
 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 413

AN EFFICIENT TRAFFIC-AWARE SEPARATION AND AGGRIGATION USING

MAPREDUCE FOR BIG DATA APPLICATIONS

M.Gayathri1, M.Nishitha2, E.Srinivas Reddy3 ,V.Mounika4
 1B.Tech C.S.E TKREC Hyderabad Email: gayathri.manusani@gmail.com

 2B.Tech C.S.E TKREC Hyderabad Email: maddatinishitha0207@gmail.com

3B.Tech C.S.E TKREC Hyderabad Email: srinivas3827@gmail.com
4Assistent Professor ,CSE Dept, TKREC, Hyderabad, TS-India, Email: mounikatkrcse@gmail.com

1.ABSTRACT

 The MapReduce programming

model simplifies the processing large

datasets. Mapreduce is typically used to do

distributed computing on cluster of

computers, exploiting parallel map tasks

and reduce tasks. Although many efforts

have been made to improve the performance

of MapReduce jobs, they ignore the network

traffic generated in the shuffle phase, which

plays a critical role in performance

enhancement. Traditionally, a hash function

is used to separate intermediate data among

reduce tasks however, it is not traffic-

efficient. In this paper, we study to reduce

network traffic cost for a MapReduce job by

designing a novel intermediate data

separation scheme. A decomposition-based

distributed algorithm is proposed to deal

with the large-scale optimization problem

for big data application and an online

algorithm is also designed to adjust data

separation and aggregation in a dynamic

manner. Finally, extensive simulation

results demonstrate that our proposals can

significantly reduce network

traffic cost.

Keywords: MapReduce, Separation,

Aggregation.

2.INTRODUCTION

 Bigdata is a term used to describe a

collection of data sets. The size and

complexity of big data makes it difficult to

use traditional database management and

data processing tools. Data is being created

in much shorter cycles from hours to

milliseconds. There is also a trend underway

to create larger databases by combining

smaller data sets so that data correlations

can be discovered.

Big data has become the new

frontier of information management given

the amount of data today’s systems are

generating and consuming. It has driven the

need for technological infrastructure and

tools that can capture, store, analyse and

visualize vast amounts of disparate

structured and unstructured data. These data

are being generated at increasing volumes

from data intensive technologies including,

but not limited to, the use of the Internet for

activities such as accesses to information,

social networking, mobile computing and

commerce. Corporations and governments

have begun to recognize that there are

unexploited opportunities to improve their

enterprises that can be discovered from

these data.

2.1 Objective

 MAPREDUCE [1], [2], [3] has

emerged as the most popular computing

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/
mailto:gayathri.manusani@gmail.com
mailto:maddatinishitha0207@gmail.com
mailto:srinivas3827@gmail.com

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 414

framework for big data processing due to its

simple programming model and automatic

management of parallel execution.

MapReduce and its open source

implementation Hadoop [4], [5] have been

adopted by leading companies, such as

Yahoo!, Google and Facebook, for various

big data applications, such as machine

learning [6], [7], [8], bioinformatics [9],

[10], [11], and cyber-security [12], [13].

MapReduce divides a computation into two

main phases, namely map and reduce,

which in turn are carried out by several map

tasks and reduce tasks, respectively. In the

map phase, map tasks are launched in

parallel to convert the original input splits

into intermediate data in a form of key/value

pairs. These key/value pairs are stored on

local machine and organized into multiple

data partitions, one per reduce task. In the

reduce phase, each reduce task fetches its

own share of data partitions from all map

tasks to generate the final result. There is a

shuffle step between map and reduce phase.

In this step, the data produced by the map

phase are ordered, partitioned and

transferred to the appropriate machines

executing the reduce phase. The resulting

network traffic pattern from all map tasks to

all reduce tasks can cause a great volume of

network traffic, imposing a serious

constraint on the efficiency of data analytic

applications. For example, with tens of

thousands of machines, data shuffling

accounts for 58.6 percent of the cross-pod

traffic and amounts to over 200 petabytes in

total in the analysis of SCOPE jobs [14].

