
 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 508

Y2K38 BUG

1. Velaga.Sriman Sandeep ,2. G. Venkata Pras ad ,3. J. Deep th i

1.Pg Scholar, Department of CSE,Sphoorthy Engineering College, Nadergul(vill),Sagar Road,

Saroornagar(Mdl), RR Dist TS.

2. Assistant Professor, Department of CSE,Sphoorthy Engineering College, Nadergul(vill),Sagar Road,

Saroornagar(Mdl), R R Dist TS.

3. Associate Professor & HOD, Department of CSE,Sphoorthy Engineering College,

Nadergul(vill),Sagar Road, Saroornagar(Mdl), R R Dist TS

ABSTRACT

The Y2k38 bug was detected a few months

ago, but there was no actual testing done to

prove that this will affect our current

computers. Now this bug can actually start to

cause some damage. To test this we can try

using any chatting client either AOL

Messenger , MSN Messenger, Yahoo

Messenger, Trillian, or Gaim will do. As for

my testing this bug affected all of these

applications (windows). To test these for

yourself do the following: First double click on

the time in the bottom right-hand corner.

Change the date to something after January 19,

2038 (2039 is fine!). Now start up any of the

chatting clients mentioned above. Try sending

a message to someone else (or to yourself if it

supports it). As soon as you do this, the entire

program should crash within a few seconds

and will display some sort of error message. It

will then bring up a message asking to send an

error report or debug. From the actual

technical problem, apparently as soon as the

year 2038 strikes, all certain computers will

immediately get confused and switch the date

to December 13, 1901 from January 2038.

INTRODUCTION

The Year 2000 problem is understood by most

people these days because of the large amount

of media attention it received. Most programs

written in the C programming language are

relatively immune to the Y2K problem, but

suffer instead from the Year 2038 problem.

This problem arises because most C programs

use a library of routines called the standard

time library (time.h). This library establishes a

standard 4-byte format for the storage of time

values, and also provides a number of

functions for converting, displaying and

calculating time values.

The Y2K38 problem has been

described as a non-problem, given that we are

expected to be running 64-bit operating

systems well before 2038.

Just as Y2K problems arise from

programs not allocating enough digits to the

year, Y2K38 problems arise from programs

not allocating enough bits to internal time.

Unix internal time is commonly stored in a

data structure using a long int containing the

number of seconds since 1970. This time is

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 509

used in all time-related processes such as

scheduling, file timestamps, etc. In a 32-bit

machine, this value is sufficient to store time

up to 18-jan-2038. After this date, 32-bit

clocks will overflow and return erroneous

values such as 32-dec-1969 or 13-dec-1901.

W HAT IS THE YEAR 2038 BUG?

 In the first month of the year 2038

C.E. many computers will encounter a date-

related bug in their operating systems and/or in

the applications they run. This can result in

incorrect and wildly inaccurate dates being

reported by the operating system and/or

applications. The effect of this bug is hard to

predict, because many applications are not

prepared for the resulting "skip" in reported

time - anywhere from 1901 to a "broken

record" repeat of the reported time at the

second the bug occurs. Also, leap seconds may

make some small adjustment to the actual time

the bug expresses itself. This bug expects to

cause serious problems on many platforms,

especially Unix and Unix-like platforms,

because these systems will "run out of time".

Starting at GMT 03:14:07, Tuesday, January

19, 2038, we fully expect to see lots of systems

around the world breaking magnificently:

satellites falling out of orbit, massive power

outages (like the 2003 North American

blackout), hospital life support system failures,

phone system interruptions (including 911

emergency services), banking errors, etc. One

second after this critical second, many of these

systems will have wildly inaccurate date

settings, producing all kinds of unpredictable

consequences. In short, many of the dire

predictions for the year 2000 are much more

likely to actually occur in the year 2038!

Consider the year 2000 just a dry run. In case

you think we can sit on this issue for another

30 years before addressing it, consider that

reports of temporal echoes of the 2038

problem are already starting to appear in future

date calculations for mortgages and vital

statistics!

 W HAT HAPPENS IN YEAR 2038?

Most programs written in the C

programming language are relatively immune

to the Y2K problem, but suffer instead from

the Year 2038 problem. This problem arises

because most C programs use a library of

routines called the standard time library

(time.h). This library establishes a standard 4-

byte format for the storage of time values, and

also provides a number of functions for

converting, displaying and calculating time

values.

