
 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 974

Design of Dual Redundancy Can-Bus
Controller with Very Efficient Memory

Controller

Neelam.Sravani & S.A.Vara Prasad
M.tech(VLSI),Depatment of ECE,BVC College of Engineering,Rajamahendravaram,A.P,India

Nsravani4612@gmail.com

Assistant.professor, Depatment of ECE,BVC College of Engineering,Rajamahendravaram,A.P,India

Vara.prasad37@gmail.coms

Abstract—At present, the strategy of double excess

CAN-bus is fundamentally executed by

programming, with the goal that it has the

impediments of low quality and terrible continuous

execution. Based on the error taking care of control

in CAN particular adaptation 2.0, an equipment

excess administration unit is inventively advanced in

this paper. In view of FPGA, a sort of redid Dual

Redundancy CAN-bus Controller (DRCC) is

planned. By downloading the IP Core into a

XILINX's SPARTAN-3 chip to test, it has been

confirmed that the plan could totally meet the

prerequisite for high continuous execution and

unwavering quality, with a brilliant prospect for

what's to come

Keywords—Dual Redundancy CAN-bus; Verilog;

FPGA; IP Core

I. INTRODUCTION

With the improvement of EDA (Electronic Design

Automation), advanced framework outlined by

FPGA is broadly utilized as a part of a wide range of

fields [1], for example, correspondence, aviation,

therapeutic medications and mechanical control

framework [7]. CAN (Controller Area network) has

turned out to be a standout amongst the most well-

known information transport [2] with attributes, for

example, hostile to impedance capacity, much lower

cost and simple upkeep. There are an incredible

number of CAN chips in market for instance

PHILIPS' SJA1000 [3]. Regardless of how flawless

the single-channel CAN bus system is, while

something happens to the single-channel bus system,

for example, short out or open circuit, the entire

system won't work. To take care of this issue, a few

ideas of repetition were advanced before. To

aggregate up, there are three sorts of methods for

excess information transport [4, 6, 8, 9, 10]. The first

is excess of transport driver, which utilizes one CPU,

one CAN controller and two transport drivers. The

second is repetition of transport controller, which

utilizes one CPU, two CAN controllers and two

transport drivers. The latter is excess of

programming framework, which utilizes two CPUs,

two CAN controllers and two transport drivers. In

any case, those excess means is finished by

programming running in the CPU which has the

impediments of low dependability and awful ongoing

execution [14, 17, 18]. So the best repetition means

is that excess administration is finished by equipment

rationale circuit. Be that as it may, a CAN controller

chip is generally an entire part whose capacity can't

be changed. In this manner, a Double Redundancy

CAN-bus Controller (DRCC) in light of FPGA chip,

a programmable rationale part, is advanced in this

paper.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 975

II. DUAL REDUNDANCY CAN-BUS (DRC)

NETWORK ARCHITECTURE

The DRC Arrange design is appeared in Fig.1.

Contrasted and physical layer of a solitary transport

CAN Network, physical layer of the DRC System is

included an extra channel. In single-bus CAN

arrange, if its exclusive channel is seriously meddled

or open, the System will be ruined. In any case, the

DRC System's physical layer has two totally

autonomous channels, which are Channel 1 and

Channel 2 separately. In the event that the excess

administration neglects to transmit message from one

channel, it will transmit the message naturally from

the other channel.

III. DUAL REDUNDANCY CAN-BUS

CONTROLLER DESIGN

A. DRCC Structure The piece graph of DRCC is

appeared in Fig.2. DRCC is made out of good for

nothing Stream Processor Squares (BSPB), one

Repetition Administration Piece (RMB) and two

Smash Pieces. The BSPB incorporates one state-

machine and one Piece Timing Rationale Square

(BTLB). The capacity of a few squares RI DRCC

can be portrayed as takes after: BTLB [12] screens

the serial CAN-transport line, deals with the

transport line-related piece timing, does hard

synchronization and resynchronization, makes up for

the proliferation defer times and controls the

specimen point and the quantity of tests to be taken

inside a bit time. BSPB assumes responsibility of

Date Connection Layer convention and oversees

CAN Message, for example, perceiving and dealing

with standard edge and augmented casing,

overseeing FIFO and separating Message and etc.

Channel 1

Channel 2

Fig. 1.DRCnetworkarchitecture

Fig. 2. Dual Redundancy CAN-bus Controller Block

Diagram

RMB oversees transmission of CAN Messages while

DRCC keeps running in repetition mode, and it

doesn't work while DRCC keeps running in typical

mode. The piece comprises of incorporate some

"paste" rationale and three state-machines which a

principle statemachine and two assistant state-

machines. The principle statemachine oversees

channels switch, hooks bits of the time counter when

getting done with sending message or exchanging

channels and the two assistant state-machines screen

whether a channel is legitimate and report its state to

the primary state-machine.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 976

