
 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 05
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 459

ANALYSIS OF BIG DATA PROCESSING BY DISTNCT USE OF

HADOOP’S MAPREDUCE

I. Geervani1, S. Kavya2, K. Abdul Hannan3
, N. Venkatadri4

1B. Tech, CSE, TKREC, Hyderabad, Email:geervaniiji@gmail.com
2B. Tech, CSE, TKREC, Hyderabad, Email:kvsarikonda@gmail.com
3B. Tech, CSE, TKREC, Hyderabad, Email:habdul1995@gmail.com

4Professor, CSE Dept., TKREC, Hyderabad, TS-India, Email:nagala.venkat@gmail.com

ABSTRACT

Data has become an indispensable part of

every economy, industry, organization,

business function and individual and such

datasets that are beyond the size that

traditional databases can handle are termed

as Big Data. Hence companies today use a

tool called Hadoop. Even sufficiently large

amount of data warehouses are unable to

satisfy the needs of data storage. Hadoop

is designed to store large amount of data

sets reliably through HDFS and

MapReduce for storing and processing

respectively. It is an open source software

which supports parallel and distributed

data processing. Hadoop also provide fault

tolerance mechanism by replication. In this

paper, we present introduction to HDFS

and MapReduce and survey the

performance of sufficiently large dataset

processing using MapReduce technique.

We propose that performance of the

dataset processing can be optimized by

leveraging MapReduce in different ways.

We analysed the performance of datasets

by varying the approach to process it.

Keywords: Big Data, Data Warehouses,

Replication, HDFS, MapReduce.

1. INTRODUCTION

The biggest problem with true big data

(massive, less structured, heterogeneous,

unwieldy data up to, including and beyond

the petabyte range) is that it's

incomprehensible to humans at scale.

[1].We can't get machines to help us

enough. And yet big data keeps getting

bigger. So we're drowning in our own data.

The rise of ubiquitous computing and

more and more endpoints communicating

in their own feedback loops with the cloud

keeps data growth going at double digit

rates. We can't keep up with it. The

exponential growth of data first presented

challenges to cutting-edge businesses such

as Google, Yahoo, Amazon, Microsoft,

Facebook, Twitter etc. [2]. Data volumes

to be processed by cloud applications are

growing much faster than computing

power. This growth demands new

strategies for processing and analysing

information. Google over a decade ago

developed a way that Yahoo cloned to

spread data out across huge commodity

clusters and process simple batch jobs to

begin to mine big datasets on an ad-hoc

batch basis cost effectively. That method

has evolved as Hadoop. Map reduce is a

software frame work introduced by Google

in 2004 to support distributed computing

on large data sets on clusters of computers.

The original MapReduce implementation

by Google, as well as its open-source

counterpart, Hadoop, is aimed for

parallelizing computing in large clusters of

commodity machines. Map-Reduce is a

programming model that is used to

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 05
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 460

analysis the big data in cloud environment

and used to retrieve the data from the

Hadoop cluster. In this model, processing

of large data is efficient, easy to use, it

splits the tasks and executes on the various

nodes in parallel. Thus it will speed up the

computation and retrieve the required data

from a huge data set in a faster manner.

We introduce the map-reduce

programming model [6] for analysis the

big data in efficient manner using Hadoop.

Fig 1. Survey on increase in the data

generated per year.

It provides a well-organized data analysis,

performance analysis and executes process

in parallel distributed manner. By using

this programming model, Performance of

the system is increased, highly fault

tolerant and scalable(HDFS), [4] The

Hadoop Distributed File System is a

specialized file system to store large

amounts of data across a distributed

system of computers with very high

throughput and multiple replications on a

cluster. This MapReduce Originally

conceived by Google as a way of handling

the enormous amount of data produced by

their search bots, it has been adapted in a

way that it can run on a cluster of normal

commodity machines. This is open source

and distributed by Apache Hadoop.

2. EXISTING SYSTEM

Grid Resource Allocation Manager [11]

(or GRAM) is a software component that

can locate, submit, monitor, and cancel

jobs on computing resources. It provides

reliable operation, stateful monitoring,

credential management, and file staging.