The standard 4-byte format assumes

that the beginning of time is January 1, 1970,

at 12:00:00 a.m. This value is 0. Any time/date

value is expressed as the number of seconds

following that zero value. So the value

919642718 is 919,642,718 seconds past

12:00:00 a.m. on January 1, 1970, which is

Sunday, February 21, 1999, at 16:18:38 Pacific

time (U.S.). This is a convenient format

because if you subtract any two values, what

you get is a number of seconds that is the time

difference between them. Then you can use

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
http://computer.howstuffworks.com/c.htm
http://computer.howstuffworks.com/c.htm
http://computer.howstuffworks.com/time.htm
http://computer.howstuffworks.com/time3.htm
http://computer.howstuffworks.com/time3.htm

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 510

other functions in the library to determine how

many minutes/hours/days/months/years have

passed between the two times.

The maximum value of time before it

rolls over to a negative (and invalid) value is

2,147,483,647, which translates into January

19, 2038. On this date, any C programs that

use the standard time library will start to have

problems with date calculations.

This problem is somewhat easier to

fix than the Y2K problem on mainframes,

fortunately. Well-written programs can simply

be recompiled with a new version of the

library that uses, for example, 8-byte values for

the storage format. This is possible because the

library encapsulates the whole time activity

with its own time types and functions (unlike

most mainframe programs, which did not

standardize their date formats or calculations).

So the Year 2038 problem should not be nearly

as hard to fix as the Y2K problem was.

The cause of the Y2K problem is

pretty simple. Until recently, computer

programmers have been in the habit of using

two digit placeholders for the year portion of

the date in their software.

For example, the expiration date for a

typical insurance policy or credit card is stored

in a computer file in MM/DD/YY format (e.g.

- 08/31/99). Programmers have done this for a

variety of reasons, including:

• That's how everyone does it

in their normal lives. When you write a check

by hand and you use the "slash" format for the

date, you write it like that.

• It takes less space to store 2

digits instead of 4 (not a big deal now because

hard disks are so cheap, but it was once a big

deal on older machines).

• Standards agencies did not

recommend a 4-digit date format until recently.

• No one expected a lot of this

software to have such a long lifetime. People

writing software in 1970 had no reason to

believe the software would still be in use 30

years later.

The 2-digit year format creates a

problem for most programs when "00" is

entered for the year. The software does not

know whether to interpret "00" as "1900" or

"2000". Most programs therefore default to

1900. That is, the code that most programmer's

wrote either prepends "19" to the front of the

two-digit date, or it makes no assumption

about the century and therefore, by default, it

is "19". This wouldn't be a problem except that

programs perform lots of calculations on dates.

For example, to calculate how old you are a

program will take today's date and subtract

your birthdate from it. That subtraction works

fine on two-digit year dates until today's date

and your birthdate are in different centuries.

Then the calculation no longer works. For

example, if the program thinks that today's

date is 1/1/00 and your birthday is 1/1/65, then

it may calculate that you are -65 years old

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 511

rather than 35 years old. As a result, date

calculations give erroneous output and

software crashes or produces the wrong results.

The important thing to recognize is

that that's it. That is the whole Year 2000

problem. Many programmers used a 2-digit

format for the year in their programs, and as a

result their date calculations won't produce the

right answers on 1/1/2000. There is nothing

more to it than that.

The solution, obviously, is to fix the

programs so that they work properly. There are

a couple of standard solutions:

• Recode the software so that

it understands that years like 00, 01, 02, etc.

really mean 2000, 2001, 2002, etc.

• "Truly fix the problem" by

using 4-digit placeholders for years and

recoding all the software to deal with 4-digit

dates. [Interesting thought question - why use

4 digits for the year? Why not use 5, or even

6? Because most people assume that no one

will be using this software 8,000 years from

now, and that seems like a reasonable

assumption. Now you can see how we got

ourselves into the Y2K problem...]

Either of these fixes is easy to do at

the conceptual level - you go into the code,

find every date calculation and change them to

handle things properly. It's just that there are

millions of places in software that have to be

fixed, and each fix has to be done by hand and

then tested. For example, an insurance

company might have 20 or 30 million lines of

code that performs its insurance calculations.

Inside the code there might be 100,000 or

200,000 date calculations. Depending on how

the code was written, it may be that

programmers have to go in by hand and

modify each point in the program that uses a

date. Then they have to test each change. The

testing is the hard part in most cases - it can

take a lot of time.