Ch 2

ch1abort1wait2idle2

wait1wait3

idle1Wait 4abort 2

chan_1_need_to_t

x=0
chan_1_node_error_

passive = 1
chan_2_tx_request

=0

cha

n_2

tx

suc

ces

s=1

chan_2_node_error_passive

= 1

chan_2_need_to_tx=

0

chan_2_n

eed_to_tx

=1

chan_1_tx_re

quest=0

chan_1_tx_s

uccess=1

chan_1_tx_reque

st=1

chan_2_need

_to_tx=0

chan_1_need_

to_tx=0

chan_1_n

eed_to_tx

=0

chan_2_

need_to_

tx=1

chan_2_tx_req

uest=1
chan_1_need_to_tx=1

Fig. 3. State transition diagram

Two RAMs are used to buffer messages waiting for

being communicated, to buffer received messages

and to register all kinds of states which DRCC runs.

B. Excess administration state-machine The RMB

incorporates three state-machines, a principle state

machine and two assistant state-machines. The state

move chart of primary state-machine is appeared in

Fig.3 and its each state is portrayed in Table 1.The

two RAMs are utilized to cushion messages sitting

tight to be imparted, to cradle got messages and to

enroll a wide range of states which DRCC runs.

TABLE I. STATE DESCRIPTION

STATE FUNCTION DESCRIPTION

idle1 reset state

idle1 state

If system has some messages to send, first write the

messages to buffer, and then set the

chan_1_tx_request. When the main state-machine

monitors this change, starts transmitting process and

changes to wait1 state.

wait1 wait1 state If Channel1 isn’t ready for transmitting message, the

state-machine will still wait. Otherwise, change to ch1

state.

ch1 channel 1

send state

If Channel 1 transmits a message successfully, the

state-machine returns to idle1 state and will be ready

for transmitting next message from the Channel1.

Otherwise, the state-machine changes to abort1 state

in order to abort the message which wasn’t

transmitted successfully from Channel 1.

abort1 channel 1

abort state

The state-machine sets chan_1_abort_send signal of

Channel 1, and then changes to wait2 state

Wait 2

Wait 2 State

If abort the corrupted message from Channel 1

successfully, the state-machine changes to idle2 state

in order to transmit the same message from Channel

2. Otherwise, will still wait.

idle2

idle2 state

If The past state is wait2 state, the state-machine is

directly into wait3 state. Or else, the state-machine

needs to wait for chan_2_tx_request signal which is

the request signal of Channel 2.

Wait 3

Wait 3 State

If Channel 2 isn’t ready for sending message, the

state-machine will still wait. Otherwise, changes to

ch2 state.

ch2 channel 2

send state

If Channel 2 transmits successfully, the state-machine

returns to idle2 state and will be ready for next

message from the Channel2. Otherwise, the state-

machine changes to abort2 state in order to abort the

corrupted message from Channel 2.

abort2

abort state

The state-machine sets chan_2_abort_send signal of

Channel 2, and then changes to wait4 state.

Wait 4

Wait state

If abort the message from Channel 2 successfully and

if Channel1 recovers from faults, the state-machine

changes to idle1 state. Otherwise, changes to idle2

state and latches failure states.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 977

IV. DRCC SIMULATION TEST

Among these tests, the DRCC IP core [13] is used as

a component as if it was a chip in a Printed Circuit

Board (PCB). Block diagram of

the test system is shown in Fig.4. Task of the test

program includes computing the expected

timing of DRCC interface, writing read/write

function and writing test bench [15, 16].

Fig. 4. Test system block diagram

A. Transmission error count and transmission

prepare Reproduction consequences of the

connection between transmission error check and

transmission process are appeared in Fig.5. As

appeared in Fig.5, while transmitting sign is HIGH, a

message is currently transmission. The flag transport

of tx_err_cnt[7:0] is a pointer of transmission

mistake counter, which will increment by 8 for every

transmission disappointment. While transmission

mistake counter is more than 80Hex, the transmitting

message of Channel1 is prematurely ended.

B. Transmission error number and mistake

uninvolved enactment The consequences of

recreation of a connection between transmission

mistake check and blunder detached initiation is

appeared in Fig.6. While transmission blunder

counter (chan_a_bsp_tx_err_cnt[8:0]) is more

noteworthy than 80Hex, the flag of Mistake

Detached (chan_a_bsp_node_error_passive) is

initiated. In repetition mode, the state-machine will

begin the way toward exchanging channel.

C. Switching channels the results of simulation of

switching channels are shown in Fig.7.

1) Step 1: At the point when

chan_a_transmission_req is inspected HIGH amid a

clock cycle, the state-machine begins transmission of

a message from Channel 1. Because of affirmation

mistake, the message neglects to be transmitted from

Channel 1 and this prompts to expand transmission

blunder counter (chan_a_bsp_tx_err_cnt). As

indicated by the lead in CAN particular form 2.0, the

tainted message is naturally retransmitting when the

transport is sit out of gear again [5]. This implies the

debased message is more than once transmitted until

achievement or Blunder Uninvolved actuation. As a

result, transmission blunder counter keeps on

expanding. 2) Stage 2: When transmission blunder

counter is more noteworthy than 80Hex, the flag of

Mistake Detached (chan_a_bsp_node_error_passive)

is enacted. This demonstrates Channel 1 is severely

corrupted.

