

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Advanced Java: Networking with Java (Socket Programming) Nipun Sharma & NavitaDeswal

P a g e | 1089

Advanced Java: Networking with Java

(Socket Programming)

Nipun Sharma1 & NavitaDeswal2

Information Technology, Dronacharya College of Engineering,
nipun.14457@ggnindia.dronacharya.info; navita.14451@ggnindia.dronacharya.info

Abstract-
 Network programming refers to the
writing of programs that execute across
multiple devices (computers), in which all
the devices are connected to each other
with a network. A socket is one endpoint of
a two-way communication link between
two programs running on the network. A
client program creates a socket on its end
and attempts to connect that socket to a
server. When the connection is made, the
server creates a socket object on its end.
The client and server can now
communicate by writing to and reading
from the socket. The Java Net. A socket
class represents a socket, and the java.net.
The server Socket class provides a
mechanism for the server program to
listen for clients and establish connections
with them. Socket classes are used to
represent the connection between a client
program and a server program. The
java.net package provides two classes--
Socket and Server Socket--that implement
the client side of the connection and the
server side of the connection, respectively.
The java.net package provides support for
TCP and UDP network protocols.

Keywords – Network programming;
socket; classes of socket

I. Introduction

Socket Overview
A network socket is like an electrical
socket. The idea applies to network
sockets, is that we consider TCP/IP
packets and IP addresses rather than
electrons and street addresses. Internet
Protocol (IP) is a low-level routing

protocol that breaks data into small packets
and sends them to an address across a
network, which does not guarantee to
deliver said packets to the destination.
Transmission Control Protocol (TCP) is a
higher-level protocol that manages to
robustly string together these packets,
sorting and retransmitting them as
necessary to reliably transmit your data. A
third protocol, User Datagram Protocol
(UDP), sits next to TCP and can be used
directly to support fast, connectionless,
unreliable transport of packets.

Client or Server
You often hear the term client/server
mentioned in the context of networking. A
server is anything that has some resource
that can be shared. A client is simply any
other entity that wants to gain access to a
particular server. The server is a
permanently available resource, while the
client is free to “unplug” after it is has
been served. A server process is said to
“listen” to a port until a client connects to
it. A server is allowed to accept multiple
clients connected to the same port number,
although each session is unique. To
manage multiple client connections, a
server process must be multithreaded or
have some other means of multiplexing the
simultaneous I/O.

Proxy Servers
A proxy server speaks the client side of a
protocol to another server. This is often
required when clients have certain
restrictions on which servers they can
connect to. Thus, a client would connect to
a proxy server, which did not have such
restrictions, and the proxy server would in

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Advanced Java: Networking with Java (Socket Programming) Nipun Sharma & NavitaDeswal

P a g e | 1090

turn communicate to the client. A proxy
server has the additional ability to filter
certain requests or cache the results of
those requests for future use. When a
popular web site is being hit by hundreds
of users, a proxy server can get the
contents of the web server’s popular pages
once, saving expensive internetwork
transfers while providing faster access to
those pages to the clients.

II. Java & Network Programming

The Networking Classes & Interfaces
The classes contained in the java.net
package are listed here:

Authenticator (Java 2) Inet
SocketAddress (Java 2, v1. 4) Socket
Impl
Content Handler Jar URL Connection
(Java 2) Socket Permission
Datagram Packet Multicast Socket
URI (Java 2, v1.4)
Datagram Socket Net Permission URL
Class Loader (Java 2)
Datagram Socket Impl Network Interface
(Java 2, v1.4) URL
Http URL Connection Password
Authentication (Java 2) URL Connection
InetAddress

Some of these are to support the new IPv6
addressing scheme. Others provide some
added flexibility to the original java.net
package. Java 2, version 1.4 also added
functionality, such as support for the new
I/O classes, to several of the pre-existing
networking classes. The java.net package’s
interfaces are listed here:
Content Handler Factory SocketImpl
Factory URL Stream Handler Factory
File Name Map Socket Options Datagram
Socket ImplFactory
(Added by Java 2, v1. 3)

Server Socket Class Method
The java.net. Server Socket class is used
by server applications to obtain a port and

listen for client requests. The ServerSocket
class has four constructors:

• Public Server Socket (int port) throws IO
Exception
Attempts to create a server socket bound to
the specified port. An exception occurs if
the port is already bound by another
application.
• Public Server Socket (int port, int
backlog) throws IO Exception
Similar to the previous constructor, the
backlog parameter specifies how many
incoming clients to store in a wait queue.
• Public ServerSocket (int port, int
backlog, InetAddress address) throws IO
Exception
Similar to the previous constructor, the
InetAddress parameter specifies the local
IP address to bind to. The InetAddress is
used for servers that may have multiple IP
addresses, allowing the server to specify
which of its IP addresses to accept client
requests on
• public Server Socket () throws IO
Exception
Creates an unbound server socket. When
using this constructor, use the bind ()
method when you are ready to bind the
server socket

If the Server Socket constructor does not
throw an exception, it means that your
application has successfully bound to the
specified port and is ready for client
requests. Here are some of the common
methods of the Server Socket class:
• publicintget LocalPort ()
Returns the port that the server socket is
listening on. This method is useful if you
passed in 0 as the port number in a
constructor and let the server find a port
for you.
• Public Socket accept () throws IO
Exception
Waits for an incoming client. This method
blocks until either a client connects to the
server on the specified port or the socket
times out, assuming that the time-out value
has been set using the set So Timeout ()

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Advanced Java: Networking with Java (Socket Programming) Nipun Sharma & NavitaDeswal

P a g e | 1091

method. Otherwise, this method blocks
indefinitely
• Public void set So Timeout (int timeout)
Sets the time-out value for how long the
server socket waits for a client during the
accept ().
• Public void bind (Socket Address host,
int backlog)
Binds the socket to the specified server
and port in the Socket Address object. Use
this method if you instantiated the Server
Socket using the no-argument constructor.