For shuffle-heavy MapReduce tasks, the

high traffic could incur considerable

performance overhead up to 30-40 percent

as shown in [15].By default, intermediate

data are shuffled according to a hash

function [16] in Hadoop, which would lead

to large network traffic because it ignores

network topology and data size associated

with each key. We consider a toy example

with two map tasks and two reduce tasks,

where intermediate data of three keys K1,

K2, and K3 are denoted by rectangle bars

under each machine. If the hash function

assigns data of K1 and K3 to reducer 1, and

K2 to reducer 2, a large amount of traffic

will go through the top switch. To tackle

this problem incurred by the traffic

oblivious partition scheme, we take into

account of both task locations and data size

associated with each key in this paper. By

assigning keys with larger data size to

reduce tasks closer to map tasks, network

traffic can be significantly reduced. In the

same example above, if we assign K1 and

K3 to reducer 2, and K2 to reducer 1, the

data transferred through the top switch will

be significantly reduced. To further reduce

network traffic within a MapReduce job, we

consider to aggregate data with the same

keys before sending them to remote reduce

tasks. Although a similar function, called

combiner [17], has been already adopted by

Hadoop, it operates immediately after a map

task solely for its generated data, failing to

exploit the data aggregation opportunities

among multiple tasks on different machines.

In the traditional scheme, two map tasks

individually send data of key K1 to the

reduce task. If we aggregate the data of the

same keys before sending them over the top

switch, the network traffic will be reduced.

3.Proposed work

 The system that existing consist of

intermediate data are shuffled according to a

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 415

hash function in Hadoop, which would lead

to large network traffic because it ignores

network topology and data size associated

with each key.

 Due to disadvantages in present

existing system, a system is proposed to

reduce the network traffic.

The system that is proposed helps

for an efficient network traffic, we jointly

consider data partition and aggregation for a

Map Reduce job with an objective that is to

minimize the total network traffic. In

particular, we propose a distributed

algorithm for big data applications by

decomposing the original large-scale

problem into several sub problems that can

be solved in parallel. Moreover, an online

algorithm is designed to deal with the data

partition and aggregation in a dynamic

manner. Finally, extensive simulation

results demonstrate that our proposals can

significantly reduce network traffic cost in

both offline and online cases.

4.System architecture

 Hadoop is a java based

programming model which living big data.

Hadoop having map-reduce and hadoop

distributed file system (HDFS).

Fig System Architecture

 The user stores the input files in

HDFS. The data produced by the map phase

are ordered, separated and transferred to the

proper machines executing the reduce phase

is represented in the Fig. The resulting

network traffic pattern from all map tasks to

all reduce tasks can cause a great bulk of

network data flow enforce a difficult sate on

the efficiency of data analytic applications.

This work proposed an efficient Traffic

Aware separation and Aggregation to

minimize network sequence of operation

cost for Big Data applications using Map-

Reduce.

5. Algorithm

Distributed Algorithm:

The problem above can be solved by

highly efficient approximation algorithms,

e.g., branch-and-bound, and fast off-the-

shelf solvers, e.g., CPLEX, for moderate-

sized input. An additional challenge arises

in dealing with the MapReduce job for big

data. In such a job, there are hundreds or

even thousands of keys, each of which is

associated with a set of and constraints in

our formulation, leading to a large-scale

optimization problem that is hardly handled

by existing algorithms and solvers in

practice.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 416

In this section, we develop a

distributed algorithm to solve the problem

on multiple machines in a parallel manner.

Our basic idea is to decompose the original

large-scale problem into several

distributively solvable subproblems that are

coordinated by a high-level master problem.

Online Algorithm:

 Until now, we take the data size and

data aggregation ratio as input of our

algorithms. In order to get their values, we

need to wait all mappers to finish before

starting reduce tasks, or conduct estimation

via profiling on a small set of data. In

practice, map and reduce tasks may partially

overlap in execution to increase system

throughput, and it is difficult to estimate

system parameters at a high accuracy for big

data applications. These motivate us to

design an online algorithm to dynamically

adjust data partition and aggregation during

the execution of map and reduce tasks.

In this section, we divide the

execution of a MapReduce job into several

time slots with a length of several minutes

or an hour. The parameters collected at time

slot t with no assumption about their

distributions. As the job is running, an

existing data partition and aggregation

scheme may not be optimal. To reduce

traffic cost, we may need to migrate an

aggregator from machine j to j0 with a

migration cost. Meanwhile, the key

assignment among reducers is adjusted.

