
in Pipelines

— One of the most aggressive uses of dynamic voltage
scaling is timing speculation, which in turn requires fast
correction of timing errors. The fastest existing error correction
technique imposes a one-cycle time penalty only, but it

is restricted to two-phase transparent latch-based pipelines.
We perform one-cycle error correction by gating only the main
latch in each stage of the pipeline that precedes a failed stage.
This new method is applicable to widely used clocking elements,
such as flip-flops and pulsed latches. Because it prevents inputs
arriving at a stage, which is stalled, it can also be used in
pipelines with multiple fan-in, fan-out, and looping. Simulations
show an energy saving of 8%–12% with a target throughput
of 0.9 instructions per cycle, and 15%–18% when the target
is 0.8.

Index Terms— Error correction, low-voltage operation, timing
speculation.

I. INTRODUCTION

A
S PORTABLE computing has become ubiquitous, energy

efficiency has emerged as a critical design requirement in

contemporary VLSI circuits. Numerous energy-efficient design

techniques have been proposed at various levels of abstraction.

Among them, voltage scaling has proved to be one of the

most effective ways of reducing energy consumption. This

is because switching energy falls quadratically with supply

voltage, and leakage energy even more quickly [2].

The drawback of reducing supply voltage is that it increases

circuit delays, and this limits the scope of voltage scaling.

Several techniques, such as pipelining and parallel processing,

have been proposed to allow large reductions in voltage [3].

Pipelining involves the insertion of sequential elements into

the data path to reduce the critical path delay. Its disadvantages

are an increase in circuit latency, and the area required for

the additional sequential elements. In parallel processing,

a task is split into N subtasks, which are then executed

concurrently on N processors. This allows each processor

to operate N times more slowly, thus at a correspondingly

reduced voltage. Unlike pipelining, parallel processing does

not increase circuit latency, but it has a much larger area

overhead.

Another way to increase the scope for voltage scaling is

the reduction of timing margins, which is a technique that has

attracted a lot of attention in recent years. The standard method

of dealing with variability in delay, which is an inevitable

consequence of circuit manufacturing tolerances, is to add a

timing margin to the nominal cycle times during the design

process. As technologies have been repeatedly scaled down,

however, the magnitude of this variability has increased signif-

icantly, so that timing margins have become very significant.

This makes timing margin reduction a potentially profitable

approach for increasing speed or reducing supply voltage.

Reducing timing margins has the advantage that it involves

no increase in latency and incurs a much lower area overhead

than pipelining or parallel processing.

A major challenge in timing margin reduction method-

ologies is the increased probability of timing errors due to

variations. In general, the variations can be categorized into

two types: 1) spatial and 2) temporal variations. Transistors

on a die experience two types of spatial variations: 1) global

variation and 2) local variation. Global variation mostly affects

the electrical characteristics of the devices on a die in the

same way. On the other hand, local variation affects the

transistor characteristics in more unpredictable way due to

randomness [4]. Temporal variation also has two types. The

amount of static variations is decided during the fabrication

period and it does not change with time. On the other

hand, temporal variation occurs due to environmental changes,

such as temperature, supply voltage noise, and aging cause

the transistors to experience variability depending on time.

To accommodate the potential increase in circuit delay caused

by the variations, more timing margin is given in traditional

design approaches.

There are two approaches to overcome the limitation in the

traditional design practices. One is to predict the occurrence

of errors to avoid timing violation (error prediction approach),

and the other is to detect actual errors and correct them

(error detection approach). The error prediction approach

uses sensors or canary circuits to monitor the magnitude of

timing variations. On-chip sensors [5]–[10] measure the supply

voltage or the temperature of the chip, and canary

circuits [11]–[13] measure the delay in critical path replicas of

the chip. On-chip sensor and canary circuit must communicate

their results to the adaptive circuit so that it can adjust the



Fig. 1. Relationship between supply voltage and throughput for our method,
counterflow pipelining, and instruction replay, in c6288-based five-stage
pipeline circuit.

supply voltage or clock frequency, or both, before errors actu-

ally occur. However, communication and adjusting operating

environment require some time, and, therefore, they cannot

respond to fast-changing dynamic variations. In addition, they

cannot detect local variations because a limited number of

sensors or canary circuits are placed in a chip. Thus, error

prediction approach still requires a timing margin for local or

dynamic variations.

The error correction approach uses error detection

sequential (EDS) circuits [14]–[20] to detect the errors that

actually occur and correct them using on-chip correction logic.

Razor [15] is a well-known EDS circuit, in which data are

captured by a shadow latch with a delayed clock signal,

as well as by a main flip-flop with a nominal clock. If the

shadow latch data are different from those captured by the

main flip-flop, an error is flagged, and then corrected by

error correction logic. Since the error correction approach

detects changes, which occur on the actual critical path, the

timing margin, which would otherwise be required to allow

for dynamic and local variations, can be eliminated, as well

as the margin for global variations. This makes error correction

more effective than error prediction for scaling the supply

voltage.

A. Motivation

Error correction reduces throughput because it requires extra

cycles. Existing error correction methods have large timing

penalties, as given in more detail in Section II. For example,

instruction replay and counterflow pipelining, which are the

best-known error corrections, have timing penalties of 3N and

2k cycles, respectively. N is the number of pipeline stages and

k is the order of the stage that detects an error.

