
 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1073

Dalvik Virtual Machine and Binder in Android

Operating System
Wahhab Isam Altaee & Alaa Nazeeh

Wahhab_isam@yahoo.com; alaa_nazeeh@yahoo.com

Department of Computer Applied Technology Advance Operating System Class

Abstract
This paper is an analysis of the Dalvik Virtual Machine and Java Virtual Machine and the different

between them, and analysis the Inter process communication (IPC) in Android mobile operation system.

Provided by a custom software is called Binder. And the last of paper Example for Building a Binder-based

Service and Client.

Keyword: Dalvik Virtual Machine (DVM), Inter-process communication (IPC), Remote Procedure Call

(RPC)

1. Introduction

A mobile operating system (or mobile OS) is

an operating system for smartphones, tablets,

PDAs, or other mobile devices. While computers

such as the typical laptop are mobile, the

operating systems usually used on them are not

considered mobile ones as they were originally

designed for bigger stationary desktop computers

that historically did not have or need specific

"mobile" features. This distinction is getting

blurred in some newer operating systems that are

hybrids made for both uses.

Mobile operating systems combine features of a

personal computer operating system with other

features useful for mobile or handheld use;

usually including, and most of the following

considered essential in modern mobile systems; a

touchscreen, cellular, Bluetooth, Wi-Fi, GPS

mobile navigation, camera, video camera, speech

recognition, voice recorder, music player, near

field communication.Mobile devices with mobile

communications capabilities contain two mobile

operating systems the main user-facing software

platform is supplemented by a second low-

level proprietary real-time operating system

which operates the radio and other hardware.

Research has shown that these low-level systems

may contain a range of security vulnerabilities

permitting malicious base stations to gain high

levels of control over the mobile device.

I will go further and discuss about the Dalvik

(VM) and the Binder, the core subsystem of the

complex and huge Android platform.

Android has inherited powerful base systems

from Linux Kernel such as the memory

management, multitasking and file management.

In addition, it has lowered the entry barrier by

providing various development tools used to

develop Java applications based on the Dalvik

VM. Since the base systems are implemented in

C++, they come with highly productive code.

mailto:Wahhab_isam@yahoo.com
mailto:alaa_nazeeh@yahoo.com

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1074

Android is a platform which embraces numerous technologies like Linux Kernel, C++, Java, Dalvik VM, e

Figure (1) Android Platform Structure.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1075

Android provides the process-unit component model. In other words, system services which provide an

application or a camera feature created in Java on Eclipse, or system services which are responsible for

screen display, all such Android components are eventually expressed as Linux processes.

2. Dalvik Virtual Machine (DVM) .

Dalvik is a purpose-built virtual machine designed specifically for Android developed by Dan Bornstein

and his team at Google.

The Java virtual machine (JVM) was designed to be a one-size-fits-all solution, and the Dalvik team felt

they could do a better job by focusing strictly on mobile devices. They looked at which constraints specific

to a mobile environment are least likely to change in the near future. One of these is battery life, and the

other is processing power. Dalvik was built from the ground up to address those constraints. Another side

effect of replacing the Java VM with the Dalvik VM is the licensing. Whereas the Java language, Java tools,

and Java libraries are free, the Java virtual machine is not. This was more of an issue back in 2005 when the

work on Dalvik started.

Nowadays, there are open source alternatives to Sun’s Java VM, namely the Open JDK and Apache

Harmony projects. By developing a truly open source and license-friendly virtual machine, Android yet

again provides a full-featured platform that others are encouraged to adopt for a variety of devices without

having to worry about the license.

Figure (2) Dalvik Virtual Machine(DVM)

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1076

2.1 The .dex File Format

In standard Java environments, Java source code is compiled into Java bytecode, which is stored

within .class files. The .class files are read by the JVM at runtime. Each class in your Java code will result

in one .class file. This means that if you have, say, one .java source file that contains one public class, one

static inner class, and three anonymous classes, the compilation process (javac) will output 5 .class files.

On the Android platform, Java source code is still compiled into .class files. But after .class files are

generated, the “dx” tool is used to convert the .class files into a .dex, or Dalvik Executable, file. Whereas

a .class file contains only one class, a .dex file contains multiple classes. It is the .dex file that is executed

on the Dalvik VM.

