

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

P a g e | 1093

Security in Java Features That Differentiates
Java from Other Languages

Kajal Kanika & Monika Malhotra
Information Technology Branch Dronacharya College of Engineering Gurgaon, India

monikamalhotra15@yahoo.com

Abstract—

Java is a modern programming language that
consists of new age programming features like
Data Abstraction, Object Oriented Programming,
Multicore Programming, and Thread
management and is Platform Independent.
Since the beginning, Java has been at the centre
of a culture of innovation. Its original release
redefined programming for the Internet.
The Java Virtual Machine (JVM) and byte-code
changed the way we think about security and
portability.
Java’s approach of write once and run
everywhere caught everyone’s attention. It
reduces the amount of effort programmers put to
deploy their code on different platforms.
While is java is platform independent, it raises the
question of how secure it is on different platforms.
One way, the security could be compromised on
different platforms is via illegally accessing
memory. For that reason, Java doesn’t allow the
use of Pointers in the code. One may think, its one
of the core feature of a programming language
and even C++ allows to use pointers. But people
can perform most of their task in java without the
need of pointers.

Keywords—
JAVA; Security; Portability; Pointer-less

 INTRODUCTION
The fundamental forces that necessitated the

invention of Java are portability and security,
other factors also played an important role in

moulding the final form of the java language.
The key following considerations were summed
up by the Java team:

A. Simple

B. Secure

C. Portable

D. Object-oriented

E. Robust

F. Multithreaded

G. Architecture-neutral

H. Interpreted

I. High performance

J. Distributed

K. Dynamic

We will look into Security and Portability in

detail one by one later in this paper. Let’s start
with the byte-code first.

I. BYTE-CODE
The key point that allows Java to take care of

both the security and the portability problems is
the Output of the compiler. The output of a Java
compiler is not executable code. Rather, it is a
bytecode. Bytecode is a highly optimised set of
instructions designed to be executed by the Java
run-time system, called the Java Virtual Machine
(JVM). The original JVM was designed as an
interpreter for bytecode. This looks like a surprise
because most modern programming languages are
made to be compiled into executable code because
of performance concerns. However, the fact that a
Java program is executed by the JVM helps solve

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

 P a g e | 1094

the major problems associated with web-based
applications.

Translating a Java program into bytecode
makes it easier to run a program ina wide range of
platforms because only the JVM needs to be
implemented for each platform. Once the runtime
package exists for a given system, any Java
program can run on it. Although the details of the
JVM will differ from platform to platform, but all
of them understand the same Java bytecode. If a
Java program were compiled to native code, then
different versions of the same program would
have to exist for each type of CPU and platform
connected to the Internet. This is not a feasible
solution. Thus, the execution of bytecode by the
JVM is the easy and efficient way to create
portable programs.

The fact that a Java program is executed by the
JVM also helps to make it secure. Because the
JVM is in control, it acts like a sandbox that
contain the program and prevent it from
generating side effects outside of the system. As
we will see, safety is also enhanced by certain
restrictions that exist in the Java language.

In general, when a program is compiled to an
intermediate form and then interpreted by a virtual
machine, it runs slower than it would run if
compiled to executable code. However, with Java,
the differential between the two is not so great.
Because byte-code has been highly optimised, the
use of bytecode enables the JVM to execute
programs much faster than one might expect.

Although Java was created as an interpreted
language, there is nothing about Java that prevents
on-the-fly compilation of bytecode into native
code in order to enhance performance. For this
reason, Sun began supplying its Hotspot
technology not long after Java’s initial release.
Hotspot provides a Just-In-Time (JIT) compiler
for bytecode. When a JIT compiler is a part of the
JVM, selected portions of bytecode are compiled
into executable code in real time, on a piece-by-
piece and demand basis. It is important to
understand that it is not practical to compile an
entire Java program into executable code all at
once, because Java performs various run-time
checks that can be done only during the program
run time. Instead, a JIT compiler compiles code as
it is needed, during execution. Furthermore, not
all sequences of bytecode are compiled, only

those that will favor good from compilation. The
remaining code is simply interpreted as it is.
However, the just-in-time approach still yields a
significant performance boost. Even when
dynamic compilation is applied to bytecode, the
portability and safety features still apply, because
the JVM is still in charge of the execution
environment.

