
 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 465

PERFORMANCE ANALYSIS OF MAPREDUCE WTH

LARGE DATASETS USING HADOOP

V.Sri Divya1, M.Tejaswini2, Sk.Parveen3, B.Triveni4

1 B.Tech C.S.E TKREC Hyderabad E-mail: divyavelugaleti@gmail.com

2 B.Tech C.S.E TKREC Hyderabad E-mail: madhavaramtejaswini@gmail.com

3 B.Tech C.S.E TKREC Hyderabad E-mail: pparveen1295@gmail.com

4 Associate Professor, TKREC, Hyderabad, TS-India, E-mail: triveni.banavatu@gmail.com

ABSTRACT

 Big data[1] is a huge amount of data

that cannot be managed by traditional data

management systems. Hadoop [2] is a tool

that is used to handle this big data. For

storing and retrieving the bigdata hadoop

distributed file[4] system(HDFS) and

mapreduce[3] are used respectively. Even

petabytes or terabytes of data can be stored

and retrieved easily using these

techniques. This paper provides

introduction to hadoop HDFS and

Mapreduce. In this paper we have used

large datasets to analyse the performance

of mapreduce technique. Number of bytes

read and written while performing

mapreduce task on input given is also

observed. We have analysed the behaviour

of mapreduce task by varying the amount

of input given. Also the pattern of number

of bytes read and written when given input

is varied is also analysed.

Keywords— Big data, Hadoop, MapReduce,

Distributed file system,

1. INTRODUCTION

MapReduce[1] is a widely used computing

model for large scale data processing in

cloud computing. A MapReduce job

consists of a set of map and reduce tasks,

where reduce tasks are performed after the

map tasks. Hadoop[2] an open source

implementation of Map Reduce has been

deployed in large clusters containing

thousands of machines by companies such

as Amazon and Facebook. In those cluster

and data centre environments, Map Reduce

and Hadoop[3] are used to support batch

processing for jobs submitted from

multiple users Map Reduce workloads.

Despite many research efforts devoted to

improve the performance of a single Map

Reduce job there is relatively little

attention paid to the system performance

of Map Reduce workloads. Therefore, we

tried to improve the performance of Map

Reduce workloads.

The emerging big-data paradigm, owing to

its broader impact, has profoundly

transformed our society and will continue

to attract diverse attentions from both

technological experts and the public in

general. It is obvious that we are living a

data deluge era, evidenced by the sheer

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
mailto:divyavelugaleti@gmail.com
mailto:madhavaramtejaswini@gmail.com
mailto:pparveen1295@gmail.com
mailto:triveni.banavatu@gmail.com

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 466

volume of data from a variety of sources

and its growing rate of generation. The

exponential growth of data first presented

challenges to cutting-edge businesses such

as Google, Yahoo, Amazon, Microsoft,

Facebook, Twitter etc. Data volumes to be

processed by cloud applications are

growing much faster than computing

power. For instance, an IDC report

predicts that, from 2005 to 2020, the

global data volume will grow by a factor

of 300, from 130 Exabyte to 40,000

Exabyte, representing a double growth

every two years. The term of “big-data"

was coined to capture the profound

meaning of this data-explosion trend and

indeed the data has been touted as the new

oil, which is expected to transform our

society. The huge potential associated with

big-data has led to an emerging research

that has quickly attracted tremendous

interest from diverse sectors, for example,

industry, government and research

community. Government has also played a

major role in creating new programs to

accelerate the progress of tackling the

bigdata challenges. This growth demands

new strategies for processing and

analyzing information. Hadoop has

become a powerful Computation Model

addresses to these problems. Hadoop

HDFS became more popular amongst all

the Big Data tools as it is open source with

flexible scalability, less total cost of

ownership and allows data stores of any

form without the need to have data types

or schemas defined. Hadoop MapReduce

is a programming model and software

framework for writing applications that

rapidly process vast amounts of data in

parallel on large clusters of compute

nodes. Map reduce is a software frame

work[4] introduced by Google in 2004 to

support distributed computing on large

data sets on clusters of computers. The

original MapReduce implementation by

Google, as well as its open-source

counterpart, Hadoop, is aimed for

parallelizing computing in large clusters of

commodity machines. MapReduce model

advantage is the easy scaling of data

processing over multiple computing nodes.