Hence, there is a pressing need to reduce the timing

overhead as much as possible. In this paper, we propose a

new error correction method that has only one-cycle penalty.

We can illustrate how the importance of reducing the timing

penalty for error correction is for low-voltage design by

looking at the relationships shown in Fig. 1 between supply

voltage and pipeline throughput [instructions per cycle (IPC)],

for three different error correction methods: 1) instruction

replay; 2) counterflow pipelining; and 3) our proposed method.

The curves plotted in this figure are based on a pipeline of

five stages (N = 5), each of which is c6288 circuit from

the ISCAS benchmark. Error correction method with smaller

timing penalty has larger maximum tolerable error rate under

the same throughput, and thus can be made to operate at

a lower supply voltage. If the target throughput is 0.8, in

terms of IPC, our method can reduce supply voltage to 0.8 V,

but counterflow pipelining and instruction replay can reduce

supply voltage to only 0.86 and 0.9 V, respectively. This

voltage benefit increases as the number of pipeline stages

increases.

Bubble Razor made a breakthrough by enabling one-cycle

error correction [20]. However, it can only be used in designs

based on two-phase transparent latches. Since edge-triggered

flip-flop or pulsed-latch-based design are more popular, we

propose a new one-cycle error correction method for the more

frequently used clocking elements.

B. Summary of Contributions

Our main contributions are as follows:

1) the first one-cycle error correction method for flip-flop

or pulsed-latch EDS circuits;

2) a pulsewidth determination method for main and shadow

latches.

The remainder of this paper is organized as follows.

We review previous error correction methods in Section II. Our

one-cycle error correction method is introduced in Section III.

A time borrowing pulsewidth determination methodology is

presented in Section IV. Experimental results are provided

in Section V. Finally, the conclusion is drawn in Section VI.

II. REVIEW OF ERROR CORRECTION METHODS

Among the several published error correction schemes,

instruction replay [18], [21] is the most time consuming.

If an error occurs at a particular stage, it is allowed to

propagate until the last stage, and then all stages in the

pipeline are flushed. If there are N pipeline stages, this will

require N cycles. The failed instruction is then reissued to the

pipeline, with the clock running at half speed, which should

ensure that the failing instruction does not cause another

error. This rerun takes 2N cycles, and so the completion

time of the next instruction that follows the error is delayed

by 3N cycles. An example of instruction replay is given

in Fig. 2(a). Instruction i2 fails at stage C in cycle 4. The

error propagates to stage E. Then, all the pipeline stages are

flushed, from cycles 7 to 11, and instruction i2 is issued again

in cycle 12. Since the clock frequency has now been halved,

i2 is only completed at cycle 21, and so the completion time

of instruction i3 is delayed from cycles 7 to 22.

The counterflow pipelining technique [15] has smaller

penalty of 2k cycles, where k is the position of the stage,

which detects an error in the pipeline. The error is corrected in

the next cycle after it is detected and instructions are reissued

starting from the next instruction. To flush entire pipeline, flush

signal is propagated from the stage that detected an error,

via its input stages, to a flush control unit. When the flush

signal reaches each stage, that stage is flushed. When the



Fig. 2. Examples of error correction after an error occurs at stage C in cycle 4. (a) Instruction replay. (b) Microrollback. (c) Counterflow pipelining.

signal finally reaches the flush control unit, instructions are

reissued to the pipeline. In the example shown in Fig. 2(c),

instruction i3 could have completed in cycle 7 if there had not

been an error. However, an error occurs at stage C in cycle 4.

Therefore, i3 is reissued in cycle 9 and completes in cycle 13;

thus the completion time of i3 is delayed by 2k = 6 cycles.

Microrollback [16], [22], [23] has a similar timing penalty

to that of counterflow pipelining. At each cycle, the previous

state of each pipeline stage is saved to the backing storage.

Like instruction replay, this involves no error correction logic.

An error signal is issued by the stage at which an error occurs.

When this signal reaches the last stage, the state of each stage

is rolled back to the last known correct value, provided from

backing storage. To correct the error, the backing storages

inject the same values to each pipeline twice. The completion

time of the instruction that follows the error is delayed by

N − k+3. An example of microrollback is given in Fig. 2(b).

The error signal reaches the last stage, E, in cycle 6. Then,

all the stages are returned to the last states that are known

to be correct in cycle 7. Microrollback is not widely used

because it increases flip-flop energy dissipation by 15% due

to the requirement for backing storage [16].

There are two existing methods of error correction that have

a one-cycle timing penalty: 1) global clock gating [15] and

2) Bubble Razor [20]. Global clock gating [15] is conceptually

the simplest error correction method of all. When a stage

detects an error, all the stages in the pipeline are stalled

for one cycle, and shadow latch data are restored to the

main flip-flop. However, it may take multiple cycles for the

clock-gating signal to be propagated to all the stages in

complicated or high-frequency designs, and hence its applica-

bility is limited.

Bubble Razor [20] represents a breakthrough, because it

reduces the timing penalty to one cycle based on local stalling,

allowing it to be used in complicated and high-frequency

designs. However, unlike other methods, Bubble Razor can

only be used for two-phase transparent latch-based designs.

Therefore, flip-flop datapaths in most existing designs have to

be converted to two-phase transparent latch datapaths. This

requires extra design effort, as proposed in [20], and the

number of stages is doubled, which may lead to an increase

of error rate.