3) Step 3: In this phase, switching channel and

request for transmitting the message from Channel 2

are done. When the state-machine sets tx_channel to

HIGH, current channel has been connected to

Channel 2. When the state-machine sets

chan_b_transmission_req to HIGH, it requests to

transmit the message from Channel 2.

Fig 5.simulation result for dual redundancy CAN bus

controller

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 978

Fig 6 simulation result for memory controller with

CAN bus controller

4) Stage 3: In this stage, exchanging channel and

demand for transmitting the message from Channel 2

are finished. At the point when the state-machine sets

tx channel to HIGH, current channel has been

associated with Channel 2. At the point when the

state-machine sets chan_b_transmission_req to

HIGH, it solicitations to transmit the message from

Channel 2.

5) Stage 4: flag of transmission_ack. At the point

when the message is effectively transmitted, the

state-machine sets the flag to a clock period.

6) Stage 5: flag of tx_sucess. At the point when the

message is effectively transmitted, the state-machine

sets the flag to a clock period.

D. Channel trading time As showed up in Fig.8, in

the midst of 25ms or close, Channel 1 (node1_tx1_i)

transmitted on and on a message however did not

accomplishment. This leaded to mistake Idle

incitation and subsequently a comparative message is

changed to Channel 2 to transmit. Channel 2

(node1_tx2_i) completes viably transmission just

once. Thusly, Channel trading time needs 25ms or so

under the perceive botch condition.

V. CONCLUSIONS

The Dual Redundancy CAN Controller core,

which is simulated and synthesizable, can be

used as a component in a project and it must

have had a bright prospect for the future. The

memory controller is added to CAN bus for

efficient controlling. By downloading the IP

Core into a XILINX’s VERTEX - 6 chip to test,

the design of Dual Redundancy CAN-bus

Controller Based on memory controller is

successful. It guarantees reliability and real-time

performance and compensates for the

disadvantage of software redundancy.

Design summary report for Dual redundancy

CAN bus controller

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 979

Design summary report for memory controller

CAN bus controller

REFERENCES

[1] Ma Xiaojun, Tong Jiarong, “Design and

Implementation of A New FPGA Architecture,” ASIC,

2003. Proceedings.5th International Conference, Vol.2,

pp.816-819, October 2003.

 [2] Yu Zhu, Can and FPGA Communication Engineering:

Implementation of a Can Bus Based Measurement System

on an Fpga Development Kit, DiplomicaVerlag, 2010.

 [3] Philips Semiconductors. SJA1000 Standalone CAN

controller. January 2000.

[4] Qing Jia, DeviceNet media redundancy㧘iCC 2005.

[5] Robert Bosch GmbH, CAN Specification Version 2.0,

September 1991.

[6] Jos´eRufino, Dual-Media Redundancy Mechanisms for

CAN, Technical Report, January 1997.

[7] CiA - CAN in Automation. CAN Physical Layer for

Industrial Applications - CiA/DS102-1, April 1994.

[8] C. Mateus, Design and implementation of a non-stop

Ethernet with a redundant media interface. Graduation

Project Final Report, Instituto Superior T´ecnico, Lisboa,

Portugal, September 1993. (inportuguese).

[9] Han Ju, Ke Jing, Jin Jiang, A kind of CAN bus

redundancy method, Electronics Process

Technology(China), Vol.19, No.4, 1999.

[10] Yu ChunLai, XuHuaLong, Liu GengWang,

HouXiaoLing, Research of the Redundant Methods of

CAN, Measurement & Control Technology(China),

Vol.22, No.10, 2003.

[11] Xilinx Inc, Spartan-3 FPGA Family: Complete Data

Sheet, May 2007.

[12] I. Mohor, CAN Core, Complete Data Sheet, May

2007.

[13] Jane Smith, Verilog Coding Guidelines, Cisco

Systems, Inc.

[14] M.A. Livani, J. Kaiser, and W.J. Jia, Scheduling hard

and soft real-time communication in CAN, In Proc. of the

23rd.Workshop on Real-Time Programming, Shantou,

China, June 1998.IFAC/IFIP.

[15] Lattice Semiconductor Corporation, A Verilog HDL

Test Bench Primer: Application Note.

[16] AbhishekShetty, Hamid Mahmoodi, System Verilog

Testbench Tutorial, Nano-Electronics & Computing

Research Center School of Engineering San Francisco

State University San Francisco, C'A Fall 2011.

 [17] S. Punnekkat, H. Hansson, and C. Norstrom,

“Response time analysis under errors for CAN”,

Proceedings of the IEEE Real-Time Technology and

Applications Symposium, pp. 258-265, Washington, USA,

May 2000.

[18] Robert I. Davis, Alan Burns, Controller Area

Network (CAN) Schedulability Analysis.