When we let reducer process the data with

key p instead of reducer k that is currently

in charge of this key, we use to denote the

cost migrating all intermediate data received

by reducers so far.

6.Result analysis

The role of user is 30% i.e., to login

into the system, sending an input data or file

to the HDFS then performs the mapreduce

program.

The role of mapreduce is 50% i.e.,

map process the input data or file into small

chunks and generate key/values, reducer

processes the input data which is obtained

from mapper, then produces a new set of

output which is stored in HDFS.

The role of HDFS is 20% i.e., it

mainly focus on storage. It stores the input

data and also processed data which is

obtained after mapreduce task.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 417

Fig: Result Analysis

7.Conclusion

 In this paper, we study the joint

optimization of intermediate data separation

and aggregation in MapReduce to minimize

network traffic cost for big data

applications. To deal with the large-scale

formulation due to big data, we design a

distributed algorithm to solve the problem

on multiple machines. Furthermore, we

extend our algorithm to handle the

MapReduce job in an online manner when

some system parameters are not given.

Finally, we conduct extensive

simulations to evaluate our proposed

algorithm under both offline cases and

online cases. The simulation results

demonstrate that our proposals can

effectively reduce network traffic cost under

various network settings.

8. Future Enhancement

 Till now we focused on processing

the bigdata using mapreduce task

considering partition and aggregation and

by sorting the result in HDFS. Further, on

traffic aware may be done by using different

hadoop tools like hive, pig and also to work

on complex data partitioning where

intelligent methods have to be employed.

This include analyzing computation task,

skew record etc. So that optimization of

data can be done in mapreduce.

References

[1] J. Dean and S. Ghemawat, “Mapreduce:

Simplified data processing on large

clusters,” Commun. ACM, vol. 51, no. 1,

pp. 107–113, 2008.

[2] W. Wang, K. Zhu, L. Ying, J. Tan, and

L.Zhang, “Map task scheduling in

mapreduce with data locality: Throughput

and heavytraffic optimality,” in Proc. IEEE

INFOCOM, 2013, pp. 1609–1617.

[3] F. Chen, M. Kodialam, and T.

Lakshman, “Joint scheduling of processing

and shuffle phases in mapreduce systems,”

in Proc. IEEE INFOCOM, 2012, pp. 1143–

1151.

[4] Y. Wang, W. Wang, C. Ma, and D.

Meng, “Zput: A speedy data uploading

approach for the hadoop distributed file

system,” in Proc. IEEE Int. Conf. Cluster

Comput., 2013, pp. 1–5.

[5] T. White, Hadoop: The Definitive

Guide: The Definitive Guide. Sebastopol,

CA, USA: O’Reilly Media, Inc, 2009.

[6] S. Chen and S. W. Schlosser, “Map-

reduce meets wider varieties of

applications,” Intel Res., Pittsburgh, PA,

USA, Tech. Rep. IRP-TR-08-05, 2008.

[7] H. Lv and H. Tang, “Machine learning

methods and their application research,”

IEEE Int. Symp. Intel. Info. Process.

Trusted Comput. (IPTC), pp. 108–110, Oct.

2011.

[8] S. Venkataraman, E. Bodzsar, I. Roy, A.

AuYoung, and R. S. Schreiber, “Presto:

Distributed machine learning and graph

processing with sparse matrices,” in Proc.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 418

8th ACM Eur. Conf. Comput. Syst., 2013,

pp. 197–210.

[9] A. Matsunaga, M. Tsugawa, and J.

Fortes, “Cloudblast: Combining mapreduce

and virtualization on distributed resources

for bioinformatics applications,” in Proc.

IEEE 4th Int. Conf. eScience, 2008, pp.

222–229.

[10] J. Wang, D. Crawl, I. Altintas, K.

Tzoumas, and V. Markl, “Comparison of

distributed data-parallelization patterns for

big data analysis: A bioinformatics case

study,” in Proc. 4th Int. Workshop Data

Intensive Comput. Clouds, 2013, pp. 1–5.

[11] R. Liao, Y. Zhang, J. Guan, and S.