II. ROBUSTNESS OF JAVA
The multi-plat formed environment of the

internet put huge demands on a program, because
the program must execute reliably in various
systems. Thus, the ability to create robust
programs was given a high priority in the design
of Java language. To gain reliability, Java restricts
us in a few key areas that force us to find our
mistakes early in software development. At the
same time, Java frees us from worrying about
many of the most common programming errors.
Because Java is a strictly typed language, it
checks the code at compile time. However, it also
checks the code at run time. Many hard-to-track-
down bugs that often turn up in hard-to-reproduce
run-time situations are simply impossible to create
in Java. Knowing that what we have written will
behave in a predictable way under diverse
conditions is a key feature of Java language.

To better understand how Java is robust, let’s
consider two main reasons for program failure:
memory management mistakes and mishandled
exceptional conditions (that is, run-time errors).
Memory management can be a difficult, tedious
task in traditional programming environments. For
example, in C/C++, the programmer must
manually allocate and free all dynamic memory.
This sometimes leads to problems, because
programmers will either forget to free memory
that has been previously allocated or, worse, try to
free some memory that another part of their code
is still using. Java virtually eliminates these
problems by managing memory allocation and
deallocation for us. (Deallocation is completely
automatic, because Java provides garbage
collection for unused objects.) Exceptional
conditions in traditional environments often arise
in situations such as division by zero or “file not
found,” and they must be managed with clumsy
and hard-to-read constructs. Java helps in this area
by providing object-oriented exception handling.

International Journal of Research (IJR) Vol-1, Issue-9, October 2014 ISSN 2348-6848

 P a g e | 1095

In a well-written Java program, all run-time errors
can and should be managed by our program.

III. SECURITY IN JAVA
We all are likely aware, every time we

download a “normal” program, we take a risk,
because the code we are downloading might
contain a virus, Trojan horse, or other harmful
code. At the core of the problem is the fact that
malicious code can cause its damage because it
has gained unauthorized access to system
resources. For example, a virus program might
gather private information, such as credit card
numbers, bank account balances, and passwords,
by searching the contents of your computer’s local
file system. In order for Java to enable applets to
be downloaded and executed on the client
computer safely, it was necessary to prevent an
applet from launching such an attack.

Java achieved this protection by confining an
applet to the Java execution environment only and
not allowing it access to other parts of the
computer. The ability to download applets with
confidence that no harm will be done and that no
security will be breached is considered by many to
be the single most innovative aspect of Java.

Applets can be very useful in java, but it serves
as just one half of the client/server architecture
equation. Not long after the initial release of Java,
it became obvious that Java would also be useful
on the server side as well. The result was the
servlet. A servlet is a small program that executes
on the server. Just as applets dynamically extend
the functionality of a web browser, servlets
dynamically extend the functionality of a web
server. Thus, with the advent of the servlet, Java
spanned both sides of the client/server connection.

Servlets are used to create dynamically
generated contention the server that is then served
to the client on the client side. For example, an
online store might use a servlet to look up the
price or description for an item in the database.
The price and description information is then used
to dynamically generate a web page that is sent to
the browser. Although dynamically generated
content is available through mechanisms such as
CGI (Common Gateway Interface), the servlet
offers several advantages, including increased
performance and efficiency.

Because servlets (like all Java programs) are
compiled into bytecode and executed by the JVM,
they are highly portable. Thus, the same servlet
can be used in a variety of different server
environments. The only requirements are that the
server supports the JVM and a servlet container.

V. CONCLUSION
In this paper we have presented that how java

is a secure language and the features that
differentiate java from other languages out there
in use. Since Java uses bytecode which in turn
gets executed in a separate environment (JVM)
generates a confidence that java is secure and
robust. Java does limit us from using various
programming features available in other
languages for the sake of security. For example,
Pointers but in java one don’t need a pointer. It
also serves well in client-server architecture and is
multi-platform but still maintain the security level
properly in all environment which is
commendable.

REFERENCES

[1]. Dragoni, N., Massacci, F., Naliuka, K., &
Siahaan, I. (2007). Security-by-contract:
Toward a semantics for digital signatures
on mobile code. In Public Key
Infrastructure (pp. 297-312). Springer
Berlin Heidelberg.

[2]. Caromel, D., & Vayssière, J. (2001).

Reflections on MOP s, Components, and
Java Security. In ECOOP 2001—Object-
Oriented Programming (pp. 256-274).
Springer Berlin Heidelberg.

[3]. Amme, W., Dalton, N., von Ronne, J., &

Franz, M. (2001). SafeTSA: A type safe
and referentially secure mobile-code
representation based on static single
assignment form (Vol. 36, No. 5, pp. 137-
147). ACM.

[4]. Flenner, R. (Ed.). (2003). Java P2P

unleashed. Sams Publishing.