2. EXISTING SYSTEM

SRB is a logical distributed file

system based on a client-server architecture

which presents users with a single global

logical namespace or file hierarchy. SRB

provides a uniform interface to

heterogeneous computer data storage

resources over a network. As part of this, it

implements a logical namespace (distinct

from physical file names) and maintains

metadata on data-objects (files), users,

groups, resources, collections, and other

items in an SRB metadata catalog (MCAT)

stored in a relational database management

system. System and user-defined metadata

can be queried to locate files based on

attributes as well as by name. SRB runs on

various versions of Unix, Linux,

and Microsoft Windows

3. PROPOSED SYSTEM

For processing and generate MapReduce is

a programming model and an associated

implementation big datasets with

a parallel, distributed algorithm on

a cluster. A MapReduce program is

composed of a map() procedure (method)

that performs filtering and sorting (such as

sorting students by first name into queues,

one queue for each name) and

a Reduce() method that performs a

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 467

summary operation (such as counting the

number of students in each queue, yielding

name frequencies). The "MapReduce

System" (also called "infrastructure" or

"framework") orchestrates the processing

by marshalling the distributed servers,

running the various tasks in parallel,

managing all communications and data

transfers between the various parts of the

system, and providing for redundancy

and fault tolerance. The model is a

specialization of the split-apply-

combine strategy for data analysis.

4. ARCHITECTURE

Figure 5.1 HDFS Architecture

Figure 5.2 mapreduce architecture

The mapReduce is master slave

architecture as in HDFS. There are two

types of nodes Task-tracker and Jobtracker.

Tasktracker act as master node and

jobtracker as slave. The tasktracker divide

the entire program into a number of

individual programs and give it to the

workers. The worker computes each

program individually and results are give

back to Tasktracker. Job Tracker runs with

the namenode, receives the user’s job,

decides on how many tasks will run

(number of mappers) and decides on where

to run each mapper (concept of locality)

Master pings workers periodically to detect

failures.

Master can distribute a map task or a

reduce task to an idle worker. If a worker

is assigned a Map task, it will parse the

input data partition and output the

key/value pairs, then pass the pair to a user

defined Map function. The map function

will buffer the temporary key/value pairs

in memory. The pairs will periodically be

written to local disk and partitioned into P

pieces. After that, the local machine will

inform the master of the location of these

pairs. If a worker is assigned a Reduce task

and is informed about the location of these

pairs, the Reducer will read the entire

buffer by using remote procedure calls.

After that, it will sort the temporary data

based on the key. Then, the reducer will

deal with all of the records. For each key

and according set of values, the reducer

passes key/value pairs to a user defined

Reduce function. The output is the final

output of this partition. After all of the

mappers and reducers have finished their

work, the master will return the result to

users' programs. The output is stored in F

individual files.

5. ALGORITHM

The mapreduce algorithm happens in the

following sequence.

"Map" step: Each worker node applies the

"map()" function to the local data, and

writes the output to a temporary storage. A

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 468

master node ensures that only one copy of

redundant input data is processed.

"Shuffle" step: Worker nodes redistribute

data based on the output keys (produced

by the "map()" function), such that all data

belonging to one key is located on the

same worker node.

"Reduce" step: Worker nodes now process

each group of output data, per key, in

parallel.

6. MODULES

i. (i)Map Module

ii. (ii)Reduce Module

(i) Map Module

The Mapper class defines the Map job.

Maps input key-value pairs to a set of

intermediate key-value pairs. Maps are the

individual tasks that transform the input

records into intermediate records. The

transformed intermediate records need not

be of the same type as the input records. A

given input pair may map to zero or many

output pairs.

(ii) Reduce Module

The Reducer class defines the Reduce job

in MapReduce. It reduces a set of

intermediate values that share a key to a

smaller set of values. Reducer

implementations can access the

Configuration for a job via the

JobContext.getConfiguration() method. A

Reducer has three primary phases −

Shuffle, Sort, and Reduce.

i. Shuffle − The Reducer copies the sorted

output from each Mapper using HTTP

across the network.

ii. Sort −The framework merge-sorts the

Reducer inputs by keys (since different

Mappers may have output the same key).

The shuffle and sort phases occur

simultaneously, i.e., while outputs are

being fetched, they are merged.

iii. Reduce − In this phase the reduce

(Object, Iterable, Context) method is

called for each <key, (collection of

values)> in the sorted inputs.

7. GRAPH

When the dataset size is increased that is

the number of records are increased,

number of bytes read and written by the

wordcount method are not directly

proportional to the dataset size.

8. CONCLUSION

The MapReduce programming model has

been successfully used at Google for many

different purposes. We attribute this

success to several reasons. First, the model

is easy to use, even for programmers

without experience with parallel and

distributed systems, since it hides the

details of parallelization, fault-tolerance,

locality optimization, and load balancing.