Since flip-flop and pulsed latch are more popular clocking

elements in current digital circuits than level-sensitive latch,

there remains a pressing need for one-cycle error correction

in EDS circuits, which use flip-flop or pulsed-latch.

III. NEW APPROACH TO ONE-CYCLE ERROR CORRECTION

Since the data in the shadow latch are correct, even in

failing stage, the simplest error correction method may be

restoring the data from the shadow latch to the main latch.

The only problem is that the data coming from the input

stage will be lost during the restore cycle. That is the reason

why counterflow pipelining reissues the next instruction to the

failed instruction after the error correction [15]. Our insight is

that the previous stages to the failed one, only main latch needs

to be gated, and their shadow latches do not need to be gated.

If the main latch of a stage is gated, while its shadow latch

is being clocked, that stage can simultaneously capture input

data at the shadow latch while retaining its previous data at the

main latch. This allows a stage that detects an error to receive

the correct data in the very next cycle after error correction.

Fig. 3 shows a circuit-level schematic of our Razor latch.

In this design, multiplexer at the input of the Razor latch is

placed in the feedback path of the main latch to reduce delay

and power consumption. If the instruction i3 fails at cycle 3,

clk_m and clk_s are gated at the following cycle after error

detection. In cycle 4, the restore signal becomes 1 so that the

correct instruction i3 is transmitted from the shadow latch to

the main latch. Instruction i4 is captured at cycle 5.

A. Gating Signal Propagation

To maintain the correctness of the data, each of the stages

previous to the one where the error happened must eventually

go through a two-cycle process in which its main latch is

gated in the first cycle and the data in its shadow latch are

restored to its main latch in the second cycle. In addition,

we need to prevent the propagation of incorrect data from

the stage in which the timing error occurred. To accomplish



Fig. 3. Circuit-level schematic of our Razor latch.

the requirements mentioned above, we introduce two types of

clock gating control signals: 1) CG and 2) MCG. When a stage

receives a CG signal, the clock for its main latch, clk_m, and

the clock for its shadow latch, clk_s, are gated for one cycle.

The CG signal is propagated from the stage where an error

occurs to consecutive output stages. When a stage receives

the MCG signal, its clk_m clock is gated for one cycle, and

then both clk_m and clk_s are gated in the next cycle. In a

similar way to the CG signals, the MCG signals are propagated

sequentially to the previous input stages.

An example of the propagation of CG and MCG signals is

shown in Fig. 4(a). Suppose that an error occurs at stage C

in cycle 4. Each signal is transmitted to the next stage at every

cycle, starting at cycle 4. Fig. 4(b) shows the data stored in

each stage at each cycle. In cycle 5, instruction i2 is restored

at stage C by passing the correct data from the shadow latch to

the main latch. In the same cycle, the main latch in stage B is

gated to retain instruction i3, while its shadow latch stores

instruction i4 sent from stage A. Stage D must be stalled

in cycle 3 because its input data from stage C is incorrect.

In cycle 6, instruction i3, which arrived previously at cycle 5,

is captured by stage C.

When multiple errors occur, CG and MCG signals can

meet or cross each other. In these cases, the propagation

of both signals must be stopped. We introduce two stop

conditions to take care of such cases. The first condition is

met if CG and MCG are propagated to the same stage; then

both signals are stopped. In this case, the main and shadow

latches are both gated for one cycle. For example, in Fig. 5,

CG and MCG are propagated to stage B in cycle 1. Thus,

the main and shadow latches of this stage are both gated in

cycle 2, and propagation of CG and MCG is stopped. The

second condition is met if a clock-gating signal is propagated

to a stage, which has already sent a control signal of the other

type in the same cycle, in this case, the propagation of the

signal ends at this stage. In Fig. 5, stage B sends a CG signal to

stage C, and receives an MCG signal from stage C in cycle 4.

Fig. 4. Correcting an error using our method. (a) Propagation of CG and
MCG signals. (b) Instructions stored in each stage during each cycle.

Fig. 5. Propagation of both CG and MCG must be stopped when they meet
or cross.

Therefore, the propagation of MCG is stopped at stage B, for

the same reason, the propagation of the CG signal is stopped

at stage C in cycle 4.

In the linear pipeline circuits, clock gating control signals

must arrive at the next stage before rising of clock. This timing

constraint for control signal can be expressed as follows:

Tctrl < Tc −Ws (1)



Fig. 6. Pipeline circuit, which has fan-out and fan-in stages. (a) Lost data problem occurs at stage E. (b) Our propagation algorithm is applied.
(c) Double-sampling problem occurs at stage C. (d) Our propagation algorithm is applied.

where Tc is clock period and Ws is pulsewidth of shadow

latch. If the Razor circuit cannot meet this constraint, Ws must

be reduced, which leads to a decrease in window for timing

speculation.

B. Extension to General Pipelines

The proposed error correction method can be extended to

more general pipelines with multiple fan-in, fan-out, loops,

or a combination of these structures. In the case of multiple

fan-in and fan-out, there are two problems that need to be

addressed.

The first problem is the potential loss of data at a fan-in

stage when only some of the input stages send a CG signal.