The .dex file has been optimized for memory usage and the design is primarily driven by sharing of data.

The following diagram contrasts the .class file format used by the JVM with the .dex file format used by

the Dalvik VM.

Figure (3) diagram contrasts the .class file format used by the JVM with the .dex file format used by the

Dalvik VM.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1077

3. Binder

The architectural paradigm of android applications is based on a distributed component model. The various

components of an android application are decoupled from one another for modularity and scalability. These

components can be part of the same process or different processes. If these components reside in different

processes, then the components have to communicate with one another using the underlying Inter-process

mechanisms exposed by the android platform. But these distributed components have to be present on the

same host, because the IPC mechanism supported by the android platform does not allow communication

across hosts.

Binder: is defined as a low overhead Remote Procedure call utility which facilitates synchronous reliable

communication across processes. It is an elaborate framework and a binder kernel driver resides at the

heart of this framework.

3.1 Why Android needs Binder ?

A n d r o i d application runs on its own Dalvik VM, which is folked from the first Dalvik VM running at

boot time. This makes IPC in Android similar to Remore Procedure Call (RPC). Sitting on top of a Linux

kernel 2.6, Android inherits all the standard IPCs from Linux (signals, pipes, sockets, semaphores,...), but

away from f acilit at in g th e ke rn el pro c e sses, th e y c ould n ot be use d as a t erm of

commun ic ation in the Appli c ation Layer. To make this task possible, Android has embeded Binder as

a device driver in its kernel, with rich C++ APIs in the framework layer, and Java APIs in the application

layer. The core idea of Binder : is to have a driver that transfers messages between different applications'

memory space. Messages being transferred via Binder are packed in binary Parcels, which data could be

conv e rte d to an d r ec onstr uct ed from , usin g m eta dat a in clud ed in ea ch P ar c el obj ect . Usin g

Bind e r, a process could appear to jump to other process's space, calling methods and then jump back with

the return value. Binder makes IPC between applications much easier, more abstract, and more object-

oriented.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1078

3.3 Binder that Binds All Functions

The Binder mechanism has started from a simple idea. "Let requests and responses be written in an area

where all processes can share and let each process refer to the memory address." So, the kernel space is

used for it.

Figure (4) Kernel Space Shared by All Processes.

A Binder Driver is implemented to use the kernel space. The role of the Binder driver is to convert the

memory address that each process has mapped with the memory address of the kernel space for reference.

The Binder driver can be used by the ioctl() system function, which is a standard method in Linux. The

mechanism is called Binder IPC.

Figure (5) Transfer Structure of User Data between Processes through Binder Driver.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1079

3.4 Binder Terminology

Binder (Framework)

The overall IPC architecture

Binder Driver

The kernel-level driver that fascinates the

Communication across process boundaries

Binder Protocol

Low-level protocol (ioctl-based) used to

Communicate with the Binder driver

IBinder Interface

A well-defined behavior (i.e. methods)

that Binder Objects must implement

AIDL

Android Interface Definition Language

used to describe business operations on an IBinder Interface

Figure (6) Binder Terminology

Binder (Object) : A generic implementation of the IBinder interface

Binder Token

An abstract 32-bit integer value that uniquely identifies a Binder object across all processes on the system

Binder Service

An actual implementation of the Binder (Object) that implements the business operations

Binder Client: An object wanting to make use of the behavior offered by a binder service

Binder Transaction

An act of invoking an operation (i.e. a method) on a remote Binder object, which may involve

sending/receiving data, over the Binder Protocol

Parcel

"Container for a message (data and object references) that can be sent through an IBinder." A unit of

transactional data - one for the outbound request, and another for the inbound reply

Marshalling

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1080

A procedure for converting higher level applications data structures (i.e. request/response parameters) into

parcels for the purposes of embedding them into Binder transactions

Unmarshalling

A procedure for reconstructing higher-level application data-structures (i.e. request/response parameters)

from parcels received through Binder transactions

Proxy

An implementation of the AIDL interface that un/marshals data and maps method calls to transactions

submitted via a wrapped IBinder reference to the Binder object

Stub

A partial implementation of the AIDL interface that maps transactions to Binder Service method calls

while un/marshalling data

Context Manager (a.k.a. servicemanager)

A special Binder Object with a known handle (registered as handle 0) that is used as a registry/lookup

service for other Binder Objects (name → handle mapping)

3.5 Binder Transactions

The BC REPLY command is used by the server to reply to a received BC

TRANSACTION. The Binder driver takes care of delivering the reply to the waiting thread. The Binder

driver copies the transmission data from the user memory address space of the sending process to its kernel

space and then copies the transmission data to the destination process. This is achieved by the copy from

user and copy to user command of the Linux kernel.

