with the type of catch
arguments. When it is caught, the code in
the catch block is executed.

If the parameter in the catch statement is
named, then the parameter can be used in
the exception-handling code [8]. After
executing the handler, the control goes to
the statement immediately following the
catch block.

Due to mismatch, if an exception is not
caught, abnormal program termination
will occur. Its important to note that the
catch block is simply skipped if the catch
statement does not catch an exception.

5. Rethrowing an Exception

If a catch block cannot handle the
particular exception it has caught, you
can rethrow the exception. The rethrow
expression (throw without
assignment_expression) causes the
originally thrown object to be rethrown.

Because the exception has already been
caught at the scope in which the rethrow
expression occurs, it is rethrown out to
the next dynamically enclosing try block.
Therefore, it cannot be handled by catch
blocks at the scope in which the rethrow
expression occurred. Any catch blocks
for the dynamically enclosing try block
have an opportunity to catch the
exception.

The following example demonstrates
rethrowing an exception:

#include <iostream>

using namespace std;

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Exception Handling Jaiveer Singh & Raju Singh

P a g e | 982

struct E {const char* message; E() :
message("Class E") { }};

struct E1 : E {const char* message; E1() :
message("Class E1") { }};

struct E2 : E {const char* message;E2() :
message("Class E2") { }};

void f() {try {cout<< "In try block of f()"
<<endl;

cout<< "Throwing exception of type E1"
<<endl;

 E1 my Exception; throw my
Exception; }

catch (E2& e) {cout<< "In handler of f(),
catch (E2& e)" <<endl;

cout<< "Exception: "
<<e.message<<endl; throw; }

catch (E1& e) {cout<< "In handler of f(),
catch (E1& e)" <<endl;

cout<< "Exception: "
<<e.message<<endl;

throw; }

catch (E& e) { cout<< "In handler of f(),
catch (E& e)" <<endl;

cout<< "Exception: "
<<e.message<<endl;

throw; }}

int main() {try { cout<< "In try block of
main()" <<endl; f(); }

catch (E2& e) {cout<< "In handler of
main(), catch (E2& e)" <<endl;

cout<< "Exception: "
<<e.message<<endl; }

catch (...) {cout<< "In handler of main(),
catch (...)" <<endl; }}

The following is the output of the above
example:

In try block of main ()

In try block of f ()

Throwing exception of type E1

In handler of f (), catch (E1& e)

Exception: Class E1

In handler of main (), catch (...)

The try block in the main () function calls
function f(). The try block in function f()
throws an object of type E1 named
myException [2]. The handler catch (E1
&e) catches myException. The handler
then rethrows myException with the
statement throw to the next dynamically
enclosing try block: the try block in the
main() function. The handler catch(...)
catches myException.

6. Conclusions

The exception handling scheme described
here is flexible enough to cope with most
synchronous exceptional circumstances.
Its semantics are independent of machine
details and can be implemented in several
ways optimized for different aspects. In
particular, portable and run-time efficient
implementations are both possible. The
exception handling scheme presented
here should make error handling easier
and less error-prone

7. References

[1] L. Cardelli, J. Donahue, L. Glassman,
M. Jordan, B. Kalsow, G. Nelson:
Modula-3 Report. DEC Systems
Research Center. August 1988.

[2] Flaviu Cristian: Exception Handling.
in Dependability of Resilient Computers,
T. Andersen Editor, BSP Professional
Books, Blackwell Scientific Publications,
1989.

[3] Margaret A. Ellis and
BjarneStroustrup: The Annotated C++
Reference Manual. Addison Wes- ley
1990.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Exception Handling Jaiveer Singh & Raju Singh

P a g e | 983

[4] J. Goodenough: Exception Handling:
Issues and a Proposed Notation. CACM
December 1975. [5] Steve C. Glassman
and Michael J. Jordan: Safe Use of
Exceptions. Personal communication. [6]
Steve C. Glassman and Michael J.
Jordan: Preventing Uncaught Exceptions.
Olivetti Software Technology
Laboratory. August 1989.

[7] Griswold, Poage, Polonsky: The
SNOBOL4 Programming Language.
Prentice-Hall 1971

[8] Andrew Koenig and
BjarneStroustrup: Exception Handling for
C++. Proc. C++ at Work Con- ference,
SIGS Publications, November 1989.

[9] Andrew Koenig
BjarneStroustrupAT&T Bell Laboratories
Murray Hill, New Jersey 07974
ark@europa.att.com bs@research.att.com

[10] Prakash Prabhu1,2, Naoto
Maeda1,3, Gogul Balakrishnan1, Franjo
Ivanˇci´c1, and Aarti Gupta11 NEC
Laboratories America, 4 Independence
Way, Suite 200, Princeton, NJ 08540 2
Princeton University, Department of
Computer Science, Princeton, NJ 08540 3
NEC Corporation, Kanagawa 211-8666,
Japan