GRAM does not provide job scheduler

functionality and is in fact just a front-end

to the functionality provided by an external

scheduler. The jobs submitted to GRAM

are targeted at a single computation

resource, and consist of an optional input

file staging phase, job execution, and an

optional output file staging and clean-up

stage. Works well for predominantly

compute intensive jobs, but it becomes a

problem when nodes need to access larger

data volumes (hundreds of gigabytes),

since the network bandwidth is the

bottleneck and compute nodes become

idle. It explicitly manages its own check

pointing and recovery of tasks which is a

time taking task. Big Data is known as to

be extremely large datasets that are hard to

deal with using operational databases. It is

required for parallel processing on of data

on hundreds of machines.

3. PROPOSED SYSTEM

MapReduce is a data processing or parallel

programming model introduced by

Google. In this model, a user specifies the

computation by two functions, Map and

Reduce. In the mapping phase,

MapReduce takes the input data and feeds

each data element to the mapper. In the

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 05
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 461

reducing phase, the reducer processes all

the outputs from the mapper and arrives at

a final result. In simple terms, the mapper

is meant to filter and transform the input

into something that the reducer can

aggregate over. The underlying

MapReduce library automatically

parallelizes the computation, and handles

complicated issues like data distribution,

load balancing and fault tolerance.

It employs a master/slave architecture,

where the master is in charge of

management and Scheduling [4], and the

slaves are responsible for data storage and

task processing. Indeed, Hadoop provides

some fault tolerance mechanisms through

both HDFS and MapReduce. First, HDFS

provides storage layer of fault tolerance by

replication. That is, HDFS keeps multiple

replicas of each data block in several

different nodes, so that if any one node is

down, data could still be restored from

other replicas. Second, Hadoop

MapReduce provides job level fault

tolerance [5]. That is, if a Map or Reduce

task fails, the scheduler would re -assign

the task to another node. Here we propose

an approach to increase the performance of

processing large datasets by efficient usage

of MapReduce technique and generating

multiple yields in a single-go.

4. ARCHITECTURE

Fig 4. MapReduce architecture

MapReduce mainly composed of two

phases Map and Reduce. The MapReduce

is a master slave architecture as in HDFS.

There are two types of nodes Task-tracker

and JobTracker. TaskTracker act as master

node and JobTracker as slave. Map,

written by the user, takes an input pair and

produces a set of intermediate key/value

pairs. The MapReduce library groups

together all intermediate values associated

with the same intermediate key is and

passes them to the reduce function. The

reduce function, also written by the user,

accepts an intermediate key I and a set of

values for that key. It merges these values

together to form a possibly smaller set of

values.

Typically just zero or one output value is

produced per reduce invocation. But

through leveraging the MapReduce in

different ways via mapper and reducer,

multiple yields can be obtained which

increases the performance by optimizing

the execution time of the dataset. This is

achieved by altering the mapper and

reducer functionality.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 05
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 462

5. ALGORITHM

The algorithm used to achieve the desired

multiple yields is MapReduce algorithm.

For this it works as follows on the given

dataset.

MapReduce will first divide the data into

N partitions i.e., blocks. Then it will start

many programs on a cluster. One of

program is the master program; the others

are workers, which can execute their work

assigned by master.

Map stage: Each worker node applies the

map() function to the local data, and writes

the output to a temporary storage. A

master node ensures that only one copy of

redundant input data is processed.

Shuffle/Sort stage: Worker nodes

redistribute data based on the output keys

(produced by the map() function), such

that all data belonging to one key is

located on the same worker node.

Reduce stage: Worker nodes now process

each group of output data, per key, in

parallel and reduced outputs are segregated

based on the given cluster references and

outputs are stored in the HDFS in the file

format.

6. MODULES

The modules that are considered to have

much significance in this are as follows.

6.1 Storage

Hadoop’s storage component, Hadoop

Distributed File System will perform the

key storage activities. And HDFS is High

reliable and fault tolerant architecture. The

data which is inserted is either in any form

of data like structured, semi structured and

unstructured data. Here we are

concentrating all the data in any type with

any constrains. HDFS stores large files

(typically in the range of gigabytes to

terabytes) across multiple machines. It

achieves reliability by replicating the data

across multiple hosts. With the default

replication value, 3, data is stored on three

nodes: two on the same rack, and one on a

different rack. Data nodes can talk to each

other to rebalance data, to move copies

around, and to keep the replication of data

high.

