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ABSTRACT 

 Big data[1] is a huge amount of data 

that cannot be managed by traditional data 

management systems. Hadoop [2 ]  is a tool 

that is used to handle this big data. For 

storing and retrieving the bigdata hadoop 

distributed file[4] system(HDFS) and 

mapreduce[3] are used respectively. Even 

petabytes or terabytes of data can be stored 

and retrieved easily using these 

techniques. This paper provides 

introduction to hadoop HDFS and 

Mapreduce. In this paper we have used 

large datasets to analyse the performance 

of mapreduce technique. Number of bytes  

read and written while performing 

mapreduce task on input given is also 

observed. We have analysed the behaviour 

of mapreduce task by varying the amount 

of input given. Also the pattern of number  

of bytes read and written when given input 

is varied is also analysed.  

Keywords— Big data, Hadoop, MapReduce, 

Distributed file system, 

1. INTRODUCTION 

MapReduce[1] is a widely used computing 

model for large scale data processing in 

cloud computing. A MapReduce job 

consists of a set of map and reduce tasks, 

where reduce tasks are performed after the 

map tasks. Hadoop[2] an open source 

implementation of Map Reduce has been 

deployed in large clusters containing 

thousands of machines by companies such 

as Amazon and Facebook. In those cluster 

and data centre environments, Map Reduce 

and Hadoop[3] are used to support batch 

processing for jobs submitted from 

multiple users Map Reduce workloads. 

Despite many research efforts devoted to 

improve the performance of a single Map 

Reduce job there is relatively little 

attention paid to the system performance 

of Map Reduce workloads. Therefore, we 

tried to improve the performance of Map 

Reduce workloads. 

The emerging big-data paradigm, owing to 

its broader impact, has profoundly 

transformed our society and will continue 

to attract diverse attentions from both 

technological experts and the public in 

general. It is obvious that we are living a 

data deluge era, evidenced by the sheer 
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volume of data from a variety of sources 

and its growing rate of generation. The 

exponential growth of data first presented 

challenges to cutting-edge businesses such 

as Google, Yahoo, Amazon, Microsoft, 

Facebook, Twitter etc. Data volumes to be 

processed by cloud applications are 

growing much faster than computing 

power. For instance, an IDC report 

predicts that, from 2005 to 2020, the 

global data volume will grow by a factor 

of 300, from 130 Exabyte to 40,000 

Exabyte, representing a double growth 

every two years. The term of “big-data" 

was coined to capture the profound 

meaning of this data-explosion trend and 

indeed the data has been touted as the new 

oil, which is expected to transform our 

society. The huge potential associated with 

big-data has led to an emerging research 

that has quickly attracted tremendous 

interest from diverse sectors, for example, 

industry, government and research 

community. Government has also played a 

major role in creating new programs to 

accelerate the progress of tackling the 

bigdata challenges. This growth demands 

new strategies for processing and 

analyzing information. Hadoop has 

become a powerful Computation Model 

addresses to these problems. Hadoop 

HDFS became more popular amongst all 

the Big Data tools as it is open source with 

flexible scalability, less total cost of 

ownership and allows data stores of any 

form without the need to have data types 

or schemas defined. Hadoop MapReduce 

is a programming model and software 

framework for writing applications that 

rapidly process vast amounts of data in 

parallel on large clusters of compute 

nodes. Map reduce is a software frame 

work[4] introduced by Google in 2004 to 

support distributed computing on large 

data sets on clusters of computers. The 

original MapReduce implementation by 

Google, as well as its open-source 

counterpart, Hadoop, is aimed for 

parallelizing computing in large clusters of 

commodity machines. MapReduce model 

advantage is the easy scaling of data 

processing over multiple computing nodes. 

2. EXISTING SYSTEM 

SRB is a logical distributed file 

system based on a client-server architecture 

which presents users with a single global 

logical namespace or file hierarchy. SRB 

provides a uniform interface to 

heterogeneous computer data storage 

resources over a network. As part of this, it 

implements  a logical   namespace (distinct 

from physical file names) and maintains  

metadata on data-objects (files), users, 

groups, resources, collections, and other 

items in an SRB metadata catalog (MCAT) 

stored in a relational database management 

system.  System and user-defined metadata 

can be queried to locate files based on 

attributes as well as by name. SRB runs on 

various versions of Unix, Linux, 

and Microsoft Windows  

3. PROPOSED SYSTEM 

For processing and generate MapReduce is 

a programming model and an associated 

implementation big datasets with 

a parallel, distributed algorithm on 

a cluster. A MapReduce program is 

composed of a map()  procedure (method) 

that performs filtering and sorting (such as 

sorting students by first name into queues, 

one queue for each name) and 

a Reduce() method that performs a 
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summary operation (such as counting the 

number of students in each queue, yielding 

name frequencies). The "MapReduce 

System" (also called "infrastructure" or 

"framework") orchestrates the processing 

by marshalling the distributed servers, 

running the various tasks in parallel, 

managing all   communications and data 

transfers between the various parts of the 

system, and providing for redundancy 

and fault tolerance. The model is a 

specialization of the split-apply-

combine strategy for data analysis. 