Consider the pipeline architecture with fan-in and fan-out

stages shown in Fig. 6. Suppose that an error occurs at stage A,

as shown in Fig. 6(a). Then, stage D receives a CG signal

from stage A in cycle 4. However, stage C, which is the

other input stage of stage D, does not send a CG signal

in cycle 4. Therefore, instruction i2, sent from stage C, cannot

be captured by stage D in cycle 5, and so the pipeline loses

instruction i2 at stage D. This problem can be solved by

modifying the propagation algorithm as follows. If a stage

receives a CG signal from any of its input stages, it sends

MCG signals to all of its input stages in the same cycle. This

is shown in Fig. 6(b), in which stage D sends an MCG signal

to its input stages, A and C, in cycle 4. The signal received

by stage A is nullified because that stage has already sent

a CG signal. Stage C retains instruction i2 in cycle 5, and,

therefore, instruction i2 can be captured by stage D in cycle 6.

By modifying the propagation algorithm, each input stage of

the fan-in stage will stall for a cycle and propagate the data

in the next cycle, and hence data remain synchronized.

The second problem is the double sampling of data at the

input stages of a multifan-out stage when not all the output

stages have sent an MCG signal. Suppose that an error occurs

at stage D, as shown in Fig. 6(c). Then, stage A receives

an MCG signal from stage D in cycle 4, but the other input

stage, B, does not send an MCG signal to stage A. Therefore,

stage B captures instruction i4, sent twice from stage A,

in cycles 5 and 6. We extend the propagation algorithm to

solve this problem as follows. If a stage receives an MCG

signal from any of its output stages, it must send a CG signal

to all of its output stages in the next cycle. This modification

means that each output stage of a fan-out stage will stall for

one cycle.

Operation of the modified algorithm is shown in Fig. 6(d).

In cycle 5, stage C sends a CG signal to its output stage, D,

and stage A also sends CG signal to stages B and D. The

signals sent to stage D are nullified because stage D is gated in

cycle 5. Propagation of both CG and MCG is stopped because

both signals meet at stage B. The MCG signal is nullified but

CG is not, and, therefore, stage B sends an MCG signal back

to stage A in the same cycle. Stage C is stalled in cycle 6,

and thus instruction i4 is not double-sampled by stage B.

Our error correction method can also handle loops. The

main challenge with loops is usually to prevent infinite

looping. However, because CG and MCG are propagated in

opposite directions, they meet eventually each other within a

loop, and then both signals are stopped. Therefore, infinite

looping cannot occur in our scheme. Fig. 7 shows how this

works for error occurring before, during, and after a loop.



Fig. 7. Different types of loop error. (a) Error occurs before the loop. (b) Error occurs in the loop. (c) Error occurs after the loop.

An error before a loop is shown in Fig. 7(a). Suppose that

an error occurs at stage A, and so a CG signal is inserted

into the loop. Then, CG and MCG signals are propagated to

stages B and D, respectively. In cycle 2, they meet each other

at stage C, where the propagation of both signals is, therefore,

stopped. In addition, the CG signal is propagated to stage E,

which is outside the loop, and then the signal is propagated

to the upstream stages.

In the second case, shown in Fig. 7(b), an error occurs

at stage C. The CG and MCG signals are propagated round

the loop in opposite directions. They cross each other at

both stages B and D in cycle 2, and both signals are

stopped.

The third case is shown in Fig. 7(c), in which an error occurs

at stage E. The MCG signal is propagated back into the loop.

Stage D receives MCG, and then sends CG to stage B and

MCG to stage C. In cycle 3, the two signals cross each other

at both stages B and C, and so both signals are stopped.

The timing constraint for control signal becomes tighter in

complicated pipeline circuits, and this can be expressed as

follows:

Tctrl <
Tc − Ws

2
. (2)

Hence, care must be taken to prevent clock-gating

signal paths from becoming critical in complicated pipeline

circuits.

C. SRAM Interfaces

Different from Bubble Razor, which uses two-phase

clocking, our proposed scheme does not need to treat SRAM

as positive latch. Hence, we do not need to place negative

latches around SRAM. Instead, we place flip-flops on the input

and output of SRAM and detect the errors at the flip-flips.

Fig. 8. Time borrowing by means of multiple pulsewidths.

As a result, SRAM array can use the full cycle in contrast to

the Bubble Razor in which reading SRAM array needs to be

finished in half a cycle [20].

However, our scheme has the same limitation in SRAM

write interface as the Bubble Razor because it is not possible to

correct the error once the address itself goes wrong. Therefore,

the same adjustment as Bubble Razor (clocking write input

on the negative clock edge or using the write buffer) is

needed [20].

IV. DETERMINATION OF PULSEWIDTH

The pulsewidth of the shadow latch is important in all Razor

designs, because it determines the timing speculation window.

For pulsed-latch-based Razor designs, the pulsewidth of the

main latch is also important because some timing violations

can be eliminated by time borrowing. Fig. 8 shows four pulsed

Razor latches in a circuit with a clock period of 1.5 ns;

the minimum pulsewidth is 100 ps, and the setup time,



clock-to-Q, and data-to-Q delays are assumed to be 0 for

simplicity. The combinational blocks between latches a and c

impose a maximum delay of 2 ns, between latches b and c,

the maximum delay is 1.8 ns, and between latches c and d ,

it is 1.7 ns. All these path delays are larger than the clock

period, so that they cause timing errors whenever the corre-

sponding paths are activated. If the width of the clk_m pulse

for latch c is set to 300 ps, and that of d is set to 200 ps, as

shown in the figure, then the paths from b to c and from c to d

do not cause timing errors when the data leave the first latch on

the rising edge of clk_m. Note that the activation probability

for the top 10% of the most critical paths is usually small [24].