Figure (7) Data Transaction

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1081

3.2 IPC at the Kernel Level

The Binder kernel driver supports the file operations open, mmap (memory mapping), release, poll and the

system call ioctl. The higher layers accesses the Binder driver through these file operations. The device file

associated with the binder kernel module is "/dev/Binder". The open system call establishes a connection to

the Binder driver and assigns it a file descriptor, and the release operation closes the connection. The mmap

operation is needed to map Binder memory. The most significant operation is the ioctl system call. The

higher layers send and receive all messages through the ioctl() system call. All interactions transpire

through a small set of ioctl commands. These commands are:

BINDER WRITE READ is the most important command; it submits a series of transmission data.

BINDER SET MAX THREADS sets the number of maximal threads per process to work on requests.

BINDER SET CONTEXT MGR sets the context manager. It can be set only one time successfully and

follows the first come first serve pattern.

BINDER THREAD EXIT This command is sent by middleware, if a binder thread exits

BINDER VERSION returns the Binder version number

To initiate an IPC transaction, ioctl call with BINDER_READ_WRITE command is invoked The data to

be passed to the ioctl() call is of the type struct binder_write_read.[3]

Ioctl (fd, BINDER_WRITE_READ, &bwt);

The write buffer contains an enum BC_TRANSACTION followed by a binder_transaction_data. In this

structure target is the handle of the object that should receive the transaction. The code refers to the Method

ID.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1082

The kernel driver does not start threads to dispatch requests to a target server, it is the responsibility of the

server to main a pool of threads and listen to the incoming requests by entering a polling loop. The target

server should execute these commands BC REGISTER LOOPER, BC ENTER LOOPER and BC EXIT

LOOPER to notify the binder about the looping Threads.

Remote Procedure Call (RPC)

3.5.1 Message passing.

An RPC is initiated by the client, which sends a request message to a known remote server to execute a

specified procedure with supplied parameters. The remote server sends a response to the client, and the

application continues its process. While the server is processing the call, the client is blocked (it waits until

the server has finished processing before resuming execution), unless the client sends an asynchronous

request to the server, such as an XHTTP call. There are many variations and subtleties in various

implementations, resulting in a variety of different (inco mpatible) RPC protocols.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1083

Figure (8) Active Binder

An important difference between remote procedure calls and local calls is that remote calls can fail

because of unpredictable network problems. Also, callers generally must deal with such failures without

knowing whether the remote procedure was actually invoked. Idempotent procedures (those that have no

additional effects if called more than once) are easily handled, but enough difficulties remain that code to

call remote procedures is often confined to carefully written low-level subsystems.

3.5.2 Sequence of events during an RPC

1. The client calls the client stub. The call is a local procedure call, with parameters pushed on to the

stack in the normal way.

2. The client stub packs the parameters into a message and makes a system call to send the message.

Packing the parameters is called marshalling.

3. The client's local operating system sends the message from the client machine to the server machine.

4. The local operating system on the server machine passes the incoming packets to the server stub.

5. The server stub unpacks the parameters from the message. Unpacking the parameters is called

unmarshalling.

6. Finally, the server stub calls the server procedure. The reply traces the same steps in the reverse

direction.

http://en.wikipedia.org/wiki/Idempotent
http://en.wikipedia.org/wiki/Stub_(distributed_computing)
http://en.wikipedia.org/wiki/Class_stub
http://en.wikipedia.org/wiki/Marshalling_(computer_science)
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Class_skeleton
http://en.wikipedia.org/wiki/Unmarshalling
http://en.wikipedia.org/wiki/Unmarshalling
http://en.wikipedia.org/wiki/Unmarshalling

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1084

Standard contact mechanisms.

To let different clients access servers, a number of standardized RPC systems have been created. Most of

these use an interface description language (IDL) to let various platforms call the RPC. The IDL files can

then be used to generate code to interface between the client and server.