If you figure it takes one day to make

and test each change, and there's 100,000

changes to make, and a person works 200 days

a year, then that means it will take 500 people

a year to make all the changes. If you also

figure that most companies don't have 500 idle

programmers sitting around for a year to do it

and they have to go hire those people, you can

see why this can become a pretty expensive

problem. If you figure that a programmer costs

something like $150,000 per year (once you

include everything like the programmer's

salary, benefits, office space, equipment,

management, training, etc.), you can see that it

can cost a company tens of millions of dollars

to fix all of the date calculations in a large

program.

The year-2038 bug is similar to the

Y2K bug in that it involves a time wrap not

handled by programmers. In the case of Y2K,

many older machines did not store the century

digits of dates, hence the year 2000 and the

year 1900 would appear the same.

Of course we now know that the

prevalence of computers that would fail

because of this error was greatly exaggerated

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 512

by the media. Computer scientists were

generally aware that most machines would

continue operating as usual through the

century turnover, with the worst result being

an incorrect date. This prediction withstood

through to the new millennium. Effected

systems were tested and corrected in time,

although the correction and verification of

those systems was monumentally expensive.

There are however several other

problems with date handling on machines in

the world today. Some are less prevalent than

others, but it is true that almost all computers

suffer from one critical limitation. Most

programs use Coordinated Universal Time

(UTC) to work out their dates. Simply, UTC is

the number of seconds elapsed since Jan 1

1970. A recent milestone was Sep 9 2001,

where this value wrapped from 999'999'999

seconds to 1'000'000'000 seconds. Very few

programs anywhere store time as a 9 digit

number, and therefore this was not a problem.

Modern computers use a standard 4

byte integer for this second count. This is 31

bits, storing a value of 231. The remaining bit

is the sign. This means that when the second

count reaches 2147483647, it will wrap to -

2147483648.

The precise date of this occurrence is

Tue Jan 19 03:14:07 2038. At this time, a

machine prone to this bug will show the time

Fri Dec 13 20:45:52 1901, hence it is possible

that the media will call this The Friday 13th

Bug

C LANGUAGE AND Y2K 38

For the uninitiated, time_t is a data

type used by C and C++ programs to represent

dates and times internally. (You Windows

programmers out there might also recognize it

as the basis for the CTime and CTimeSpan

classes in MFC.) time_t is actually just an

integer, a whole number, that counts the

number of seconds since January 1, 1970 at

12:00 AM Greenwich Mean Time. A time_t

value of 0 would be 12:00:00 AM (exactly

midnight) 1-Jan-1970, a time_t value of 1

would be 12:00:01 AM (one second after

midnight) 1-Jan-1970, etc.. Since one year

lasts for a little over 31 000 000 seconds , the

time_t representation of January 1, 1971 is

about 31 000 000, the time_t representation for

January 1, 1972 is about 62 000 000, et cetera.

If you're confused, here are some example

times and their exact time_t representations:

Date & t ime
t ime_t

representat ion

1-Jan-1970,

12:00:00 AM

GMT

0

1-Jan-1970,

12:00:01 AM

GMT

1

1-Jan-1970,

12:01:00 AM

GMT

60

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 513

Date & t ime
t ime_t

representat ion

1-Jan-1970,

01:00:00 AM

GMT

3 600

2-Jan-1970,

12:00:00 AM

GMT

86 400

3-Jan-1970,

12:00:00 AM

GMT

172 800

1-Feb-1970,

12:00:00 AM

GMT

2 678 400

1-Mar-1970,

12:00:00 AM

GMT

5 097 600

1-Jan-1971,

12:00:00 AM

GMT

31 536 000

1-Jan-1972,

12:00:00 AM

GMT

63 072 000

1-Jan-2003,

12:00:00 AM

GMT

1 041 379 200

1-Jan-2038,

12:00:00 AM

2 145 916 800

Date & t ime
t ime_t

representat ion

GMT

19-Jan-2038,

03:14:07 AM

GMT

2 147 483 647

By the year 2038, the time_t

representation for the current time will be over

2 140 000 000. And that's the problem. A

modern 32-bit computer stores a "signed

integer" data type, such as time_t, in 32 bits.

The first of these bits is used for the

positive/negative sign of the integer, while the

remaining 31 bits are used to store the number

itself. The highest number these 31 data bits

can store works out to exactly 2 147 483 647.

A time_t value of this exact number, 2 147

483 647, represents January 19, 2038, at 7

seconds past 3:14 AM Greenwich Mean Time.