Thus, the input data for a latch often arrive before the rising

edge of the clock signal.

Unlike the main latch, the shadow latch must capture the

correct data even in the worst case when the data leave the

launching latch on the falling edge of clk_m (gray arrows

in Fig. 8). The pulsewidths of all the shadow latches are

assumed to be 600 ps. If the pulsewidth of clk_m(c) is

increased by 200 ps, then the path from a to c no longer

causes an error, thanks to time borrowing. However, it is no

longer certain that the shadow latch of Razor latch d always

captures the correct data. Thus, we see that care is required

to determine a pulsewidth, which minimizes the number of

timing violating paths while ensuring that the shadow latches

always capture the correct data.

Supposing there is a set of available pulsewidths

W = {W1, W2, . . . , Wn}, we can state the problem of

pulsewidth determination as follows.

Problem 1: Given the netlist of a Razor circuit that uses

pulsed-latches together with a set of distinct pulsewidths W

and clock period Tc, the pulsewidth determination problem

is to allocate pulsewidths W m
i ∈ W and W s

i ∈ W to main

latch and shadow latch in each Razor latch i , respectively,

with the objective of minimizing the sum of the activation

rates of timing violating paths at the given voltage level Vmin

and minimizing the sum of the pulsewidths of all shadow

latches.

Problem 1 can be solved by formulating it as an integer

linear program (ILP). Let L = {l0, l1, . . . , lNt } be a

set of Razor latches, where l0 is a virtual latch launch-

ing primary inputs. Let pk
i, j denote the kth longest path

from li to l j , let Pt = {p1
1,2, p2

1,2, p1
1,3, . . . , p4

k−1,k}

be the set of paths whose delays are longer than

Tc + min (W). The following notation is also used in the

ILP formulation.

1) xk
i, j : A Boolean variable that indicates whether path pk

i, j

violates a timing constraint. If pk
i, j is a violating path

then xk
i, j = 1; otherwise xk

i, j = 0.

2) ARk
i, j : The activation rate of path pk

i, j .

3) Nl : The total number of latches.

4) ym
i,k : A Boolean variable that indicates the pulsewidth of

the main latch in li .

5) ys
i,k : A Boolean variable that indicates the pulsewidth of

the shadow latch in li .

6) Tsu: Setup time of Razor latch.

7) Tdq: Data-to-Q delay of Razor latch.

Fig. 9. Timing diagram for (7) in the ILP formulation.

Objective Function: We formulate the following objective

for the pulsewidth allocation problem:

min Cu

∑

(pk
i, j )∈Pt

ARk
i, j xk

i, j +

Nt
∑

i=1

(

W s
i +W m

i

)

. (3)

Using a large constant for Cu , this objective function mini-

mizes the sum of the path activation rates of violating paths,

and then minimizes the sum of the pulsewidths of all Razor

latches.

This ILP formulation is subject to pulsewidth and timing

constraints, which can be expressed as follows:

W m
i =

n
∑

k=1

ym
i,k Wk, W s

i =

n
∑

k=1

ys
i,k Wk ∀li ∈ L (4)

n
∑

k=1

ym
i,k = 1,

n
∑

k=1

ys
i,k = 1 ∀li ∈ L (5)

W m
i ≤ W s

i ∀li ∈ L (6)

d
(

pl
i, j

)

≤ Tc+
(

W s
j − Tsu

)

−
(

W m
i − Tsu + Tdq

)

∀pl
i, j ∈ Pt

(7)

Tc +W m
j − d

(

pk
i, j

)

2Tc

+ xk
i, j ≥ 0 ∀pk

i, j ∈ Pt . (8)

Constraint (7) ensures that the data in the shadow latch are

always correct even in the worst case. This worst case scenario

is shown in Fig. 9. The latest time at which data can depart

from main latch in i is W m
i − Tsu, and the latest time at

which data can arrive to shadow latch in j is Tc +W s
j − Tsu.

Constraint (8) states that if d(pk
i, j ) is larger than Tc + W m

j ,

and, therefore, pk
i, j is a violating path, then xk

i, j must be 1.

Constraint (6) sets lower and upper bounds on the pulsewidth

of the main and shadow latches.

V. EXPERIMENTAL RESULTS

The schematic of control logic for our error correction

scheme is shown in Fig. 10. When a stage receives an MCG

signal from any of its output stages (MCG_in becomes high),

then, cgm becomes high and E N_clk_m becomes low. Thus,

clk_m is gated at that cycle. At the next cycle, MCG_out and

CG_out become high. Thus, both E N_clk_m and E N_clk_s

become low, MCG signals are propagated to the input stages

of the current stage, and CG signals are propagated back to

its output stages.



Fig. 10. Schematic of the control logic for our scheme.

Fig. 11. Comparison of normalized area for our method (the first bars from the left), counterflow pipelining (the second bars from the left), instruction
replay (the third bars from the left), and baseline (the fourth bars from the left).