4. Example for Building a Binder-based Service and Client

To demonstrate a Binder-based service and client (based on Fibonacci), we’ll create three separate

Projects:

1. Fibonaccicommon library project - to define our AIDL interface as well as custom types for

Parameters and return values.

2. Fibonacciservice project - where we implement our AIDL interface and expose it to the

Clients.

3. Fibonacciclient project - where we connect to our AIDL-defined service and use it.

 The code is available.

 As a ZIP archive: https://github.com/marakana/fibonaccibinderdemo/zipball/master

 By Git: git clone : https://github.com/marakana/fibonaccibinderdemo.git

 The UI will roughly look like this when done:

Figure (9) based on Fibonacci Client

http://en.wikipedia.org/wiki/Interface_description_language
https://github.com/marakana/fibonaccibinderdemo/zipball/master
https://github.com/marakana/fibonaccibinderdemo.git

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1085

4.1 FibonacciCommon - Define AIDL Interface and Custom Types.

 We start by creating a new Android (library) project, which will host the common API files (an AIDL

interface as well as custom types for parameters and return values) shared by the service and its clients.

 Project Name: FibonacciCommon

 Build Target: Android 2.2 (API 8) or later

 Package Name: com.marakana.android.fibonaccicommon

 Min SDK Version: 8 or higher

 No need to specify Application name or an activity

 To turn this into a library project we need to access project properties → Android → Library and check

Is Library.

 We could also manually add android.library=true to

FibonacciCommon/default.properties and refresh the project

 Since library projects are never turned into actual applications (APKs)

 We can simplify our manifest file:

FibonacciCommon/AndroidManifest

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.marakana.android.fibonaccicommon" android:versionCode="1"

android:versionName="1.0">
</manifest>

 And we can remove everything from FibonacciCommon/res/ directory (e.g. rm

 -frFibonacciCommon/res/*)

 We are now ready to create our AIDL interface
FibonacciCommon/src/com/marakana/android/fibonaccicommon/IFibonacciService.aidl

package com.marakana.android.fibonaccicommon;

import com.marakana.android.fibonaccicommon.FibonacciRequest;

import com.marakana.android.fibonaccicommon.FibonacciResponse;

interface IFibonacciService {

long fibJR(in long n);

long fibJI(in long n);

long fibNR(in long n);

long fibNI(in long n);

FibonacciResponse fib(in FibonacciRequest request);
}

http://schemas.android.com/apk/res/android

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1086

 Our interface clearly depends on two custom Java types, which we have to not only

implement in Java, but define in their own .aidl files

package com.marakana.android.fibonaccicommon;

import android.os.Parcel;

import android.os.Parcelable;

public class FibonacciRequest implements Parcelable {

public static enum Type {
RECURSIVE_JAVA, ITERATIVE_JAVA, RECURSIVE_NATIVE,

ITERATIVE_NATIVE

}

private final long n;

private final Type type;

public FibonacciRequest(long n, Type type) {

this.n = n;

if (type == null) {
throw new NullPointerException("Type must not be null");

}

this.type = type;
}

public long getN() {

return n;
}

public Type getType() {

return type;
}

public int describeContents() {

return 0;
}

public void writeToParcel(Parcel parcel, int flags)

{ parcel.writeLong(this.n);

parcel.writeInt(this.type.ordinal());
}

public static final Parcelable.Creator<FibonacciRequest> CREATOR = new
ParcelableCreator<FibonacciRequest>() {

public FibonacciRequest createFromParcel(Parcel in) {

long n = in.readLong();

Type type = Type.values()[in.readInt()];

return new FibonacciRequest(n, type);
}

public FibonacciRequest[] newArray(int size) {

return new FibonacciRequest[size];
}

};

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1087

FibonacciCommon/src/com/marakana/android/fibonaccicommon/FibonacciRequest.aidl

package com.marakana.android.fibonaccicommon;
parcelable FibonacciRequest;

package com.marakana.android.fibonaccicommon;

import android.os.Parcel;

import android.os.Parcelable;

public class FibonacciResponse implements Parcelable {

private final long result;

private final long timeInMillis;

public FibonacciResponse(long result, long timeInMillis) {

this.result = result;

this.timeInMillis = timeInMillis;
}

public long getResult() {

return result;
}

public long getTimeInMillis() {

return timeInMillis;
}

public int describeContents() {

return 0;
}

public void writeToParcel(Parcel parcel, int flags)