0

1

2

3

4

5

6

7

8

Number of

bytes read

Bytes written

Map output

records

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 469

Second, a large variety of problems are

easily expressible as MapReduce

computations. For example, MapReduce is

used for the generation of data for

Google's production web search service,

for sorting, for data mining, for machine

learning, and many other systems. Third,

we have developed an implementation of

MapReduce that scales to large clusters of

machines comprising thousands of

machines. The implementation makes

efficient use of these machine resources

and therefore is suitable for use on many

of the large computational problems

encountered at Google. We have learned

several things from this work. First,

restricting the programming model makes

it easy to parallelize and distribute

computations and to make such

computations fault-tolerant. Second,

network bandwidth is a scarce resource. A

number of optimizations in our system are

therefore targeted at reducing the amount

of data sent across the network: the

locality optimization allows us to read data

from local disks, and writing a single copy

of the intermediate data to local disk saves

network bandwidth. Third, redundant

execution can be used to reduce the impact

of slow machines, and to handle machine

failures and data loss.

9. FUTURE ENHANCEMENT

MapReduce Programming model has been

instrumental in data processing and data

analysis applications in the field of

bigdata. This is accomplished through

mapreduce support of scalability,

efficiency and fault tolerance. However,

this means that framework must make

tradeoffs between these features and

performance optimization. Improving upon

and extending mapreduce model to

implement such optimization and improve

overall performance while not

compromising on the features that have

made it successful has been an important

area of research and will prove to be so in

the future.

10. BIBILOGRAPHY
[1] J. Dean and S. Ghemawat,

“Mapreduce: simplified data processing on

large clusters,” Communications of the

ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] “Apache hadoop yarn,”

http://hadoop.apache.org/docs/

current/hadoop-yarn/hadoop-yarn-

site/YARN.html.

[3] Hadoop.http://Hadoop.apache.org/.

[4] “A Performance Analysis of

MapReduce Task with Large Number of

Files Dataset in Big Data Using Hadoop”

Amrit pal, Kunal Jain, oinkiAgrawal,

Sanjay Agrawal.

[5] “The BTWorld Use Case for Big Data

Analytics: Description, MapReduce

Logical Workflow, and Empirical

Evaluation”, Tim Hegeman, BogdanGhit,,

MihaiCapot˘a, Jan Hidders, Dick Epema,

and AlexandruIosup Parallel and

Distributed Systems Group, Delft

University of Technology, the Netherlands

T.M.{B.I.Ghit, M.Capota, A.J.H.Hidders,

D.H.J.Epema, A.Iosup}@tudelft.nl.

[6] Andrea C. Arpaci-Dusseau, Remzi H.

Arpaci-Dusseau, David E. Culler, Joseph

M. Hellerstein, and David A. Patterson.

High-performance sorting on networks of

workstations. In Proceedings of the 1997

ACM SIGMOD International Conference

on Management of Data, Tucson, Arizona,

May 1997.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Is s ue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 470

[7] Remzi H. Arpaci-Dusseau, Eric

Anderson, Noah Treuhaft, David E. Culler,

Joseph M. Hellerstein, David Patterson,

and Kathy Yelick. Cluster I/O with River:

Making the fast case common. In

Proceedings of the Sixth Workshop on

Input/Output in Parallel and Distributed

Systems (IOPADS ’99), pages 10–22,

Atlanta, Georgia, May 1999.

[8] Arash Baratloo, Mehmet Karaul, Zvi

Kedem, and Peter Wyckoff. Charlotte:

Metacomputing on the web. In

Proceedings of the 9th International

Conference on Parallel and Distributed

Computing Systems, 1996.

[9] Luiz A. Barroso, Jeffrey Dean, and Urs

Holzle. ¨ Web search for a planet: The

Google cluster architecture. IEEE Micro,

23(2):22–28, April 2003.

[10] Arash Baratloo, Mehmet Karaul, Zvi

Kedem, and Peter Wyckoff. Charlotte:

Metacomputing on the web. In

Proceedings of the 9th International

Conference on Parallel and Distributed

Computing Systems, 1996.

[11] Luiz A. Barroso, Jeffrey Dean, and

Urs Holzle. ¨ Web search for a planet: The

Google cluster architecture. IEEE Micro,

23(2):22–28, April 2003.

 [12] John Bent, Douglas Thain, Andrea

C.Arpaci-Dusseau, Remzi H. Arpaci-

Dusseau, and Miron Livny. Explicit

control in a batch-aware distributed file

system. In Proceedings of the 1st USENIX

Symposium on Networked Systems

Design and Implementation NSDI, March

2004.

[13] Guy E. Blelloch. Scans as primitive

parallel operations. IEEE Transactions on

Computers, C-38(11), November 1989.

[14] Armando Fox, Steven D. Gribble,

Yatin Chawathe, Eric A. Brewer, and Paul

Gauthier. Cluster-based scalable network

services. In Proceedings of the 16th ACM

Symposium on Operating System

Principles, pages 78– 91, Saint-Malo,

France, 1997.

[15] Sanjay Ghemawat, Howard Gobioff,

and Shun-Tak Leung. The Google file

system. In 19th Symposium on Operating

Systems Principles, pages 29–43, Lake

George, New York, 2003.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