When a stage receives a CG signal from any of its input

stages, node cg_ms becomes high and then MCG_out is high.

As a result, both E N_clk_m and E N_clk_s become low,

and MCG signals are propagated back to its output stages

in the same cycle.

When an error occurs at a stage, node error_s becomes

high. Then, MCG_out and CG_out become high, so that

MCG signals are propagated to its input stages, and CG signals

are propagated to its output stages. Both clocks are also gated

at the current cycle. The node labeled gated represents the stop

conditions for both MCG and CG signals.

A. Simulation Setup

To assess the effectiveness of our error correction method,

we compiled 15 linear pipelined circuits and ten more compli-

cated pipelined circuits using a 28-nm commercial library. The

linear pipelines had five, eight, or ten stages, each of which

was one of six different pulsed-latch Razor circuits: 1) c4991;

2) c1908; 3) c3540; and 4) c6288 from the ISCAS benchmark,

a 32-bit multiplier from Designware from Synopsys, and a

modified data encryption standard (DES) from OpenCores.

The circuits were synthesized using Design Compiler [25],

with the timing constraints set to 90% of the critical path

1In case of c499, each stage consists of two c499 circuits.

delay of each circuit, when synthesized without any constraint.

The most complicated pipeline had multiple fan-in, fan-out,

and loop structure with eight stages. The pulsewidth of each

main latch was 130 ps, which is the minimum width at 0.8 V

under nominal process corner, and that of the shadow latches

were 430 ps. Extra delay buffers were inserted into all the

circuits to fix hold violations.

Note that there is the possibility of metastability problem in

the proposed Razor latches. Since all error correction methods

in this paper have same overhead for metastability detector and

the main focus of this paper is to reduce the timing penalty

of error correction down to one cycle, we did not deal with

metastability problem. However, to prevent the metastability

problem, metastability detector [15] must be used.

Fig. 11 shows the area of each of the circuits comprising the

stages, normalized to the total area of original pulsed-latch-

based pipeline with no Razor latch. It is worthwhile to note

that our method requires all latches to be replaced by Razor

latches because the shadow latch is used for error correction as

well as error detection. In contrast, the counterflow pipelining

and instruction replay methods only require Razor latches for

part of the pipeline, because the shadow latches are only used

for error detection. Thus, we replaced all the latches that had

negative timing slacks at 0.8 V by Razor latches. This is why

the area required for sequential logic by our method is greater



TABLE I

RESULTS FROM LINEAR PIPELINES WITH A TARGET THROUGHPUT OF 1

than that needed by either counterflow pipelining or instruction

replay. The area overhead for converting all latches to Razor

latches is 13% on average. This overhead increases as the area

portion of sequential elements increases; c499 and c1908 have

large area portion of sequential elements and, therefore, area

overhead of these circuit is 21% on average.

Our method also requires a larger area for combinational

logic, as shown in Fig. 11, because it needs more delay buffers.

Because of these reasons, our method has 42% large area than

original circuit on average.

Counterflow pipelining requires the largest area for control

logic. This consists of flip-flops for the ID of the current

instruction and for flush ID of instruction where an error

occurs. Counterflow pipelining and instruction replay both

need these flip-flops, but our method requires none.

B. Linear Pipelines

We applied 300 random vectors to each of the five linear

pipelined circuits, set target throughputs of 1, 0.9, and 0.8,

and determined the throughput of each circuit by fast SPICE

simulation [26]. In each test, the initial supply voltage was set

to 1 V and then gradually reduced in 0.02 V increments until

the throughput failed to meet the target. Energy consumption

was measured at the lowest supply voltage, which achieved

the target throughput. We used the same experimental setting

to simulate the counterflow pipelining and instruction replay

techniques.

Table I shows the lowest successful voltage level and the

total energy consumption when the target throughput was 1.

The energy consumption of our method was 4%–9% larger

than that of counterflow pipelining or instruction replay. That

is expected, because our method requires all latches to be

replaced by Razor latches, and needs a large number of

buffers to accommodate their hold-time violations. Counter-

flow pipelining and instruction replay require the same number

of Razor latches, as shown in Fig. 11. Instruction replay has

a simpler control logic than counterflow pipelining, and a

lower energy consumption.

Tables II and III have the same layout as Table I, but

show the results for target throughputs of 0.9 and 0.8,

respectively. Note that our method incurs a timing penalty

for error correction, which is significantly lower than those

of the other methods. Using our method, the voltage, which

corresponds to the minimum total energy consumption,

is lower than those for the other methods, as shown

in Tables II and III. Compared with counterflow pipelining and

instruction replay, our method reduces the total energy dissi-

pated by the five-stage pipelines by 8% and 9%, respectively,

when the target throughput is 0.9. Note that the differential

increases with the number of pipeline stages: the equivalent

reductions for the ten-stage pipelines are 12% and 11%,

respectively, when the target throughput is 0.9. This can be

explained by recollecting that timing penalty for each error

corrected depends on the number of pipeline stages with both

of the previous schemes, and they cannot correct multiple

simultaneous errors.

Since instruction replay has the largest timing penalty for

each error corrected: this is 3N cycles, where N is the number

of pipeline stages. Thus, it permits the least reduction in supply

voltage before it fails to meet the throughput target, as we

would expect; and this remains true as the target throughput

is reduced.