4. ARCHITECTURE  

 
Figure 5.1 HDFS Architecture 

 

Figure 5.2 mapreduce architecture 

The mapReduce is master slave 

architecture as in HDFS. There are two 

types of nodes Task-tracker and Jobtracker. 

Tasktracker act as master node and 

jobtracker as slave. The tasktracker divide 

the entire program into a number of 

individual programs and give it to the 

workers. The worker computes each 

program individually and results are give 

back to Tasktracker. Job Tracker runs with 

the namenode, receives the user’s job, 

decides on how many tasks will run 

(number of mappers) and decides on where 

to run each mapper (concept of locality) 

Master pings workers periodically to detect 

failures. 

Master can distribute a map task or a 

reduce task to an idle worker. If a worker 

is assigned a Map task, it will parse the 

input data partition and output the 

key/value pairs, then pass the pair to a user 

defined Map function. The map function 

will buffer the temporary key/value pairs 

in memory. The pairs will periodically be 

written to local disk and partitioned into P 

pieces. After that, the local machine will 

inform the master of the location of these 

pairs. If a worker is assigned a Reduce task 

and is informed about the location of these 

pairs, the Reducer will read the entire 

buffer by using remote procedure calls. 

After that, it will sort the temporary data 

based on the key. Then, the reducer will 

deal with all of the records. For each key 

and according set of values, the reducer 

passes key/value pairs to a user defined 

Reduce function. The output is the final 

output of this partition. After all of the 

mappers and reducers have finished their 

work, the master will return the result to 

users' programs. The output is stored in F 

individual files. 

5. ALGORITHM 

The mapreduce algorithm happens in the 

following sequence. 

"Map" step: Each worker node applies the 

"map()" function to the local data, and 

writes the output to a temporary storage. A 
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master node ensures that only one copy of 

redundant input data is processed. 

"Shuffle" step: Worker nodes redistribute 

data based on the output keys (produced 

by the "map()" function), such that all data 

belonging to one key is located on the 

same worker node. 

"Reduce" step: Worker nodes now process 

each group of output data, per key, in 

parallel. 

6. MODULES 

i. (i)Map Module 

ii. (ii)Reduce Module 

(i) Map Module 

The Mapper class defines the Map job. 

Maps input key-value pairs to a set of 

intermediate key-value pairs. Maps are the 

individual tasks that transform the input 

records into intermediate records. The 

transformed intermediate records need not 

be of the same type as the input records. A 

given input pair may map to zero or many 

output pairs. 

(ii) Reduce Module 

The Reducer class defines the Reduce job 

in MapReduce. It reduces a set of 

intermediate values that share a key to a 

smaller set of values. Reducer 

implementations can access the 

Configuration for a job via the 

JobContext.getConfiguration() method. A 

Reducer has three primary phases − 

Shuffle, Sort, and Reduce. 

i. Shuffle − The Reducer copies the sorted 

output from each Mapper using HTTP 

across the network. 

ii. Sort −The framework merge-sorts the 

Reducer inputs by keys (since different 

Mappers may have output the same key). 

The shuffle and sort phases occur 

simultaneously, i.e., while outputs are 

being fetched, they are merged. 

iii. Reduce − In this phase the reduce 

(Object, Iterable, Context) method is 

called for each <key, (collection of 

values)> in the sorted inputs. 

7. GRAPH 

When the dataset size is increased that is 

the number of records are increased, 

number of bytes read and written by the 

wordcount method are not directly 

proportional to the dataset size. 

8. CONCLUSION 

The MapReduce programming model has 

been successfully used at Google for many 

different purposes. We attribute this 

success to several reasons. First, the model 

is easy to use, even for programmers 

without experience with parallel and 

distributed systems, since it hides the 

details of parallelization, fault-tolerance, 

locality optimization, and load balancing. 
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Second, a large variety of problems are 

easily expressible as MapReduce 

computations. For example, MapReduce is 

used for the generation of data for 

Google's production web search service, 

for sorting, for data mining, for machine 

learning, and many other systems. Third, 

we have developed an implementation of 

MapReduce that scales to large clusters of 

machines comprising thousands of 

machines. The implementation makes 

efficient use of these machine resources 

and therefore is suitable for use on many 

of the large computational problems 

encountered at Google. We have learned 

several things from this work. First, 

restricting the programming model makes 

it easy to parallelize and distribute 

computations and to make such 

computations fault-tolerant. Second, 

network bandwidth is a scarce resource. A 

number of optimizations in our system are 

therefore targeted at reducing the amount 

of data sent across the network: the 

locality optimization allows us to read data 

from local disks, and writing a single copy 

of the intermediate data to local disk saves 

network bandwidth. Third, redundant 

execution can be used to reduce the impact 

of slow machines, and to handle machine 

failures and data loss. 

9. FUTURE ENHANCEMENT 
 

MapReduce Programming model has been 

instrumental in data processing and data 

analysis applications in the field of 

bigdata. This is accomplished through 

mapreduce support of scalability, 

efficiency and fault tolerance. However, 

this means that framework must make 

tradeoffs between these features and 

performance optimization. Improving upon 

and extending mapreduce model to 

implement such optimization and improve 

overall performance while not 

compromising on the features that have 

made it successful has been an important 

area of research and will prove to be so in 

the future. 
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