{ parcel.writeLong(this.result);

parcel.writeLong(this.timeInMillis);
}

public static final Parcelable.Creator<FibonacciResponse> CREATOR = new
Parcelable.Creator<FibonacciResponse>() {

public FibonacciResponse createFromParcel(Parcel in) {

return new FibonacciResponse(in.readLong(), in.readLong());
}

public FibonacciResponse[] newArray(int size) {

return new FibonacciResponse[size];
}

};

}

FibonacciCommon/src/com/marakana/android/fibonaccicommon/FibonacciResponse.aidl

package com.marakana.android.fibonaccicommon;
parcelable FibonacciResponse;

 Finally we are now ready to take a look at our generated Java interface
FibonacciCommon/gen/com/marakana/android/fibonaccicommon/IFibonacciService.java

package com.marakana.android.fibonaccicommon;

public interface IFibonacciService extends android.os.IInterface
{

public static abstract class Stub extends android.os.Binder

implements com.marakana.android.fibonacci.IFibonacciService {
…

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1088

public static com.marakana.android.fibonacci.IFibonacciService asInterface(
android.os.IBinder obj) {

…

}

public android.os.IBinder asBinder() {

return this;
}

…

}

public long fibJR(long n) throws android.os.RemoteException;

public long fibJI(long n) throws android.os.RemoteException;

public long fibNR(long n) throws android.os.RemoteException;

public long fibNI(long n) throws android.os.RemoteException;

public com.marakana.android.fibonaccicommon.FibonacciResponse fib(
com.marakana.android.fibonaccicommon.FibonacciRequest request)

throws android.os.RemoteException;
}

Conclusion

In this short article I have tried to provide

only simple information despite the vast

technology behind

Android. I hope it will be helpful in

understanding the Android platform.

About Dalvik (VM) is Provides application

portability and runtime consistency Runs

optimized file format (.dex) and Dalvik bytecode.

Uses runtime memory very efficiently by

the .dex file has been optimized for memory

usage and the design is primarily driven by

sharing of data.

To wrap up, Binder is the base of the Android

platform. We have reviewed three components

of Binder: Driver, IPC and RPC. The Binder

Driver will be included in the main version of

the Linux kernel. The following summarizes the

description of Android and Binder.

•Android is a PC OS based on Linux Kernel and

is optimized for smartphones.

•Android has a process-unit component model

and provides system functions as server

processes. For a functional mesh-up of processes,

it provides Binder.

•Android Binder uses the kernel memory

reference to support communication between

processes, optimized for mobile devices.

 International Journal of

Research
Available at https://edupediapublications.org/journals

p-ISSN: 2348-6848

e-ISSN: 2348-795X

Volume 04 Issue 05

April 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1089

References

[1] http://www.cubrid.org/blog/dev-

platform/binder-communication-mechanism-of-

android-processes/

[2] http://www.slideshare.net/fullscreen/jserv/

android-ipc-mechanism/2

[3] http://elinux.org/Android_Binder.

[4] https://en.wikipedia.org/wiki/Android_%2

8operating_system%29.

[5] Aleksandar (Saša) Gargenta, Marakana,

Deep Dive into Android IPC/Binder Framework at

Android Builders Summit 2013.

[6] DHINAKARAN PANDIYAN, SAKETH

PARANJAPE, ANDROID ARCHITECTURE

AND BINDER .

http://www.cubrid.org/blog/dev-platform/binder-communication-mechanism-of-android-processes/
http://www.cubrid.org/blog/dev-platform/binder-communication-mechanism-of-android-processes/
http://www.cubrid.org/blog/dev-platform/binder-communication-mechanism-of-android-processes/
http://www.slideshare.net/fullscreen/jserv/android-ipc-mechanism/2
http://www.slideshare.net/fullscreen/jserv/android-ipc-mechanism/2
http://elinux.org/Android_Binder
https://en.wikipedia.org/wiki/Android_%28operating_system%29
https://en.wikipedia.org/wiki/Android_%28operating_system%29