Our method reduces the energy consumption of the

five-stage circuits by 15% and 16%, compared with counter-

flow pipelining and instruction replay, respectively, when the

target throughput is 0.8. This differential increases with more

pipeline stages: for the ten-stage circuits, the equivalent figures

are 17% and 18%.

C. More Complicated Pipelines

Simulations showed that our method works correctly with

multiple fan-in, fan-out, and loops, which counterflow



TABLE II

RESULTS FROM LINEAR PIPELINES WITH A TARGET THROUGHPUT OF 0.9

TABLE III

RESULTS FROM LINEAR PIPELINES WITH A TARGET THROUGHPUT OF 0.8

or instruction replay schemes could not handle.

Counterflow pipelining cannot handle multiple fan-in,

fan-out, or loops, which fail when a corrected instruction

arrives at a stage having multiple fan-in. Instruction replay

can only handle fan-in and fan-out. In these pipelines,

a stage may receive two or more instructions. When the

error signal reaches the last stage, the earliest instruction is

replayed at half the clock frequency, and the original clock

is only restored when the latest instruction reaches the last

stage. As the distance between a fan-in stage and a fan-out

stage increases, the number of cycles needed to replay a

failed instruction increases. N cycles are needed for pipeline

flushing, and 2N + d − 1 are needed to replay the failed

instruction, where d is the distance between the fan-in and the

fan-out stages. Thus, the completion of the next instruction

is delayed by 3N + d − 1 cycles. In a loop, the instructions

would have to be replayed from the first instruction, incurring

too large a timing penalty to be practical.

We constructed three different fan-in and fan-out cir-

cuits by modifying linear pipelines, as shown in Fig. 12.

Table IV shows the minimum voltage level and total

energy dissipated by these circuits when the target through-

put is 0.8. The timing penalties for instruction replay

are 16, 26, and 34 cycles. Successful voltage is higher than

those for the linear pipelines. Our method uses 18%, 20%,

and 21% lesser energy than instruction replay, for pipelines



TABLE IV

EXPERIMENTAL RESULTS FOR FAN-IN AND FAN-OUT PIPELINES WHEN THE TARGET THROUGHPUT IS 0.8

TABLE V

ILP RESULTS FOR FIVE-STAGE LINEAR PIPELINES

Fig. 12. Multiple fan-in and fan-out pipelines created by modifying
(a) five-stage, (b) eight-stage, and (c) ten-stage linear circuits.

with five, eight, and ten stages, respectively. It is reasonable

to expect the timing penalty for instruction replay to increase

with the length of the pipeline. In addition, our method gives

opportunities to correct multiple errors in different stages, with

a lower time penalty than would be needed to correct each

error individually.

D. Determination of Pulsewidth

We use five different pulsewidths 130, 170, 210,

250, and 430 ps. Table V shows the results of ILP. In

the case of c1908_c499 (c6288_c499), each stage consists

of c1908 (c6288) and c499 circuits. The columns 2 and 3

show the total number of combinational gates and latches of

five-stage pipelined circuits. The column 4 shows the total

number of violated paths at 0.75 V when clk_m and clk_s

are 130 and 430 ps, respectively. As the number of latches

increases, the number of ILP (4)–(7) increases. Thus, DES

circuit, which has the largest number of latches, has the longest

runtime. The column 5 indicates the number of hold buffers

of each circuit. Since all latches are replaced by Razor latches

and clk_m is 430 ps, relatively large number of hold buffers is

needed. The column 6 indicates the reduction of the number of

violated paths after solving the ILP. The number of violated

paths is reduced by 19% on average. The DES circuit has

the largest reduction (22%) of the violated paths. When a

Razor latch at which violated paths terminate drives short paths

only, the violated paths can be fixed using time borrowing.

The DES circuit has the largest ratio of such Razor latches

over timing violated Razor latches. Multiplier has the smallest

reduction (16%) of violated paths and it has the smallest ratio

of such Razor latches. The column 8 indicates the reduction

of the number of hold buffers to be needed. The objective

function of ILP minimizes the sum of pulsewidths of all

Razor latches. Thus, the shadow latches, which do not have

any violated paths, can have short clk_s. This leads to the

reduction of hold buffers in the results of ILP.

VI. CONCLUSION

Voltage scaling based on timing speculation has become

the most promising way to reduce the power consumption



in the nanometer regime, but its effectiveness depends on

the overall timing penalty, and, therefore, error correction

needs to be completed as fast as possible. The Bubble Razor

scheme [20] made a breakthrough by introducing one-cycle

error correction, but their method can be applied to

two-phase transparent latch designs only. The contribution

of this paper is a new one-cycle error correction method

that can be applied to more widely used clocking elements,

such as flip-flops and pulsed latches. Unlike most of the

previous error correction methods except Bubble Razor, this

method can handle complicated pipeline architectures, which

include multiple fan-in, fan-out, and loops. Results from the

simulation of linear pipelines show that our new method

consumes 8%–16% lesser energy than existing techniques

in a five-stage pipeline, and 11%–18% lesser energy in a

ten-stage pipeline. In a pipeline with fan-in and fan-out, the

new method uses 18%–21% lesser energy than instruction

replay method.