When the Server Socket invokes accept (),
the method does not return until a client
connects. After a client does connect, the
Server Socket creates a new Socket on an
unspecified port and returns a reference to
this new Socket. A TCP connection now
exists between the client and server, and
communication can begin.

III. Socket Class Method

The java.net. Socket class represents the
socket that both the client and server use to
communicate with each other. The client
obtains a Socket object by instantiating
one, whereas the server obtains a Socket
object from the return value of the accept
() method. The Socket class has five
constructors that a client uses to connect to
a server:
• Public Socket (String host, int port)
throws Unknown Host Exception, IO
Exception.
This method attempts to connect to the
specified server at the specified port. If this
constructor does not throw an exception,
the connection is successful and the client
is connected to the server.
• Public Socket (InetAddress host, int port)
throws IO Exception
This method is identical to the previous
constructor, except that the host is denoted
by an Inet Address object.
• Public Socket (String host, int port,
InetAddress local Address, intlocalPort)
throws IOException.

Connects to the specified host and port,
creating a socket on the local host at the
specified address and port.
• Public Socket (InetAddress host, int port,
InetAddresslocalAddress, intlocalPort)
throws IOException.
This method is identical to the previous
constructor, except that the host is denoted
by an InetAddress object instead of a
String
• Public Socket ()
Creates an unconnected socket. Use the
connect () method to connect this socket to
a server.

When the Socket constructor returns, it
does not simply instantiate a Socket object,
but it actually attempts to connect to the
specified server and port. Some methods
of interest in the Socket class are listed
here. Notice that both the client and server
have a Socket object, so these methods can
be invoked by both the client and server.
• Public void connect (Socke tAddress
host, int timeout) throws IO Exception
This method connects the socket to the
specified host. This method is needed only
when you instantiated the Socket using the
no-argument constructor.
• publicInet AddressgetInet Address ()
This method returns the address of the
other computer that this socket is
connected to.
• publicintget Port ()
Returns the port the socket is bound to on
the remote machine.
• publicintget LocalPort ()
Returns the port the socket is bound to on
the local machine.

IV. InetAddress Class Method

This class represents an Internet Protocol
(IP) address. Here are following useful
methods which you would need while
doing socket programming:
• staticInet Addressge tBy Name (String
host)
Determines the IP address of a host, given
the host's name.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

Advanced Java: Networking with Java (Socket Programming) Nipun Sharma & NavitaDeswal

P a g e | 1092

• String get Host Address ()
Returns the IP address string in textual
presentation.
• String get Host Name ()
Gets the host name for this IP address.
• static InetAddress InetAddressget Local
Host ()
Returns the local host.
• String To String ()
Converts this IP address to a String.
• booleanis Multi cast Address ()
Returns true if this Internet address is a
multicast address. Otherwise, it returns
false.

Internet addresses are looked up in a series
of hierarchically cached servers. That
means that your local computer might
know a particular name-to-IP-address
mapping automatically, such as for itself
and nearby servers. For other names, it
may ask a local DNS server for IP address
information. If that server doesn’t have a
particular address, it can go to a remote
site and ask for it. This can continue all the
way up to the root server, called Inter NIC
(internic.net). This process might take a
long time, so it is wise to structure your
code so that you cache IP address
information locally rather than look it up
repeatedly.

Conclusion

This paper describes the details about
sockets, ports, socket programming
Network programming makes use of
socket for in terprocess communication
between hosts where sockets act as the
endpoint of the in terprocess
communication. Here sockets can also be
termed as network socket or Internet
socket for communication between
computers is based on Internet protocol.
So Network programming is also Socket
Programming.

Acknowledgement

Much thanks to our guide for his
constructive criticism, and assistance
towards the successful completion of this
research work.

References

1. MC Graw Hill “The Complete
Reference: Java 2” Fifth
Edition.

2. Brose, G., Vogel, A., & Duddy,
K. (2001). Java programming
with CORBA: advanced
techniques for building
distributed applications (Vol.
6). John Wiley & Sons.

3. Reilly, D., Reilly, M., Harold,
E. R., Stevens, W. R., Fenner,
B., & Rudoff, A. M. (2002).
Java network programming and
distributed computing.
Addison-Wesley.

4. Steflik, D., & Sridharan, P.
(2000). advanced JAVA
Networking. Prentice Hall
Professional.

5. Farris, R. D., Flaherty, S. J., &
Goodman, W. D. (2000). U.S.
Patent No. 6,167,253.
Washington, DC: U.S. Patent
and Trademark Office.