So, at 3:14:07 AM GMT on that fateful day,

every time_t used in a 32-bit C or C++

program will reach its upper limit.

One second later, on 19-January-2038 at

3:14:08 AM GMT, disaster strikes.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 514

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 515

W hat will the time_t's do when this happens?

Signed integers stored in a computer don't

behave exactly like an automobile's odometer. When

a 5-digit odometer reaches 99 999 miles, and then the

driver goes one extra mile, the digits all "turn over"

to 00000. But when a signed integer reaches its

maximum value and then gets incremented, it wraps

around to its lowest possible negative value. (The

reasons for this have to do with a binary notation

called "two's complement") This means a 32-bit

signed integer, such as a time_t, set to its maximum

value of 2 147 483 647 and then incremented by 1,

will become -2 147 483 648. Note that "-" sign at the

beginning of this large number. A time_t value of -2

147 483 648 would represent December 13, 1901 at

8:45:52 PM GMT.

So, if all goes normally, 19-January-2038

will suddenly become 13-December-1901 in every

time_t across the globe, and every date calculation

based on this figure will go haywire. And it gets

worse. Most of the support functions that use the

time_t data type cannot handle negative time_t values

at all. They simply fail and return an error code.

Now, most "good" C and C++ programmers know

that they are supposed to write their programs in such

a way that each function call is checked for an error

return, so that the program will still behave nicely

even when things don't go as planned. But all too

often, the simple, basic, everyday functions they call

will "almost never" return an error code, so an error

condition simply isn't checked for. It would be too

tedious to check everywhere; and besides, the

extremely rare conditions that result in the function's

failure would "hardly ever" happen in the real world.

(Programmers: when was the last time you checked

the return value from printf() or malloc()?) When

one of the time_t support functions fails, the failure

might not even be detected by the program calling it,

and more often than not this means the calling

program will crash. Spectacularly

An example C program

The follow C program demonstrates this effect. It is

strict ANSI C so it should compile on all systems that

support an ANSI C compiler.

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <time.h>

int main (int argc, char **argv)

{

 time_t t;

 t = (time_t) 1000000000;

 printf ("%d, %s", (int) t, asctime (gmtime

(&t)));

 t = (time_t) (0x7FFFFFFF);

 printf ("%d, %s", (int) t, asctime (gmtime

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 516

(&t)));

 t++;

 printf ("%d, %s", (int) t, asctime (gmtime

(&t)));

 return 0;

}

The program produces the output:

10000000000, Sun Sep 9 01:46:40 2001

2147483647, Tue Jan 19 03:14:07 2038

-2147483648, Fri Dec 13 20:45:52 1901

FIXING Y2K38 BUG

Time_t is never, ever at fault in any Year

2000 bug. Year 2000 bugs usually involve one of

three things: The user interface, i.e., what year do you

assume if the user types in "00"; a database where

only the last two digits are stored, i.e., what year do

you assume if the database entry contains a 00 for its

year; and, in rare instances, the use of data items

(such as the struct tm data structure's tm_year

member in a C or C++ program) which store the

number of years since 1900 and can result in displays

like "19100" for the year 2000.

Year 2038 bugs, on the other hand, occur

when a program reads in a date and carries it around

from one part of itself to another.

You see, time_t is a convenient way to

handle dates and times inside a C or C++ program.

For example, suppose a program reads in two dates,

date A and date B, and wants to know which date

comes later. A program storing these dates as days,

months, and years would first have to compare the

years, then compare the months if the years were the

same, then compare the days if the months were the

same, for a total of 3 comparison operations. A

program using time_t's would only have to compare

the two time_t values against each other, for a total of

1 comparison operation. Additionally, adding one

day to a date is much easier with a time_t than having

to add 1 to the day, then see if that puts you past the

end of the month, then increase the month and set the

day back to 01 if so, then see if that puts you past the

end of the year, et cetera. If dates are manipulated

often, the advantage of using time_t's quickly

becomes obvious. Only after the program is done

manipulating its time_t dates, and wants to display

them to the user or store them in a database, will they

have to be converted back into days, months, and

years.

So, even if you were to fix every Year 2000

Bug in a program in such a way that users and

databases could use years as large as 9999, it

wouldn't even brush on any of the Year 2038 Bugs

lurking within the same program.

The Problem with Pooh-Poohing

Admittedly, some of our colleagues don't

feel that this impending disaster will strike too many

people. They reason that, by the time 2038 rolls

around, most programs will be running on 64-bit or

even 128-bit computers. In a 64-bit program, a

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 517

time_t could represent any date and time in the future

out to 292 000 000 000 A.D., which is about 20 times

the currently estimated age of the universe.

