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1.ABSTRACT 

 The MapReduce programming 

model simplifies the processing large 

datasets. Mapreduce is typically used to do 

distributed computing on cluster of 

computers, exploiting parallel map tasks 

and reduce tasks. Although many efforts 

have been made to improve the performance 

of MapReduce jobs, they ignore the network 

traffic generated in the shuffle phase, which 

plays a critical role in performance 

enhancement. Traditionally, a hash function 

is used to separate intermediate data among 

reduce tasks however, it is not traffic-

efficient. In this paper, we study to reduce 

network traffic cost for a MapReduce job by 

designing a novel intermediate data 

separation scheme. A decomposition-based 

distributed algorithm is proposed to deal 

with the large-scale optimization problem 

for big data application and an online 

algorithm is also designed to adjust data 

separation and aggregation in a dynamic 

manner. Finally, extensive simulation 

results demonstrate that our proposals can 

significantly reduce network 

traffic cost. 

Keywords: MapReduce, Separation, 

Aggregation.  

 

2.INTRODUCTION 

 Bigdata is a term used to describe a 

collection of data sets. The size and 

complexity of big data makes it difficult to 

use traditional database management and 

data processing tools. Data is being created 

in much shorter cycles from hours to 

milliseconds. There is also a trend underway 

to create larger databases by combining 

smaller data sets so that data correlations 

can be discovered.  

Big data has become the new 

frontier of information management given 

the amount of data today’s systems are 

generating and consuming. It has driven the 

need for technological infrastructure and 

tools that can capture, store, analyse and 

visualize vast amounts of disparate 

structured and unstructured data. These data 

are being generated at increasing volumes 

from data intensive technologies including, 

but not limited to, the use of the Internet for 

activities such as accesses to information, 

social networking, mobile computing and 

commerce. Corporations and governments 

have begun to recognize that there are 

unexploited opportunities to improve their 

enterprises that can be discovered from 

these data.  

 

2.1 Objective 

 MAPREDUCE [1], [2], [3] has 

emerged as the most popular  computing 
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framework for big data processing due to its 

simple programming model and automatic 

management of parallel execution. 

MapReduce and its open source 

implementation Hadoop [4], [5] have been 

adopted by leading companies, such as 

Yahoo!, Google and Facebook, for various 

big data applications, such as machine 

learning [6], [7], [8], bioinformatics [9], 

[10], [11], and cyber-security [12], [13]. 

MapReduce divides a computation into two 

main phases, namely map and reduce, 

which in turn are carried out by several map 

tasks and reduce tasks, respectively. In the 

map phase, map tasks are launched in 

parallel to convert the original input splits 

into intermediate data in a form of key/value 

pairs. These key/value pairs are stored on 

local machine and organized into multiple 

data partitions, one per reduce task. In the 

reduce phase, each reduce task fetches its 

own share of data partitions from all map 

tasks to generate the final result. There is a 

shuffle step between map and reduce phase. 

In this step, the data produced by the map 

phase are ordered, partitioned and 

transferred to the appropriate machines 

executing the reduce phase. The resulting 

network traffic pattern from all map tasks to 

all reduce tasks can cause a great volume of 

network traffic, imposing a serious 

constraint on the efficiency of data analytic 

applications. For example, with tens of 

thousands of machines, data shuffling 

accounts for 58.6 percent of the cross-pod 

traffic and amounts to over 200 petabytes in 

total in the analysis of SCOPE jobs [14]. 

For shuffle-heavy MapReduce tasks, the 

high traffic could incur considerable 

performance overhead up to 30-40 percent 

as shown in [15].By default, intermediate 

data are shuffled according to a hash 

function [16] in Hadoop, which would lead 

to large network traffic because it ignores 

network topology and data size associated 

with each key. We consider a toy example 

with two map tasks and two reduce tasks, 

where intermediate data of three keys K1, 

K2, and K3 are denoted by rectangle bars 

under each machine. If the hash function 

assigns data of K1 and K3 to reducer 1, and 

K2 to reducer 2, a large amount of traffic 

will go through the top switch. To tackle 

this problem incurred by the traffic 

oblivious partition scheme, we take into 

account of both task locations and data size 

associated with each key in this paper. By 

assigning keys with larger data size to 

reduce tasks closer to map tasks, network 

traffic can be significantly reduced. In the 

same example above, if we assign K1 and 

K3 to reducer 2, and K2 to reducer 1, the 

data transferred through the top switch will 

be significantly reduced. To further reduce 

network traffic within a MapReduce job, we 

consider to aggregate data with the same 

keys before sending them to remote reduce 

tasks. Although a similar function, called 

combiner [17], has been already adopted by 

Hadoop, it operates immediately after a map 

task solely for its generated data, failing to 

exploit the data aggregation opportunities 

among multiple tasks on different machines. 

In the traditional scheme, two map tasks 

individually send data of key K1 to the 

reduce task. If we aggregate the data of the 

same keys before sending them over the top 

switch, the network traffic will be reduced. 