REFERENCES

[1] I. Shin, J.-J. Kim, Y.-S. Lin, and Y. Shin, “A pipeline architecture with
1-cycle timing error correction for low voltage operations,” in
Proc. IEEE Int. Symp. Low Power Electron. Design, Sep. 2013,
pp. 199–204.

[2] R. K. Krishinamurthy, A. Alvandpour, V. De, and S. Borkar,
“High-performance and low-power challenges for sub-70 nm
microprocessor circuits,” in Proc. Custom Integr. Circuits Conf.,
May 2002, pp. 125–128.

[3] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS
digital design,” IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473–484,
Apr. 1992.

[4] K. Bernstein et al., “High-performance CMOS variability in the
65-nm regime and beyond,” IBM J. Res. Develop., vol. 50, nos. 4–5,
pp. 433–449, Jul./Sep. 2006.

[5] K. J. Nowka et al., “A 32-bit PowerPC system-on-a-chip with sup-
port for dynamic voltage scaling and dynamic frequency scaling,”
IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1441–1447,
Nov. 2002.

[6] A. Muhtaroglu, G. Talyor, and T. Rahal-Arabi, “On-die droop detector
for analog sensing of power supply noise,” IEEE J. Solid-State Circuits,
vol. 39, no. 4, pp. 651–660, Apr. 2004.

[7] M. Nakai et al., “Dynamic voltage and frequency management for a low-
power embedded microprocessor,” IEEE J. Solid-State Circuits, vol. 40,
no. 1, pp. 28–35, Jan. 2005.

[8] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra, “Circuit failure
prediction and its application to transistor aging,” in Proc. 25th IEEE

VLSI Test Symp., May 2007, pp. 277–286.

[9] J. Tschanz et al., “Adaptive frequency and biasing techniques for
tolerance to dynamic temperature-voltage variations and aging,” in
IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2007,
pp. 292–293.

[10] T. Fischer, J. Desai, B. Doyle, S. Naffziger, and B. Patella,
“A 90-nm variable frequency clock system for a power-managed itanium
architecture processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1,
pp. 218–228, Jan. 2006.

[11] A. Drake et al., “A distributed critical-path timing monitor for a 65 nm
high-performance microprocessor,” in IEEE Int. Solid-State Circuits

Conf., Dig. Tech. Papers, Feb. 2007, pp. 398–399.

[12] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli, T. Karnik, and
V. De, “Tunable replica circuits and adaptive voltage-frequency
techniques for dynamic voltage, temperature, and aging
variation tolerance,” in Proc. Symp. VLSI Circuits, Jun. 2009,
pp. 112–113.

[13] C. R. Lefurgy et al., “Active management of timing guardband to
save energy in POWER7,” in Proc. 44th Annu. IEEE/ACM Int. Symp.

Microarchitecture, Dec. 2011, pp. 1–11.

[14] A. K. Uht, “Achieving typical delays in synchronous systems via
timing error toleration,” Dept. Elect. Comput. Eng., Univ. Rhode Island,
Kingston, RI, USA, Tech. Rep. 032000-0100, 2000.

[15] D. Ernst et al., “Razor: A low-power pipeline based on circuit-
level timing speculation,” in Proc. 36th Annu. IEEE/ACM Int. Symp.

Microarchitecture, Dec. 2003, pp. 7–18.

[16] D. Ernst et al., “Razor: Circuit-level correction of timing errors
for low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20,
Nov./Dec. 2004.

[17] B. Greskamp and J. Torrellas, “Paceline: Improving single-thread
performance in nanoscale CMPs through core overclocking,” in Proc.

16th Int. Conf. Parallel Archit. Compilation Techn., Sep. 2007,
pp. 213–224.

[18] S. Das et al., “Razor II: In situ error detection and correction for
PVT and SER tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1,
pp. 32–48, Jan. 2009.

[19] K. A. Bowman et al., “Energy-efficient and metastability-immune
resilient circuits for dynamic variation tolerance,” IEEE J. Solid-State

Circuits, vol. 44, no. 1, pp. 49–63, Jan. 2009.

[20] M. Fojtik et al., “Bubble Razor: An architecture-independent approach to
timing-error detection and correction,” in IEEE Int. Solid-State Circuits

Conf., Dig. Tech. Papers, Feb. 2012, pp. 488–490.

[21] K. A. Bowman et al., “A 45 nm resilient microprocessor core for
dynamic variation tolerance,” IEEE J. Solid-State Circuits, vol. 46, no. 1,
pp. 194–208, Jan. 2011.

[22] Y. Tamir and M. Tremblay, “High-performance fault-tolerant VLSI
systems using micro rollback,” IEEE Trans. Comput., vol. 39, no. 4,
pp. 548–554, Apr. 1990.

[23] J. Crop et al., “Error detection and recovery techniques for variation-
aware CMOS computing: A comprehensive review,” J. Low Power

Electron. Appl., vol. 1, no. 3, pp. 334–356, 2011.

[24] M. Choudhury, V. Chandra, K. Mohanram, and R. Aitken,
“TIMBER: Time borrowing and error relaying for online timing error
resilience,” in Proc. Design, Autom., Test Eur. Conf. Exhibit., Mar. 2010,
pp. 1554–1559.

[25] Design Compiler User Guide, Synopsys, Mountain View, CA, USA,
Sep. 2011.

[26] CustomSim User Guide, Synopsys, Mountain View, CA, USA,
Mar. 2013.