6.2 Processing

Hadoop is a batch processing framework

and data to be processed are stored in the

HDFS, a powerful tool designed to

manage large datasets with high fault-

tolerance. MapReduce, the heart of

Hadoop, is a programming model that

allows processing a substantial amount of

data in parallel. An example of the

MapReduce model has three major

processing phases: Map, Shuffle, and

Reduce. Traditional relational database

organizes data into rows and columns and

stores the data in tables. MapReduce uses a

different way, it uses key/value pairs.

7. RESULT ANALYSIS

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 05
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 463

Fig 7. Execution time comparisons for

MapReduce stage

Here we compared the execution times for

a large dataset which has single or zero

output for each execution round and the

one that yields multiple outputs for the

first execution round. When the dataset

size is increased the execution time

increases with every execution round and

thus yielding multiple desired outputs

through Map and Reduce tasks through

first pass saves the re-execution time and

searching for the output from the HDFS

will only be the task rather than executing

it all over again.

8. CONCLUSION

Optimizing the performance is a

challenging problem for Hadoop/

MapReduce workloads because of the

large size of the datasets. In this paper, we

propose a way to utilize the application

specific parameters that are generated by

the reduce phase in the first pass. We

evaluate the approach using a large dataset

and varying the traditional to leveraged

approach and compare the results. The

results show that our approach speeds up

Hadoop programs significantly due to the

concept of generating multiple output files

through an efficient mapper and reducer

functionality.

9. FUTURE ENHANCEMENTS

MapReduce and HDFS together with our

approach had shown significant speedups

in the execution time of the Hadoop

programs. Future work can be done on

optimizing the user written part of the

mapper and reducer functionality. The

main issue that needs further focus is lack

of flexible resource management and

multiple data source support. Proper skill

training is also needed for achieving large

scale data analysis. These challenges needs

to be furthermore focused to achieve full

potential Hadoop data management.

10. REFERENCES

[1] R. Taylor. An overview of the

Hadoop/MapReduce/HBase framework

and its current applications in

bioinformatics BMC

bioinformatics,11(Suppl 12):S1, 2010.

[2] A. Pavlo et al . A comparison of

approaches to large-scale data analysis. In

Proceedings of the ACM SIGMOD, pages

165178, 2009.

[3] R. Buyya, C.S. Yeo, S. Venugopal, J.

Broberg, I. Brandic, Cloud computing and

emerging IT platforms: vision, hype, and

reality for delivering computing as the 5th

utility, Future Generation Computer

Systems 25 (2009) 599616.

[4] Hadoop Distributed File

Systemhttp://hadoop.apache.org/hdfs

[5] W. Jiang et al . A Map-Reduce System

with an Alternate API for Multi-core

Environments. In Proceedings of the 10th

IEEE/ACM CCGrid, pages 8493, 2010.

[6] Map-Reduce: Simplied Data

Processing on LargeClusters, by Jerey

Dean and SanjayGhemawat; fromGoogle

Research

[7] E. Oren, R. Delbru, M. Catasta, R.

Cyganiak, H. Stenzhorn, and G.

Tummarello, “Sindice.com: A document

oriented lookup index for open linked

data,” Int. J. Metadata Semantics

Ontologies, vol. 3, pp. 37–52, Nov. 2008.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at

https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-I SSN: 23 48-795X

Vol ume 04 I s s ue 05
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 464

[8] L. Lie, “Heuristic artificial intelligent

algorithm for genetic algorithm,” Key Eng.

Materials, vol. 439, pp. 516–521, 2010.

[9] K. S. Beyer, V. Ercegovac, R.

Gemulla, A. Balmin, M. Eltabakh, C.-C.

Kanne, F. Ozcan, and E. J. Shekita, “Jaql:

A scripting language for large scale

semistructured data analysis,” in Proc.

VLDB Conf., Sep. 2011, pp. 1272–1283.

[10] H. Herodotou, “Hadoop performance

models,” Duke Univ., Durham, NC, USA,

Tech. Rep. CS-2011-05, 2011.

[11] GRAM: Grid Resource allocation

manager,

http://www.javamakeuse.com/2016/04/had

oop-vs-grid-computing.html

[12] Jeffrey Dean and Sanjay Ghemawat:

“MapReduce: Simplied Data Processing

on Large Clusters”.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