  

3.Proposed work 

 The system that existing consist of 

intermediate data are shuffled according to a 
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hash function in Hadoop, which would lead 

to large network traffic because it ignores 

network topology and data size associated 

with each key.  

 Due to disadvantages in present 

existing system, a system is proposed to 

reduce the network traffic. 

The system that is proposed helps 

for an efficient network traffic, we jointly 

consider data partition and aggregation for a 

Map Reduce job with an objective that is to 

minimize the total network traffic. In 

particular, we propose a distributed 

algorithm for big data applications by 

decomposing the original large-scale 

problem into several sub problems that can 

be solved in parallel. Moreover, an online 

algorithm is designed to deal with the data 

partition and aggregation in a dynamic 

manner. Finally, extensive simulation 

results demonstrate that our proposals can 

significantly reduce network traffic cost in 

both offline and online cases. 

 

4.System architecture   

 Hadoop is a java based 

programming model which living big data. 

Hadoop having map-reduce and hadoop 

distributed file system (HDFS). 

 

 
 

Fig System Architecture 

 The user stores the input files in 

HDFS. The data produced by the map phase 

are ordered, separated and transferred to the 

proper machines executing the reduce phase 

is represented in the Fig. The resulting 

network traffic pattern from all map tasks to 

all reduce tasks can cause a great bulk of 

network data flow enforce a difficult sate on 

the efficiency of data analytic applications. 

This work proposed an efficient Traffic 

Aware separation  and Aggregation to 

minimize network sequence of operation 

cost for Big Data applications using Map-

Reduce. 

 

5. Algorithm 

 

Distributed Algorithm: 

The problem above can be solved by 

highly efficient approximation algorithms, 

e.g., branch-and-bound, and fast off-the-

shelf solvers, e.g., CPLEX, for moderate-

sized input. An additional challenge arises 

in dealing with the MapReduce job for big 

data. In such a job, there are hundreds or 

even thousands of keys, each of which is 

associated with a set of and constraints in 

our formulation, leading to a large-scale 

optimization problem that is hardly handled 

by existing algorithms and solvers in 

practice. 
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In this section, we develop a 

distributed algorithm to solve the problem 

on multiple machines in a parallel manner. 

Our basic idea is to decompose the original 

large-scale problem into several 

distributively solvable subproblems that are 

coordinated by a high-level master problem. 

 

Online Algorithm: 

 Until now, we take the data size and 

data aggregation ratio as input of our 

algorithms. In order to get their values, we 

need to wait all mappers to finish before 

starting reduce tasks, or conduct estimation 

via profiling on a small set of data. In 

practice, map and reduce tasks may partially 

overlap in execution to increase system 

throughput, and it is difficult to estimate 

system parameters at a high accuracy for big 

data applications. These motivate us to 

design an online algorithm to dynamically 

adjust data partition and aggregation during 

the execution of map and reduce tasks. 

 

 

In this section, we divide the 

execution of a MapReduce job into several 

time slots with a length of several minutes 

or an hour. The parameters collected at time 

slot t with no assumption about their 

distributions. As the job is running, an 

existing data partition and aggregation 

scheme may not be optimal. To reduce 

traffic cost, we may need to migrate an 

aggregator from machine j to j0 with a 

migration cost. Meanwhile, the key 

assignment among reducers is adjusted. 

When we let reducer process the data with 

key p instead of reducer k that is currently 

in charge of this key, we use to denote the 

cost migrating all intermediate data received 

by reducers so far. 

 

6.Result analysis 

The role of user is 30% i.e., to login 

into the system, sending an input data or file 

to the HDFS then performs the mapreduce 

program.  

The role of mapreduce is 50% i.e., 

map process the input data or file into small 

chunks and generate key/values, reducer 

processes the input data which is obtained 

from mapper, then produces a new set of 

output which is stored in HDFS.  

The role of HDFS is 20% i.e., it 

mainly focus on storage. It stores the input 

data and also processed data which is 

obtained after mapreduce task. 
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Fig: Result Analysis 

 

 

 

 

7.Conclusion 

 In this paper, we study the joint 

optimization of intermediate data separation 

and aggregation in MapReduce to minimize 

network traffic cost for big data 

applications. To deal with the large-scale 

formulation due to big data, we design a 

distributed algorithm to solve the problem 

on multiple machines. Furthermore, we 

extend our algorithm to handle the 

MapReduce job in an online manner when 

some system parameters are not given. 

Finally, we conduct extensive 

simulations to evaluate our proposed 

algorithm under both offline cases and 

online cases. The simulation results 

demonstrate that our proposals can 

effectively reduce network traffic cost under 

various network settings. 

 

8. Future Enhancement 

 Till now we focused on processing 

the bigdata using mapreduce task 

considering partition and aggregation and 

by sorting the result in HDFS. Further, on 

traffic aware may be done by using different 

hadoop tools like hive, pig and also to work 

on complex data partitioning where 

intelligent methods have to be employed. 

This include analyzing computation task, 

skew record etc. So that optimization of 

data can be done in mapreduce. 
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