The problem with this kind of optimism is

the same root problem behind most of the Year 2000

concerns that plagued the software industry in

previous years: Legacy Code. Developing a new

piece of software is an expensive and time-

consuming process. It's much easier to take an

existing program that we know works, and code one

or two new features into it, than it is to throw the

earlier program out and write a new one from

scratch. This process of enhancing and maintaining

"legacy" source code can go on for years, or even

decades. The MS-DOS layer still at the heart of

Microsoft's Windows 98 and Windows ME was first

written in 1981, and even it was a quick "port"

(without many changes) of an earlier operating

system called CP/M, which was written in the 1970s.

Much of the financial software hit by the various

Year 2000 bugs had also been used and maintained

since the 1970s, when the year 2000 was still thought

of as more of a science fiction movie title than an

actual impending future. Surely, if this software had

been written in the 1990s its Year 2000 Compliance

would have been crucial to its authors, and it would

have been designed with the year 2000 in mind. But

it wasn't.

We should also mention that computer

designers can no longer afford to make a "clean

break" with the computer architectures of the past.

No one wants to buy a new kind of PC if it doesn't

run all their old PC's programs. So, just as the new

generation of Microsoft Windows operating systems

has to be able to run the old 16-bit programs written

for Windows 3 or MS-DOS, so any new PC

architecture will have to be able to run existing 32-bit

programs in some kind of "backward compatibility"

mode.

Even if every PC in the year 2038 has a 64-

bit CPU, there will be a lot of older 32-bit programs

running on them. And the larger, more complex, and

more important any program is, the better are its

chances that that it'll be one of these old 32-bit

programs.

W hat about making time_t unsigned in 32-bit

s o ftware?

One of the quick-fixes that has been

suggested for existing 32-bit software is to re-define

time_t as an unsigned integer instead of a signed

integer. An unsigned integer doesn't have to waste

one of its bits to store the plus/minus sign for the

number it represents. This doubles the range of

numbers it can store. Whereas a signed 32-bit integer

can only go up to 2 147 483 647, an unsigned 32-bit

integer can go all the way up to 4 294 967 295. A

time_t of this magnitude could represent any date and

time from 12:00:00 AM 1-Jan-1970 all the way out to

6:28:15 AM 7-Feb-2106, surely giving us more than

enough years for 64-bit software to dominate the

planet.

It sounds like a good idea at first. We

already know that most of the standard time_t

handling functions don't accept negative time_t

values anyway, so why not just make time_t into a

data type that only represents positive numbers?

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

 International Journal of Research
Available at https://edupediapublications.org/journals

p-I SSN: 2348 -6848
e-ISSN: 2348-795X

Vol ume 04 I s s ue 0 5
Apr i l 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 518

Well, there's a problem. time_t isn't just

used to store absolute dates and times. It's also used,

in many applications, to store differences between

two date/time values, i.e. to answer the question of

"how much time is there between date A and date

B?". (MFC's CTimeSpan class is one notorious

example.) In these cases, we do need time_t to allow

negative values. It is entirely possible that date B

comes before date A. Blindly changing time_t to an

unsigned integer will, in these parts of a program,

make the code unusable.

Conclus ion

Though the Y2k38 problem does not affect

the IT industry as that done by Y2k, it has

significance in the area of embedded systems. Many

real time system that purely depends on system clock

may hit by the problem . The solution to the problem

is done by some patch programs that will skip the

effects . Majorities of the bug programs will be done

in C language. Converting the present applications to

64 bit one is the final word on the solution. This can

be implemented professionally by adding library

functions that do the conversion.

References

1. http://www.merlyn.demon.co.uk/critdat

e.htm#Dates

2. fi.wikipedia.org/wiki/Y2K38

3. www.seminarsonly.com

4. blogger.sahaskatta.com/2005/07/y2k

AUTHOR’S PROFILE:

Velaga.Sriman Sandeep
B.Tech Student,
Department of CSE,
Sphoorthy Engineering College,
Nadergul(vill),Sagar Road,
Saroornagar(Mdl), R R Dist TS.

G.Venkata Prasad
Assistant Professor,
Department of CSE,
Sphoorthy Engineering College,
Nadergul(vill),Sagar Road,
Saroornagar(Mdl), R R Dist TS.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