Zhou, “Cloudnmf: A mapreduce

implementation of nonnegative matrix

factorization for largescale biological

datasets,” Genomics, Proteomics

Bioinformat., vol. 12, no. 1, pp. 48–51,

2014.

[12] G. Mackey, S. Sehrish, J. Bent, J.

Lopez, S. Habib, and J. Wang, “Introducing

map-reduce to high end computing,” in

Proc. 3rd Petascale Data Storage Workshop,

2008, pp. 1–6.

[13] W. Yu, G. Xu, Z. Chen, and P.

Moulema, “A cloud computing based

architecture for cyber security situation

awareness,” in Proc. IEEE Conf. Commun.

Netw. Security, 2013, pp. 488–492.

[14] J. Zhang, H. Zhou, R. Chen, X. Fan, Z.

Guo, H. Lin, J. Y. Li, W. Lin, J. Zhou, and

L. Zhou, “Optimizing data shuffling in

data-parallel computation by understanding

user-defined functions,” in Proc. 9th

USENIX Conf. Netw. Syst. Des. Implemen.

(NSDI ’12), Berkeley, CA, USA: USENIX

Association, 2012, pp. 295–308.

[15] F. Ahmad, S. Lee, M. Thottethodi, and

T. Vijaykumar, “Mapreduce with

communication overlap,” J. Parallel Distrib.

Comput., vol. 73, pp. 608–620, 2013.

[16] H.-C. Yang, A. Dasdan, R.-L. Hsiao,

and D. S. Parker, “Mapreduce-merge:

Simplified relational data processing on

large clusters,” in Proc. ACM SIGMOD Int.

Conf. Manage. Data, 2007, pp. 1029–1040.

[17] T. Condie, N. Conway, P. Alvaro, J. M.

Hellerstein, J. Gerth, J. Talbot, K.

Elmeleegy, and R. Sears, “Online

aggregation and continuous query support in

mapreduce,” in Proc. ACM SIGMOD Int.

Conf. Manage. Data, 2010, pp. 1115–1118.

[18] S. Narayan, S. Bailey, and A. Daga,

“Hadoop acceleration in an openflow-based

cluster,” IEEE SC Companion: High

Performance Comput., Netw., Storage

Analysis (SCC), pp. 535–538, Nov. 2012.

[19] B. Palanisamy, A. Singh, L. Liu, and B.

Jain, “Purlieus: Localityaware resource

allocation for mapreduce in a cloud,” in

Proc. Int. Conf. High Perform. Comput.,

Netw., Storage Anal., 2011, p. 58.

[20] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He,

and L. Qi, “Leen: Locality/fairness-aware

key partitioning for mapreduce in the

cloud,” in Proc. IEEE 2nd Int. Conf. Cloud

Comput. Technol. Sci., 2010, pp. 17–24.

[21] W. Yan, Y. Xue, and B. Malin,

“Scalable and robust key group size

estimation for reducer load balancing in

MapReduce,” IEEE Int. Conf. Big Data, pp.

156–162, Oct. 2013.

[22] S.-C. Hsueh, M.-Y. Lin, and Y.-C.

Chiu, “A load-balanced mapreduce

algorithm for blocking-based entity-

resolution with multiple keys,” in Proc. 12th

Australasian Symp. Parallel Distrib.

Comput., 2014, pp. 3–9.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: http://edupediapublications.org/journals/index.php/IJR/ P a g e | 419

[23] T. Condie, N. Conway, P. Alvaro, J. M.

Hellerstein, K. Elmeleegy, and R. Sears,

“Mapreduce online,” in Proc. 7th USENIX

Conf. Netw. Syst. Design Implementation,

2010, vol. 10, no. 4, p. 20.

[24] J. Lin and C. Dyer, “Data-intensive text

processing with mapreduce,” Synthesis

Lectures Human Language Technol., vol. 3,

no. 1, pp. 1–177, 2010.

[25] P. Costa, A. Donnelly, A. I. Rowstron,

and G. O’Shea, “Camdoop: Exploiting in-

network aggregation for big data

applications,” in Proc. 7th USENIX Conf.

Netw. Syst. Design Implementation, 2012,

vol. 12, p. 3.

https://edupediapublications.org/journals
http://edupediapublications.org/journals/index.php/IJR/

